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Whole genome duplication (WGD) is an evolutionary phenomenon, which causes

significant changes to genomic structure and trait architecture. In recent years, a number

of studies decomposed the additive genetic variance explained by different sets of

variants. However, they investigated diploid populations only and none of the studies

examined any polyploid organism. In this research, we extended the application of this

approach to polyploids, to differentiate the additive variance explained by the three

subgenomes and seven sets of homoeologous chromosomes in synthetic allohexaploid

wheat (SHW) to gain a better understanding of trait evolution after WGD. Our SHW

population was generated by crossing improved durum parents (Triticum turgidum;

2n= 4x= 28, AABB subgenomes) with the progenitor species Aegilops tauschii (syn Ae.

squarrosa, T. tauschii; 2n = 2x = 14, DD subgenome). The population was phenotyped

for 10 fungal/nematode resistance traits as well as two abiotic stresses. We showed that

the wild D subgenome dominated the additive effect and this dominance affected the A

more than the B subgenome. We provide evidence that this dominance was not inflated

by population structure, relatedness among individuals or by longer linkage disequilibrium

blocks observed in the D subgenome within the population used for this study. The

cumulative size of the three homoeologs of the seven chromosomal groups showed a

weak but significant positive correlation with their cumulative explained additive variance.

Furthermore, an average of 69% for each chromosomal group’s cumulative additive

variance came from one homoeolog that had the highest explained variance within

the group across all 12 traits. We hypothesize that structural and functional changes

during diploidization may explain chromosomal group relations as allopolyploids keep

balanced dosage for many genes. Our results contribute to a better understanding of

trait evolution mechanisms in polyploidy, which will facilitate the effective utilization of

wheat wild relatives in breeding.
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INTRODUCTION

Polyploidization, whole genome duplication (WGD), is a natural
process in which a single genome can be duplicated to
form autopolyploids with more than two homologs for each
chromosome, or multiple genomes are duplicated following
hybridization between two ormore species to form allopolyploids
with multiple pairs of homologs derived from different ancestral
genomes, termed homoeologs. Following WGD, multiple copies
of duplicated genes may be lost, diverge in function, or silenced
through a phenomenon called “diploidization” in which balanced
dosages for many genes can be retrieved (Ohno, 1970; Lynch
and Conery, 2000; Tate et al., 2009; Conant et al., 2014). Rapid
genomic rearrangements and epigenetic changes have been
observed directly after WGD (Ozkan et al., 2001; Shaked et al.,
2001; Kashkush et al., 2002; Hegarty et al., 2008) which can cause
changes in the architecture of different traits (Weiss-Schneeweiss
et al., 2013).

WGD can be induced in laboratories to generate new taxa
such as triticale (Stace, 1987), or to introduce new variation
into known taxa such as bread wheat (Triticum aestivum,
2n = 6x = 42, AABBDD) which suffered a severe genetic
bottleneck during its origin (Yang et al., 2009). Synthetic
hexaploid wheat (SHW) can be generated by crossing Triticum
turgidum (2n = 4x = 28, AABB) with Aegilops tauschii
(2n = 2x = 14, DD), mimicking the natural evolutionary origin
of bread wheat. SHW germplasm is a proven source of genetic
diversity to improve yield (Gororo et al., 2002; Dreccer et al.,
2007; Ogbonnaya et al., 2007, 2013), soil-borne pathogen (Mulki
et al., 2013), insect (El-Bouhssini et al., 2013; Joukhadar et al.,
2013), and fungal disease resistance (Zegeye et al., 2014; Jighly
et al., 2016), as well as boron (Emebiri and Ogbonnaya, 2015)
and salinity tolerance (Dreccer et al., 2004; Ogbonnaya et al.,
2008a). However, it remains uncertain how the three subgenomes
(A, B, and D) of bread wheat contribute to observed phenotypes
or whether the wild Aegilops parent makes a considerable
contribution to the additive genetic variance for different traits
especially when crossed with an improved or elite durum wheat
parent. This can be investigated by partitioning the total additive
trait variance into different chromosomes in a SHW population.

Recently, a number of studies partitioned the additive variance
of different traits captured by multiple sets of markers in both
human and animal quantitative genetics studies. Applications
varied from differentiating the variance captured by different
chromosomes (Robinson et al., 2013), genotyped, and imputed
variants (Lee et al., 2012), genic, and intergenic variants (Yang
et al., 2011b), different SNP chips (Chen et al., 2014), to
differentiating the variance of common and rare variants (Lee
et al., 2013; Yang et al., 2015). In general, almost all studies
reported a medium to high correlation between chromosome
size and its explained additive variance for the studied traits.
Yet, this approach has not been applied to any plant population,
particularly among polyploid species such as wheat, where
considerable efforts have gone into exploiting valuable sources
of new genes from its progenitor species for cultivated wheat
improvement (Ogbonnaya et al., 2013). Applying this approach
to allopolyploids can provide a better understanding and a new

way for differentiating the additive effects captured by different
subgenomes.

