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Mutations in CHD7 have been shown to be a major cause of CHARGE syndrome,
which presents many symptoms and features common to other syndromes making
its diagnosis difficult. Next generation sequencing (NGS) of a panel of intellectual
disability related genes was performed in an adult patient without molecular diagnosis.
A splice donor variant in CHD7 (¢.5665 + 1G > T) was identified. To study its potential
pathogenicity, exons and flanking intronic sequences were amplified from patient DNA
and cloned into the pSAD® splicing vector. Hella cells were transfected with this
construct and a wild-type minigene and functional analysis were performed. The
construct with the ¢.5665+ 1G> T variant produced an aberrant transcript with an
insert of 63 nucleotides of intron 28 creating a premature termination codon (TAG)
25 nucleotides downstream. This would lead to the insertion of 8 new amino acids
and therefore a truncated 1896 amino acid protein. As a result of this, the patient was
diagnosed with CHARGE syndrome. Functional analyses underline their usefulness for
studying the pathogenicity of variants found by NGS and therefore its application to
accurately diagnose patients.
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INTRODUCTION

The advent of next generation sequencing (NGS) technology which allows the sequencing either
of the whole genome or of the expressed genes (exome) in one analysis, is transforming the
process of genetic testing. NGS is being used extensively to diagnose diseases and find novel
causative mutations for disease phenotypes. However, detailed analysis conclusively confirming
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these variants, as well as the underlying molecular mechanisms
explaining the diseases, are often lacking.

Actually, 100s of 1000s of DNA variants are detected
in massive sequencing projects of genetic disorders and
interestingly, many estimations have shown that an unexpectedly
large fraction of genetic diseases are caused by variants that
disrupt the splicing process (Wang and Cooper, 2007), ranging
from 15 to >60% (Lopez-Bigas et al., 2005).

CHD?Y is a gene located on chromosome 8q12.1 encoding the
chromodomain helicase DNA-binding (CHD) protein 7, which
belongs to a family of nine CHD proteins that can modify
chromatin structure (Vissers et al., 2004). Among them CHD?7 is
a transcriptional regulator that binds to enhancer elements in the
nucleoplasm. CHARGE syndrome is characterized by Coloboma,
Heart defects, Atresia of the choanae, Retardation of growth
and development, Genital hypoplasia and Ear abnormalities,
and approximately 60-70% of the patients have pathogenic
mutations in CHD?, the major causative gene of this syndrome
(Zentner et al,, 2010b). While most CHD7 mutations are
nonsense or frameshift and predicted to be loss of function
(Zentner et al., 2010a), the incidence of splice mutations is low,
around 12% according to the Human Gene Mutation Database
(HGMD) (Stenson et al., 2017). Moreover, splice mutations are
often based on bioinformatic predictions and functional analyses
confirming the pathogenicity of the mutations are lacking.
Here, we describe the functional consequences of a novel splice
mutation in CHD? found by NGS in a patient without molecular
diagnosis.

BACKGROUND
Case Report

The male patient was the second child born to non-
consanguineous Spanish healthy parents (24 and 30 vyears
old, at the time of birth), with an unremarkable family history.
He was born after 40 weeks of an uneventful pregnancy at a
local hospital in 1977 and birth parameters were: weight 2,860 g
(20th percentile), a length of 49 cm (5th percentile) and head
circumference 36 cm (50th percentile). Apgar scores were 9 and
9 at 1 and 5 min, respectively.

At birth, he had an acceptable general appearance with good
skin color, good muscle tone and normal active movements,
but he showed facial dysmorphic features, including right
choanal atresia resulting in a respiratory insufficiency, abnormal
placement of the parietals, retromicrognathia of the lower
jaw, narrow palate and glossoptosis, bilateral dysplastic, and
low-set ears, protrusion of the right eye with megalocornea
and papilar coloboma of the left eye. There were no thorax
anomalies, neither in the limbs nor in the genitalia. At
the age of 10 days, a systolic murmur was detected and
therefore a congenital heart anomaly was suspected. At
21 days he was transferred to a reference hospital in
Barcelona (Spain) where they found a cardiomegaly, an
interventricular communication and an arteriovenous shunt and
he was diagnosed with an atypical Treacher-Collins-Franceschetti
syndrome.