In this research, we used a SHW population to investigate
the contribution of each subgenome to trait variation. The SHW
population was derived from crosses between wild Ae. tauschii
parents and improved durum cultivars and was phenotyped
for resistance to 10 different diseases and tolerance to two
abiotic stresses. The same dataset was previously characterized
in multiple genome-wide association studies (GWAS) for major
genes associated with these different stresses (Mulki et al., 2013;
Emebiri and Ogbonnaya, 2015; Jighly et al., 2016). However,
the GWAS approach does not adequately provide the precise
contribution of each chromosome/subgenome to the total
heritability as genes identified through GWAS represent only a
small proportion of the total heritability (Goldstein, 2009; Yang
et al., 2017). Such information is critical to understanding trait
evolution in newly synthesized allopolyploids and to efficiently
utilize wild relatives in wheat breeding. In the present paper,
we investigated this by partitioning the additive variance into
each of the 21 SHW chromosomes. The relation between
partitioned additive variance and chromosome, subgenome and
chromosomal group size was also investigated. To the best of our
knowledge, this is the first study to use this approach in polyploid
or plant populations.

MATERIALS AND METHODS

SHW Phenotyping and Genotyping
The SHW population consists of 173 crosses between different
A. tauschii accessions and elite durum cultivars (Table S1).
The population was genotyped with DArTSeq—a genotyping
by sequencing, (GBS) approach, developed by Diversity Array
Technology, DArT, http://www.diversityarrays.com/. The full
method is described in Sehgal et al. (2015). In brief, restriction
enzymes were used first to reduce the complexity of the wheat
genome and the Pst1-RE adapters were tagged with 96 barcodes.
This strategy allows for multiplexing 96 samples in a single
Illumina HiSeq2500 lane to generate around 0.5 million of 77 bp
reads per sample. The generated FASTQ files were trimmed at
Phred score 30 and further filtering steps and SNP calling were
conducted using designed scripts developed by DArT P/L. Only
SNPs with <20% missing data and >5% minor allele frequency
were used in subsequent analyses. The SNP dataset used for the
current study was previously published as a supplement in Jighly
et al. (2016).

The SHW population was phenotyped for aluminum (Al)
and boron (Br) tolerance, stem (Sr), yellow (Yr) and leaf
(Lr) rusts, crown rot (Cr), yellow leaf spot (YLS), septoria
nodorum leaf blotch (SNL) and septoria nodorum glume blotch
(SNG), root lesion nematodes [Pratylenchus neglectus (Pn) and
Pratylenchus thornei (Pt)] and cereal cyst nematode (CCN)
resistance. Experimental details were previously described in
(Ogbonnaya et al., 2008b; Emebiri and Ogbonnaya, 2015; Jighly
et al., 2016). Briefly, the germplasm was screened in three
replicates for the three rust diseases under field conditions.
The most commercially important fungal pathotypes used for
infection were 104–1,2,3,(6), (7), 11, 13 (accession number
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200347) for Lr; 98–1,2,3,5,6 (accession number 781219) for Sr;
and 134 E16A (021510) for Yr. Four different isolates (WAC
4302, WAC 4305, WAC 4306, and WAC 4309) were used in
four replicates under greenhouse conditions for SNG and SNL.
YLS was also screened in a controlled environment against
isolates 03–0148, 03–0152, and 03–0053. For CCN, plants were
considered resistant if they had less than five cysts per plant
root while plants were considered susceptible if they had more
than 30 cysts. Plants with 5–30 cysts were considered moderately
resistant to moderately susceptible. The severity of Pn and the
number of Pt nematodes per plant were used to infer the score
of resistance by comparing the plant response to resistant and
susceptible checks. Br tolerance was phenotyped by measuring
root growth at the seedling stage on a filter paper soaked with
boron while Al tolerance was measured using the hematoxylin
staining of root apices method (Raman et al., 2010).

Statistical Analysis
We estimated 21 genetic relatedness matrices (GRMs) from
SNPs located on each one of the SHW chromosomes following
the method described in (Yang et al., 2010, 2011a). The
variance explained by each chromosome was estimated using
the genomic-relatedness-based restricted maximum likelihood
(GREML) analysis by fitting all 21 GRMs simultaneously in the
mixed linear model (Lee et al., 2012; Lee and van derWerf, 2016):

y = Xβ +

n∑

i = 1

gi + ε

Where y is a vector of phenotypes, n is the number of
chromosomes (21 in our case), β is a vector of fixed effects, X
is an incidence matrix that relates individuals to fixed effects and
ε is a vector of random errors. gi is a vector of random additive
genetic effect attribute to chromosome i. The variance structure
of phenotype is equal to:

V =

n∑

i = 1

Aiσ
2
gi
+ Iσ 2

e

Where Ai is the GRM for chromosome i, σ 2
gi

is the additive
genetic variance captured by SNPs on chromosome i, I is an
identity matrix and σ 2

e is the error variance.
We ran the analysis twice, with and without including the

first 10 principal components (PCs) as fixed effects. Including a
number of PCs in the model can control for population structure
in the germplasm; thus, the effect of population structure will
be minimal if the model that fits PCs revealed similar results
to the model that does not include PCs (Lee et al., 2012).
The first 10 PCs were calculated using PLINK 1.9 (http://www.
cog-genomics.org/plink/1.9/). To further investigate the effect of
the correlation between different chromosomes due to shared
structure among chromosomes (Lee et al., 2012; Yang et al.,
2017), we calculated the conditional effect for each one based
on the other 20 chromosomes. This was done by fitting 21
different models that each excluded one different GRM from the
joint analysis. If the SNPs located on the excluded chromosome

were correlated with SNPs on the other 20 chromosomes,
the conditional effect analysis will overestimate the additive
variance for the 20 chromosomes. Subtracting the conditional
additive variance from the overall additive variance inferred
from the full model is equal to the proportion of additive
variance of the excluded chromosome that is not correlated
with other chromosomes. This value can be used to investigate
dependency among chromosomes and to confirm differences
among subgenomes.