During his 1Ist year of life he was admitted to his local
hospital on many occasions due to breathing and swallowing
difficulties requiring artificial ventilation and nasogastric tube
feeding. Biochemical tests were negative, with no evidence of
metabolic disease. At 1 year of age he had surgery due to his heart
malformations in a reference center in Navarra (Spain).

It was early on when doctors realized that his psychomotor
development was also delayed. He had autistic features
and developed no speech. His weight-stature development
was normal. Clinical data throughout his life are scarce
but he was repeatedly admitted to the hospital because of
recurrent respiratory infections, dyspnea, swallowing difficulties,
gastrointestinal bleedings and a hyper-excitability which was
difficult to control with a severe intellectual disability (ID). His
parents had always cared for him at home until he died in 2013,
at the age of 36. He had never been seen by an expert in Medical
Genetics.

The molecular study of this patient began in 2010 in the
context of a research project. This study was approved by
the ethics committee for clinical research of Araba University
Hospital (Vitoria, Spain). Informed consent was obtained from
his parents before the extraction of peripheral blood samples for
genetic analyses and they provided written consent to publish the
report. Test results for karyotype, fragile X syndrome and arrays-
CGH (60Kk) revealed no abnormalities. In 2011, he was included
in a panel sequencing study of 565 ID-related genes within the
UKI10K project due to the scarcity of clinical data. A novel splice
mutation in the CHD7 gene was observed: ¢.5665 + 1G > T
(Grozeva et al., 2015). This variant was not observed in gnomAD
variant frequency database of more than 100,000 sequenced
individuals (Lek et al., 2016). The presence of the variant in the
patient was validated by Sanger sequencing and was absent in the
parents, confirming that it is a de novo mutation (Figure 1A).
When the parents received the result and the altered diagnosis
of CHARGE syndrome, the patient had already died. Further
analysis of the variant was performed to inform the recurrence
risk for extended family members.

MATERIALS AND METHODS

Functional consequences of the mutation ¢.5665 + 1G > T
in CHD7 were tested by a minigene assay, as RNA from the
patient was not available. First, to evaluate the potential impact of
the variant on splicing, Human Splicing Finder' and NNSplice’
splicing prediction programs were used. This bioinformatic
analysis of the ¢.5665 + 1G > T variant in CHD7 predicted
the disruption of the canonical splice donor of exon 28 and
also detected the presence of a cryptic donor site in the intron
28, 64 nucleotides downstream (NNSplice = 0.59) (Figure 1B).
The +1G nucleotide is conserved in 100% of the 5'splice site
recognized by the major spliceosome.

A minigene was constructed with an insert of 1480 bp
corresponding to the exons 26, 27 and 28 and the flanking

Uhttp://www.umd.be/HSF/
Zhttp:/fwww.fruitfly.org/seq_tools/splice.html
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FIGURE 1 | Confirmation and biocinformatic analysis of the ¢.5665 + 1G > T
variant found in the CHD7 gene. (A) Electropherogram of the genomic
sequence confirming the variant identified by NGS. This variant was not found
in the patient’s parents. (B) Bioinformatic analysis of the variant. The variant
has a potential effect on the splicing process, eliminating the canonical
splicing donor site of exon 28. The presence of a cryptic donor site in intron
28, 64 nt downstream (NNSplice = 0.59) is also detected.

intronic sequences of the CHD7 gene with the following
structure: ivs25 (355 bp)-ex26 (130 bp)-ivs26 (409 bp)-
ex27 (73 bp)-ivs27 (157 bp)-ex28 (58 bp)-ivs28 (298 bp)
(Figure 2A and Supplementary Figure S1). Briefly this insert
was amplified with the primers FW: 5 GGTGGCGGCC
GCTCTAGAACTAGTGGATCCCCCGG GCAGAGGTCATAA
AGGAACATT 3’ and RV: 5 GACGGTATCGATAAGCTT
GATATCGAATTCCTGCACAAATGCTCTATGCTCTATTCCC
3’ (cloning tails are underlined) and the high fidelity polymerase
(Phusion Hot Start) from the patient’s DNA.