The D subgenome in our germplasm had very large LD blocks
compared to the A and B subgenomes (Jighly et al., 2016) which
may overestimate the heritability for the D subgenome (Speed
et al., 2012). Thus, we repeated the analysis after randomly
omitting 20% of the whole SNP dataset, omitting 20% of SNPs
located on A and B subgenomes only, or omitting 50% of SNPs
located on D subgenome. The three analyses showed similar
results thus only results of the first analysis is presented in the
present paper. The idea is that if we do not have enough SNP
density to cover all LD blocks in both A and B subgenomes,
omitting a considerable proportion of the SNPs will mask the
variance captured by the deleted SNPs while keeping the D
subgenome unaffected. Obtaining the same results from the
original and the masked analyses suggests that each LD block is
covered with adequate number of SNPs and as such, the majority
of its variance can be captured with the available SNPs.

Analysis of covariance (ANCOVA) was used to determine
significant differences among the three subgenomes considering
(1) the subgenome size as a covariate or (2) the chromosome
size as a covariate. The fitted model for the first ANCOVA
analysis was: Additive Effect ∼ subgenome + subgenome
size. For the second analysis, we fitted the model twice, with
and without including the interaction between chromosome
size and subgenome. Thus, the models were: Additive Effect
∼ subgenome + chromosome size; and Additive Effect ∼

subgenome ∗ chromosome size.
For each trait, a Chi-square test was performed to test whether

the actual additive variance explained by the three subgenomes
lies within the expected range for their values. The genome
size for A, B and D subgenomes is 5727, 6274, and 4945Mb,
respectively. Thus, the expected contribution for each subgenome
to the additive variance was calculated as the proportion of the
subgenome size to the whole genome size, which was 33.8, 37,
and 29.2% for A, B, and D subgenomes, respectively.

To further confirm that the differences among subgenomes
are true and have not been inflated because of relatedness among
individuals, we ran 100 replicates of the GREML analysis using
randomly sampled phenotypes from the normal distribution
N (0, 1). This analysis allows us to compare our findings to
the null hypothesis given our data. True differences among
subgenomes/chromosomal groups should be detected when
using our empirical phenotypes and not simulated ones.

Finally, the reliability of the GREML analysis was estimated
by running a 100 replicates of the analysis in which we omitted
one random individual for each replicate (reduced model).
Pearson correlation coefficients between additive variances of
both models (full and reduced) for all chromosomes across
all traits were computed. The reliability was estimated as
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the square of the average Pearson correlation coefficient over
the 100 replicates. The reliability was used to calculate the
“attenuated correlation” for all our correlation analyses following
Charles (2005) implemented in Fisher (2014). Calculating the
attenuated correlation avoids overestimating the significance of
the correlation analysis by adjusting its value according to the
standard deviation of our additive variance estimation.

RESULTS

The SHW dataset included 6,176 GBS based SNPs with missing
data<20% andminor allele frequency>5%. The total heritability
values ranged from 44.8 to 60.5% for resistance to Sr and

SNG, respectively, (Table 1) with an average value of 50.4%.
All estimated heritabilities were significantly higher than the
heritability obtained under the null model with simulated
phenotypes, which had an average of 22 and 95% confidence
interval between 16.3 and 27.7%. However, it is worth noting
that these values should be less than the actual heritabilities as
they depend on the genotyped SNPs only (Manolio et al., 2009).
The numbers presented in Table 1 represent the proportion of
the total additive variance explained by each chromosome, which
sum to 100 for each trait, in which negative values were recorded
as zeroes (Plotted in Figure 1). The original estimations and
their standard deviations can be found in Table S2. The average
standard deviation across chromosomes and traits was equal

TABLE 1 | The additive variance for different traits and its partitioning (as percentage of the total heritability) into different chromosomes, chromosomal groups, and

genomes.

Chr Size (Mb) Al Br CCN Cr Lr Pn Pt SNG SNL Sr YLS Yr

He 16,946 50.3 51.1 46.2 49.8 49.3 49.1 48.2 60.5 49.7 44.8 54.3 51.0

1A 798 3.6 7.2 3.5 10.4 6.4 0 6.8 5.1 0 0 3.9 5.7

2A 899 0 7.3 3.8 0 7.4 0 0 0.2 5.5 0 2.4 0

3A 828 7.5 4.3 6.4 0 7.2 9.0 4.7 4.7 0.8 0 1.6 9.4

4A 856 5.0 7.0 9.8 12.6 7.4 7.6 6.0 7.7 0 1.3 7.5 0

5A 827 6.1 6.3 0 0 2.6 0.8 2.1 11.4 5.2 0 0.5 3.4

6A 705 8.6 0 0 0 4.9 0 1.0 5.5 7.9 5.8 0.5 0

7A 814 6.4 0 0 6.1 5.1 2.7 3.1 5.7 0 12.4 0 0

1B 849 0 0 0 0 0 0 0 0.7 14.5 3.2 4.2 1.1

2B 928 2.8 11.4 0 3.8 2.6 6.0 7.0 0.6 7.8 18.1 7.8 1.1

3B 993 7.2 8.3 11.7 6.4 7.3 6.8 13.8 10.9 5.8 14.0 8.3 4.0

4B 821 1.4 0.4 0 11.2 3.3 7.9 8.9 1.1 9.3 15.5 7.6 2.2

5B 870 0.9 0.7 6.8 1.0 5.3 11.1 0 3.4 7.0 6.8 12.1 15.7

6B 913 9.1 10.5 7.6 3.3 4.4 10.1 0 9.2 0 0 0 0

7B 900 0 3.0 8.5 0 4.6 7.1 0 0 0 9.3 0 7.7

1D 605 10.1 12.6 6.6 8.3 2.8 3.3 5.5 10.5 8.0 0 3.8 0

2D 729 17.6 3.1 19.1 5.3 7.2 8.1 0 0 2.2 3.3 10.1 4.7

3D 771 6.9 1.9 2.1 23.5 0 3.6 6.9 9.4 7.4 1.4 9.8 7.7

4D 649 0 0 7.6 7.8 0 0 17.0 4.9 0 0 0 3.2

5D 750 0 4.1 6.6 0.1 2.3 6.3 12.9 6.9 0 4.5 0 10.2

6D 713 0.5 3.7 0 0 8.1 0 4.2 2.1 6.7 0 10.5 0

7D 728 6.1 8.4 0 0 10.9 9.6 0 0 11.7 4.6 9.4 23.8

Group1 2,252 13.8 19.8 10.1 18.7 9.2 3.3 12.3 16.3 22.5 3.2 12.0 6.8

Group2 2,556 20.5 21.7 22.9 9.2 17.2 14.1 7.0 0.7 15.5 21.4 20.4 5.9

Group3 2,592 21.5 14.5 20.2 29.9 14.5 19.4 25.4 25.0 14.1 15.5 19.7 21.1

Group4 2,326 6.5 7.4 17.3 31.6 10.7 15.5 31.9 13.7 9.3 16.7 15.1 5.3

Group5 2,447 7.0 11.1 13.4 1.1 10.2 18.2 15.0 21.7 12.3 11.3 12.6 29.3

Group6 2,331 18.2 14.2 7.6 3.3 17.4 10.1 5.2 16.8 14.6 5.8 11.0 0

Group7 2,442 12.5 11.4 8.5 6.1 20.6 19.4 3.1 5.7 11.7 26.2 9.4 31.5

A 5,727 37.2 32.2 23.5 29.1 41.0 20.2 23.8 40.3 19.5 19.4 16.5 18.6

B 6,274 21.5 34.1 34.6 25.7 27.6 48.9 29.8 25.8 44.5 66.8 39.9 31.8

D 4,945 41.4 33.7 41.9 45.2 31.4 31.0 46.4 33.9 36.0 13.8 43.6 49.6

Chi test – 0.003 NS 0.01 0.002 NS 0.009 0.001 NS 0.01 0 0 0

Negative estimations were set to 0 in this table but detailed information can be found in Table S2. The last row represents Chi square p-value which compares the actual fractional

contribution of A, B, and D subgenomes to the additive variance with the expected one which assumes the percentage of the subgenome size, 33.8, 37, and 29.2% for A, B, and D

subgenomes, respectively. NS: not significant at 0.05.
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FIGURE 1 | (A) Percentage of individual chromosome contribution to the additive variance of 12 traits as function to chromosome size; red: “A” genome

chromosomes; Green: “B” genome chromosomes; and Purple: “D” genome chromosomes. The gray line represents the correlation for all 21 chromosomes. For

individual traits, see Figure S1. (B) Percentage of each chromosomal group (seven groups) contribution to the additive variance of 12 traits as function to

chromosome size. Red star over the correlation line represents its significance at P < 0.05. For individual traits, see Figure S2. (C) Boxplot showing the contribution

of each genome to the additive variance of 12 traits. Highlighted yellow dots in b and c represent the outliers. For detail information, see Table 1.

to 0.077 while the reliability of the GREML analysis given the
standard deviation was equal to 0.45 (0.672). The considerably
low reliability is a result of small population size and relatedness
among individuals.