Fragments were cloned into the splicing vector pSAD®
(Acedo et al.,, 2015) between the Eagl y Clal sites (minigene
MGchd7_ex26-28) and the complete insert was sequenced to
check the presence of the wild-type allele or the mutant one.
Using a standard protocol of transfection, approximately 10°
HeLa cells were transfected with the wild-type and the mutant
minigenes. To inhibit nonsense-mediated decay (NMD), cells
were incubated with cycloheximide (CHX). RNA was extracted
after 48 h and purified with the Genematrix Universal RNA
purification Kit (EURx, Gdansk, Poland) with on-column DNAse
I digestion to degrade genomic DNA that could interfere in RT-
PCR. Retrotranscription was carried out with specific primers
of exons V1 and V2 of the pSAD® vector as described (Acedo
et al., 2015; Fraile-Bethencourt et al, 2017). Samples were
sequenced at the Macrogen facility (Macrogen Spain, Madrid,
Spain). Fragment analysis was carried out with Peak Scanner
v1.0 (Life Technologies). Mean peak areas of each transcript and
standard deviations were calculated.

FUNCTIONAL ANALYSIS RESULTS

Functional analysis of the wild-type minigene (MGchd7_EX26-
28) revealed the expected canonical transcript [(442 nt = exons
V1 (84 nt)- ex 26 (130 nt)- ex27 (73 nt)- ex28 (58 nt)- V2
(97 nt)] while the construct with the variant ¢.5665 + 1G > T
produced a principal aberrant transcript (Figure 2B). The
sequence of the RT-PCR product generated from the mutant
minigene showed the insertion of 63 nucleotides of intron
28 by use of a 64 nt downstream alternative donor site
(r.5665_5666ins5665 + 1_5665 + 63) (Figure 2C). The effect
on the protein would be the insertion of eight new amino acids
(VKVPEKLV) after the position Thr1888 and the appearance
of a pre-termination codon (TAG) 25 nucleotides downstream
(p.Gly1889ValfsTer8), resulting in a truncated 1896 amino acid
protein.

DISCUSSION

Next generation sequencing-based target sequencing has the
potential to serve as a powerful tool that allows definitive
diagnosis. Despite numerous studies, there is still a huge
challenge in deciding whether or not variants detected by NGS
are pathogenic. Although the rapidly evolving bioinformatic
methods help in the identification of potential functional
variants from large data sets, functional analyses to test these
predictions are essential. Here, we present a case of a patient
without molecular diagnosis, but with a clinical diagnosis of
atypical Treacher-Collins-Franceschetti syndrome. The patient
was included in a screening of 986 individuals with moderate
to severe ID for variants in 565 known or candidate ID-
associated genes using targeted NGS within the UK10K project
(Grozeva et al., 2015). A novel splice site mutation in CHD7
was found in this patient reclassifying him as having CHARGE
syndrome. This was very important because CHARGE syndrome
was first described years after the patient’s birth and therefore
his clinicians did not know of this syndrome at that time. So
even if the patient presented with three out of four major clinical
signs for this syndrome at birth, he was not diagnosed until
the NGS study. Moreover, an overlap has been described of
clinical features with many other diseases, such as 22q deletion
syndrome, Kabuki syndrome, Kallmann syndrome, retinoic acid
embryopathy, VACTERL association and PAX2 abnormalities
(Lalani et al., 1993; Kohmoto et al., 2016). In patients who do
not completely fulfill the clinical CHARGE diagnostic criteria,
the identification of CHD7 mutations is important in order to
guarantee accurate clinical surveillance, which can possibly lead
to the description of additional CHARGE features (Janssen et al.,
2012).