For the 21 chromosomes across all traits, we found no
correlation between chromosome sizes and their explained
additive variance (Figure 1A; Table 2). However, for individual
traits, only Sr resistance showed a significant correlation between
all 21 chromosomes and their fractional contribution to the
additive variance with p-value = 0.04 and r = 0.45 (Table 2;
Figure S1). The median r value between chromosome size and
fractional additive variance for all traits was equal to 0.005.When
chromosomes within each subgenome were considered, only the
additive variance explained by the B subgenome chromosomes
showed a significant but weak correlation with chromosome size
(p-value = 0.02 and r = 0.25; Figure 1A; Table 2). Neither the
Sr correlation nor the B subgenome correlation were significant
after adjusting them for attenuation following Charles (2005).

A significant correlation was evident between the cumulative
size for each chromosomal group and the fractional additive

variance explained by the group with p-value= 0.01 and r= 0.27
(Figure 1B, Table 2). Removing two outliers (the contribution of
group 4 for Cr and Pt resistance which are highlighted in yellow,
Figure 1B) strengthened this correlation with p-value = 0.001
and r = 0.34. However, when correcting the correlation for
attenuation, it was significant only after removing the two outliers
with p-value = 0.037 and r = 0.23. A single chromosome with
the highest contribution within each group can explain about
69% of the total group additive variance on average across all
traits. The relationship between fractional additive variance and
the chromosomal group cumulative size for individual traits had
a median value of 0.43 (Table 2) and is plotted in Figure S2.

The cumulative fractional additive variance significantly
varied between the three subgenomes. The median values for
the percentage of additive variance contributed by A, B, and D
subgenomes were 23.7, 33, and 38.7%; respectively (Figure 1C).
These values changed to 23.8, 31.8, and 41.3%, respectively,
after omitting stem rust resistance, an outlier compared to other
traits. ANCOVA analysis that considered the genome size as a
covariate confirmed the significant differences among the three
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TABLE 2 | Pearson correlation coefficient (r values) between the additive variance

explained by all 21 chromosome sizes (column All), chromosomes within each

subgenome (A, B, and D) and chromosomal group size (Groups).

Stress A B D Groups All

SNL −0.329 −0.435 0.007 −0.273 −0.067

SNG −0.240 0.668 −0.283 −0.084 −0.045

YLS 0.382 −0.024 0.438 0.690 0.054

Cr 0.121 −0.049 0.119 0.002 −0.118

Lr 0.426 0.628 0.176 0.438 0.139

Sr −0.389 0.208 0.620 0.597 0.451*††

Yr 0.006 −0.093 0.474 0.413 −0.062

CCN 0.502 0.671 −0.110 0.674 0.067

Pn 0.270 0.126 0.428 0.700 0.336

Pt 0.032 0.463 −0.223 0.004 −0.134

Br 0.683 0.764 −0.463 0.189 0.182

Al −0.742 0.654 −0.022 0.536 −0.204

Combined 0.0407 0.25* 0.075 0.27*†† (0.34**†) 0.043

The final row represents the r values considering all traits together (visualized in

Figures 1A,B).
†
Represents the correlation coefficient after removing the two outliers

in Figure 1B; this was significant at p-value < 0.05 after correcting for attenuation.

*Significant at p-value < 0.05; **Significant at p-value < 0.01.
††
Not significant after

correcting for attenuation.

subgenomes across all 12 traits with p-values = 0.01. This was
the only significant component in the model. The ANCOVA
analysis that considered the size of chromosomes as a covariate
had a p-value of 0.006 (same value with and without including the
interaction between genome and chromosome size in the model)
which was the only significant component in both models.

For individual traits, Chi-square tests showed significant
differences between the actual and the expected subgenome
contribution to all traits except for Br, Lr, and SNG. For
Al, CCN, Cr, Pt, and Yr, only the contribution of the D
subgenome was higher than expected, while the contributions
of the B and D subgenomes were higher than expected for Pn,
SNL, and YLS (Table 1). Br, Lr, and SNG resistances were not
significantly different from the expected contribution, but the
actual contribution of the D subgenome for all of them was
slightly higher than expected (Table 1).

Population structure, linkage disequilibrium, and relatedness
among individuals did not have an effect on our results. The
inclusion of the first 10 principal components as covariates in
the model did not have a large effect on heritability estimates
(data not shown) which means that population structure has
minimal effect on the heritability estimations. Similarly, further
analysis with a randomly chosen subset of SNPs did not
affect the results either (Table S3), indicating that the extended
linkage disequilibrium observed in the D subgenome in this
population did not overestimate the contribution of the D
subgenome. Furthermore, under the null hypothesis using
simulated phenotypes, the cumulative additive variance was
0.0698 (±0.026), 0.0735 (±0.027) and 0.0766 (±0.029) for the
A, B, and D subgenomes, respectively, indicating true differences
among subgenomes observed with empirical phenotypes that are
not affected by relatedness among individuals.

Estimating the conditional effect for each chromosome
based on the other 20 chromosomes showed considerable
correlation among chromosomes (Table 3; Table S2). On average
for all chromosomes across all traits, 46% of chromosome
additive variance can be explained by other chromosomes.
This value ranged from 20.6% for Yr resistance to 57.3%
for Br tolerance (Inferred from Table 3). Interestingly, even
for the conditional analysis after excluding correlated additive
variances, our conclusion that the D genome had the highest
contribution to the total heritability did not change with 22.3,
31.9, and 44.8% of the total additive variance attributed to the
A, B, and D subgenomes, respectively. Removing Sr increased
the D subgenome contribution to 45.7% and reduced the B
subgenome contribution to 30.1%. The correlation among all
21 GRMs also support these results (Figure 2). All GRMs for
the A and B subgenome chromosomes clustered together while
GRMs for D subgenome chromosomes formed another cluster.
Thus, the correlated additive variance can be explained by the
same ancestor supporting the superiority of the D subgenome
regardless of the low reliability of the GREML analysis.

DISCUSSION

Decomposing additive genetic variance based on different set
of SNPs has become a commonly used method in quantitative
genetics in recent years (Yang et al., 2010, 2011a,b, 2015; Lee
et al., 2012). Researchers usually remove related individuals to
ensure that they are capturing SNP-based heritability only (Yang
et al., 2017). Although this is possible in human genetics and
some animal populations that have large effective population
size, it is impossible to have such optimal populations containing
distinctly related individuals in species such as bread wheat
with extremely small effective population sizes (Joukhadar et al.,
2017). For this reason, the heritability estimated with this
method in populations of species such as bread wheat will be a
mixture of SNP-based heritability from phenotypic correlation
due to unrelated individuals and pedigree-based heritability from
phenotypic correlation due to relatedness (Yang et al., 2017). One
advantage of using related individuals is that the analysis requires
smaller populations to obtain an acceptable standard error (SE),
because SE is negatively correlated with the average relatedness
among individuals. Yang et al. (2017) pointed out that the SE can
be further decreased if rare SNPs are excluded from the analysis.

Linkage disequilibrium (LD) can cause a huge bias for
decomposing additive variance analysis as the variance
estimation depends on the LD between the causal variant
and the closest genotyped SNPs (Speed et al., 2012). The D
subgenome in our population showed large LD blocks (Jighly
et al., 2016) but this did not result in over estimating its
contribution because there were sufficient SNPs to capture most
additive variance in the A and B subgenomes (Table S3). This is
not unexpected for populations with small effective population
size like SHW. For example, randomly selecting 10K out of 354K
SNPs reduced the captured additive variance by only 1% for
different traits in chickens (Abdollahi-Arpanahi et al., 2014).
Population structure also did not affect the estimation as the
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TABLE 3 | The heritability estimation using the conditional effect model (excluding the GRM of one chromosome).

Trait Al Br CCN Cr Lr Pn Pt SNG SNL Sr YLS Yr

He 0.503 0.511 0.462 0.498 0.493 0.491 0.482 0.605 0.497 0.448 0.543 0.510

1A 0.49

(0.013)

0.507

(0.004)

0.455

(0.007)

0.472

(0.027)

0.48

(0.013)

0.49

(0.001)

0.469

(0.013)

0.592

(0.013)

0.508

(−0.011)

0.462

(−0.014)

0.544

(−0.001)

0.486

(0.024)

2A 0.491

(0.012)

0.504

(0.007)

0.453

(0.009)

0.489

(0.009)

0.475

(0.018)

0.485

(0.007)

0.484

(−0.002)

0.607

(−0.002)

0.49

(0.007)

0.461

(−0.013)

0.541

(0.002)

0.515

(−0.005)

3A 0.486

(0.018)

0.499

(0.012)

0.451

(0.011)

0.491

(0.007)

0.481

(0.012)

0.474

(0.017)

0.477

(0.005)

0.597

(0.008)

0.499

(−0.002)

0.446

(0.002)

0.543

(0.001)

0.475

(0.035)

4A 0.487

(0.016)

0.506

(0.005)

0.432

(0.03)

0.465

(0.034)

0.484

(0.01)

0.478

(0.013)

0.476

(0.006)

0.589

(0.016)

0.492

(0.005)

0.448

(0)

0.528

(0.016)

0.512

(−0.002)

5A 0.494

(0.009)

0.496

(0.015)

0.464

(−0.002)

0.504

(−0.006)

0.496

(−0.003)

0.49

(0.001)

0.479

(0.003)

0.586

(0.02)

0.49

(0.007)

0.455

(−0.007)

0.545

(−0.001)

0.502

(0.008)

6A 0.483

(0.02)

0.499

(0.012)

0.458

(0.004)

0.49

(0.008)

0.484

(0.009)

0.487

(0.004)

0.487

(−0.005)

0.593

(0.012)

0.485

(0.012)

0.433

(0.015)

0.552

(−0.009)

0.51

(0)

7A 0.487

(0.016)

0.474

(0.037)

0.451

(0.011)

0.49

(0.008)

0.485

(0.008)

0.482

(0.009)

0.476

(0.006)

0.599

(0.006)

0.496

(0.001)

0.426

(0.022)

0.537

(0.006)

0.505

(0.005)

1B 0.519

(−0.016)

0.502

(0.009)

0.471

(−0.009)

0.508

(−0.01)

0.489

(0.005)

0.481

(0.01)

0.494

(−0.012)

0.612

(−0.007)

0.471

(0.026)

0.451

(−0.003)

0.544

(−0.001)

0.505

(0.005)

2B 0.496

(0.007)

0.463

(0.048)