Previous studies have reported that mutations in CHD7 are
the major cause of CHARGE syndrome (Vissers et al., 2004;
Zentner et al., 2010b; Lee et al., 2016). CHD7 mutations in typical
CHARGE syndrome patients occur de novo in the vast majority of
the cases (Lalani et al., 1993). Haploinsufficiency for CHD?7 is the
most likely pathogenic mechanism of this syndrome (Kohmoto
etal., 2016). In HGMD Professional 2017.2, 757 CHD7 mutations
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FIGURE 2 | Functional analysis of the variant using a minigene strategy. (A) Exons 26-28, complete 26 and 27 introns and part of flanking introns 25 and 28 (intron
25, 355 bp, intron 28, 298 bp) of the CHD7 gene were amplified (total size 1480 bp) and cloned into the splicing vector pSAD®. V1 and V2 are constitutive exons of
the vector that in eukaryotic cells produce the splicing reactions (marked in the figure) with the cloned exons. (B) The RT-PCR functional assay of the wild-type
(above) and mutant (below) minigenes was performed with a FAM-labeled first fluorescence (blue peaks). Capillary electrophoresis was performed in triplicate on an
automated sequencer with the Genescan LIZ 1200 size standard (orange peaks; Applied Biosystems) and Peak Scanner (Applied Biosystems) analysis. The asterisk
indicates a possible aberrant transcript. (C) Partial sequence of the RT-PCR product generated by the ¢.5665 + 1G > T variant. After sequencing, the insertion of 63
nt of intron 28 can be observed. No traces of other aberrant transcripts detected in the fragment analysis were observed. In the upper right the sequence of the
border between exons 28 and V2 of the canonical transcript produced by the wild-type minigene can be observed.

have been reported in CHARGE syndrome, 96 of them being
splice mutations (Stenson et al., 2017). The ¢.5665 + 1G > T
variant is not reported in HGMD and our patient is the first
described with this variant although there are several splice
variants in that region.

To confirm the pathogenicity of the novel mutation,
functional assays were performed. The feasibility of performing

functional analyses depends on the availability and accessibility
of the required samples which can be a major challenge. In this
context, a large number of methods, including model systems,
can be used for functional interpretation of genome sequence
variants. In our case, bioinformatic analyses suggested that the
mutation could affect the splicing process. The ideal manner
to study it would be to use the patients RNA but in this case,
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it was impossible to obtain because the patient was already
deceased. Subsequently, a reliable and straightforward method
to assess splicing was required. Ex vivo assays of DNA variants
with splicing reporter minigenes have emerged to solve this
problem (Bottillo et al., 2007; Lu et al., 2007; Jaijo et al., 2011;
Acedo et al., 2015). Minigenes allow precise quantification of a
single-mutant allele effect without the interference of the wild-
type counterpart in patient samples. Another advantage of this
approach is the high reproducibility of physiological/pathological
splicing patterns by virtue of keeping the genomic context of each
exon. Our functional assay showed that the novel splice donor
variant ¢.5665 + 1G > T has a complete impact on the splicing of
the CHD?7 gene and the effect would be a truncated protein.

The large 2997 amino acid CHD7 protein contains two
chromodomains at its N terminus, followed by centrally located
SNF2 and helicase domains; three conserved region (CR)
domains; a switching-defective protein 3, adaptor 2, nuclear
receptor corepressor, transcription factor IIIB (SANT) domain;
two Brahma and Kismet (BRK) domains of unknown function;
and, at the C terminus a leucine-zipper domain (Kim et al,
2008). It has been previously described that CHD7 can bind to
the p53 promoter, thereby negatively regulating p53 expression,
and that CHD7 loss in mouse neural crest cells or samples
from patients with CHARGE syndrome results in p53 activation
(Van Nostrand et al., 2014). The effect of the splice mutation
found in this patient on the CHD?7 protein will be the loss of the
SANT and the BRK domains. The SANT domain may mediate
binding to either DNA or modified histones (Schnetz et al., 2009)
so the truncated protein will lose the ability to bind to the DNA
or histones.

The minigene-construct allows the analysis of multiple
variants from different exons. Therefore, the minigene containing
exons 26-28 and the flanking intronic sequences of the CHD7
gene we have constructed, could be used for the analysis of other
splice mutations in that region for which there are not functional
analysis yet (Bartels et al., 2010).

CONCLUDING REMARKS

Functional analyses are very useful for studying the pathogenicity
of variants found by NGS. In the case of novel mutations in
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