0.445

(0.017)

0.492

(0.006)

0.491

(0.002)

0.474

(0.017)

0.478

(0.004)

0.607

(−0.002)

0.48

(0.017)

0.408

(0.04)

0.517

(0.026)

0.508

(0.002)

3B 0.483

(0.02)

0.51

(0.001)

0.431

(0.031)

0.47

(0.028)

0.474

(0.019)

0.483

(0.008)

0.458

(0.024)

0.585

(0.02)

0.48

(0.017)

0.423

(0.025)

0.526

(0.018)

0.509

(0.001)

4B 0.51

(−0.007)

0.514

(−0.003)

0.473

(−0.011)

0.437

(0.061)

0.482

(0.011)

0.472

(0.019)

0.471

(0.011)

0.605

(0)

0.473

(0.025)

0.418

(0.03)

0.523

(0.02)

0.472

(0.038)

5B 0.502

(0.001)

0.513

(−0.002)

0.455

(0.007)

0.497

(0.001)

0.48

(0.013)

0.473

(0.018)

0.487

(−0.005)

0.591

(0.014)

0.496

(0.001)

0.44

(0.008)

0.506

(0.037)

0.469

(0.042)

6B 0.471

(0.033)

0.508

(0.003)

0.443

(0.02)

0.486

(0.012)

0.487

(0.006)

0.462

(0.029)

0.484

(−0.002)

0.585

(0.02)

0.496

(0.001)

0.456

(−0.008)

0.514

(0.029)

0.5

(0.01)

7B 0.5

(0.003)

0.514

(−0.003)

0.445

(0.017)

0.493

(0.005)

0.488

(0.005)

0.487

(0.004)

0.482

(0)

0.626

(−0.021)

0.498

(−0.001)

0.431

(0.017)

0.555

(−0.012)

0.496

(0.015)

1D 0.47

(0.033)

0.52

(−0.009)

0.454

(0.008)

0.47

(0.028)

0.496

(−0.003)

0.483

(0.008)

0.475

(0.007)

0.547

(0.058)

0.48

(0.017)

0.438

(0.01)

0.532

(0.011)

0.484

(0.027)

2D 0.463

(0.04)

0.511

(0)

0.364

(0.098)

0.483

(0.015)

0.472

(0.021)

0.475

(0.017)

0.465

(0.017)

0.581

(0.024)

0.494

(0.003)

0.444

(0.004)

0.528

(0.015)

0.486

(0.024)

3D 0.49

(0.013)

0.506

(0.005)

0.467

(−0.005)

0.401

(0.097)

0.48

(0.013)

0.484

(0.007)

0.471

(0.011)

0.592

(0.013)

0.474

(0.023)

0.442

(0.006)

0.511

(0.032)

0.486

(0.024)

4D 0.504

(−0.001)

0.494

(0.017)

0.445

(0.017)

0.481

(0.017)

0.489

(0.004)

0.491

(0)

0.429

(0.053)

0.589

(0.016)

0.491

(0.006)

0.456

(−0.008)

0.534

(0.009)

0.498

(0.012)

5D 0.49

(0.013)

0.494

(0.017)

0.454

(0.008)

0.497

(0.001)

0.489

(0.004)

0.481

(0.011)

0.446

(0.036)

0.589

(0.016)

0.483

(0.014)

0.431

(0.017)

0.503

(0.04)

0.455

(0.055)

6D 0.507

(−0.004)

0.504

(0.007)

0.454

(0.008)

0.494

(0.004)

0.47

(0.023)

0.494

(−0.003)

0.473

(0.01)

0.607

(−0.002)

0.477

(0.02)

0.443

(0.005)

0.514

(0.029)

0.497

(0.013)

7D 0.491

(0.012)

0.493

(0.019)

0.457

(0.005)

0.498

(0)

0.469

(0.024)

0.47

(0.021)

0.478

(0.004)

0.589

(0.017)

0.469

(0.029)

0.443

(0.005)

0.515

(0.028)

0.445

(0.065)

A contribution% 37.3 42.2 23.4 25.3 31.8 23.5 15.7 27.5 13.9 18.9 7.8 17.8

B contribution% 22.9 28.0 29.9 30.7 27.7 47.5 18.6 19.8 37.7 58.3 40.8 27.9

D contribution% 39.8 29.8 46.8 44.0 40.5 29.0 65.7 52.7 48.5 22.8 51.4 54.3

Chi test 0.008 NS 0.001 0.005 0.03 0.05 0 0 0 0 0 0

The values between brackets describes the additive variance inferred from the full model (the first row in the table) minus the conditional total additive variance. The last three rows

represent the contribution of each subgenome to total independent additive variance (values between brackets). The last row represents Chi square p-value which compares the

conditional contribution of A, B and D subgenomes to the additive variance with the expected one which assumes the percentage of the subgenome size, 33.8, 37, and 29.2% for A,

B, and D subgenomes, respectively. NS, not significant at 0.05.

estimations were very similar to the model that involved the first
10 PCs as covariates (Lee et al., 2012), although considerable
correlation between different chromosomes was observed in

this germplasm (Table 3; Table S2). On the other hand, this
correlation did not affect our conclusion that the D subgenome
had a higher contribution to the total additive variance relative
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FIGURE 2 | Pairwise correlation between all 21 GRMs for wheat

chromosomes. White color represents Pearson coefficient = 0, while black

color represents Pearson coefficient = 1.

to the A and B subgenomes (Table 3; Table S2), and especially
that GRMs of the D subgenome chromosomes were clustered
together and were not correlated with any of the 14 GRMs of the
A and B subgenome chromosomes (Figure 2).

Almost all studies that have partitioned additive variance
have shown a significant correlation exists between chromosome
size and variance (e.g., Yang et al., 2011b; Lee et al., 2012;
Robinson et al., 2013). In the present study using SHW,
however, chromosome size was not correlated with explained
additive variance for any trait, although a weak correlation
was observed for chromosomes within the B subgenome. The
significant correlation for Sr (Table 2) cannot be attributed
to chromosome size directly, but rather to differences in size
between D and B subgenomes, which explained 13.8 and 66.8%
of the additive variance, respectively (Figure S1; Table 1). The
previous two correlations became non-significant after correcting
for attenuation.

In contrast to what we found for all individual chromosomes,
a significant but weak correlation was found between the
cumulative sizes and cumulative additive variances for each
chromosomal group (Figure 1B). In polyploids, the balanced
dosage hypothesis, which involves gene loss, functional
divergence and epigenetic changes in newly synthesized
polyploids, has been widely discussed and has been proven for
many gene families (Ohno, 1970; Lynch and Conery, 2000; Tate
et al., 2009; Buggs et al., 2010, 2012; Xiong et al., 2011; Feldman
and Levy, 2012; Conant et al., 2014; Dodsworth et al., 2016). We
hypothesize that these structural and functional changes during
diploidization keep a single functional copy for each gene in one
homoeolog and thus, larger chromosomes may not necessarily

have higher contribution to the additive variance if functional
copies are not distributed equally in the three homoeologs.
Instead, when considering the three homoeologs together, all
genes will have functional copies. Thus, larger chromosomal
groups may have higher contribution to the additive variance.
This may explain the correlation between group size and effect.
Another important finding is that one homoeolog can dominate
the group additive effect within each chromosomal group with
an average of 69% of the total group additive variance (Inferred
from Table 1). Future research using larger populations should
consider the relation between variance and chromosome size in
both SHWs and their progenitors to further confirm this finding
and to better understand underlying mechanisms that allow one
homoeolog to dominate the group additive effect.

Pont et al. (2013) showed that the D subgenome generally
dominated the tetraploid A and B subgenomes in hexaploid
wheat by analyzing synteny and conserved orthologous gene
data. Our results also showed this for stress resistance traits
and that the dominance effect of the D subgenome was greater
with regard to the A than the B subgenome with the median
percentage of additive variance across all traits for A subgenome
being 23.7% (Figure 1C). However, this cannot be generalized
for all traits. For instance, the A subgenome contributed 9.6%
more than the D subgenome to Lr resistance, whereas the B
subgenome dominated the A and D subgenomes for Sr resistance
(Table 1). Lagudah et al. (1993) showed that transferring Sr and
Lr resistance form Ae. tauschii to hexaploid wheat is partially
or fully suppressed by unknown mechanisms while Kerber and
Green (1980) reported a suppressor for A and B subgenome
Sr resistance in chromosome 7D. Later studies have indicated
that suppression of the resistance of one subgenome of bread
wheat by the other subgenomes is affected by SHW parents
and pathogen isolates (Kema et al., 1995; Badebo et al., 1997;
Ogbonnaya et al., 2013). Thus, efficient implementation of SHW
in breeding programs should combine superior chromosomes
within each chromosomal group for each trait independently,
although the general trend showed that the D subgenome had
a higher contribution to the additive variance. Future research
should investigate suppression mechanisms and whether the
general D subgenome superior additive contribution is a result
of suppressing A and B subgenomes resistance to different biotic
and abiotic stresses.
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Figure S1 | Percentage of individual chromosome contribution to the additive

variance for each trait as function to chromosome size. Colors represents different

subgenomes; red: “A” subgenome chromosomes; Green: “B” subgenome

chromosomes; and Purple: “D” subgenome chromosomes. The gray line

represents the correlation for all 21 chromosomes.

Figure S2 | Percentage of chromosomal group contribution to the additive

variance for each trait as function to chromosome size.

Table S1 | Pedigree and passport information for the SHW population.

Table S2 | The first line for each chromosome contains information about the

estimated additive variance for different traits and their standard deviations,

between brackets, using the full model (the model that fits 21 GRMs). The second

line for each chromosome is the heritability estimation using the conditional effect

model (excluding the GRM of one chromosome). Values between brackets

describes the additive variance inferred from the full model (the first row in the

table) minus the conditional total additive variance. The second line is exactly the

same as Table 3 in the paper but was repeated here for easier comparisons

between the full and the conditional models.

Table S3 | The additive variance for different traits and its partitioning (as

percentage of the total heritability) into different chromosomes, chromosomal

groups and subgenomes for subset of the whole data set that includes 80% of

our SNPs.
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