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Ongoing developments and cost decreases in next-generation sequencing (NGS)

technologies have led to an increase in their application, which has greatly enhanced

the fields of genetics and genomics. Mapping sequence reads onto a reference genome

is a fundamental step in the analysis of NGS data. Efficient alignment of the reads onto

the reference genome with high accuracy is very important because it determines the

global quality of downstream analyses. In this study, we evaluate the performance of

three Burrows-Wheeler transform-based mappers, BWA, Bowtie2, and HISAT2, in the

context of paired-end Illumina whole-genome sequencing of livestock, using simulated

sequence data sets with varying sequence read lengths, insert sizes, and levels of

genomic coverage, as well as five real data sets. The mappers were evaluated based

on two criteria, computational resource/time requirements and robustness of mapping.

Our results show that BWA and Bowtie2 tend to be more robust than HISAT2, while

HISAT2 was significantly faster and used less memory than both BWA and Bowtie2. We

conclude that there is not a single mapper that is ideal in all scenarios but rather the

choice of alignment tool should be driven by the application and sequencing technology.
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INTRODUCTION

Ongoing developments and cost decreases in next-generation sequencing (NGS) technologies have
led to an increase in their application, which has greatly enhanced the fields of genetics and
genomics. The evolution of NGS has been paralleled by the development of algorithms to analyze
the increasing quantity of data being produced. A fundamental step in the analysis of NGS data is
the mapping of the sequence reads onto a reference genome. Efficient alignment of reads onto the
reference genome with high accuracy is very important because it determines the global quality of
downstream analyses.

Currently, more than 60 different algorithms exist for mapping sequence reads to a reference
genome (Fonseca et al., 2012). Most alignment algorithms rely on the construction of auxiliary
data structures, called indices, which are made for the sequence reads, the reference genome
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sequence, or both. Mapping algorithms can largely be grouped
into two categories based on properties of their indices:
algorithms based on hash tables, and algorithms based on the
Burrows-Wheeler transform (BWT; Li and Homer, 2010). Due
to their computational efficiency, BWT-based algorithms have
become increasingly popular (Zhang et al., 2013). Algorithms
based on BWT align entire reads against substrings sampled from
the reference genome. Rapid read searching is enabled by storing
all of the suffixes of the reference genome sequence using a
representation of a data structure called a suffix/prefix trie. BWT
(Burrows and Wheeler, 1994), a reversible data compression
algorithm, is utilized in conjunction with the Ferragina-Manzini
index (FM index; Ferragina and Manzini, 2000) to reduce the
memory occupied by the prefix/suffix trie.

Selection of an appropriate alignment tool for NGS data can
be a difficult task due to the wide range of available algorithms.
There are several factors that influence the performance of
aligners, including, but not limited to sequence read length,
sequence quality, and sequencing error rate. Additionally, depth
of sequencing directly influences the computational efficiency,
i.e., execution time and memory consumption. In this study,
we focus on the comparison of BWT-based mappers in the
context of paired-end Illumina whole-genome sequencing of
livestock genomes. The Burrows-Wheeler Aligner (BWA; Li
and Durbin, 2009) and Bowtie2 (Langmead and Salzberg, 2012)
have been utilized in a large number of livestock studies. We
tested these two mappers and HISAT2 (Kim et al., 2015), a
newly released software, using simulated sequence data sets
with varying sequence read lengths, insert sizes, and levels of
genomic coverage. The mappers were evaluated based on two
criteria: (1) computational resource and time requirements, and
(2) robustness of mapping through the evaluation of precision,
recall, and the area under the precision-recall curve. Additionally,
computational resource and time requirements were evaluated
on several real sequenced genomes with varying sequencing
parameters. To our knowledge, this is the first evaluation of
HISAT2 applied to whole-genome sequence data.

MATERIALS AND METHODS

Data Sets
Real and simulated data sets were used in this study. Simulated
data were generated from chr1 of the Sscrofa 11.1 genome
build [GenBank: NC_010443.5] using DWGSIM (Version
0.1.11; http://sourceforge.net/projects/dnaa/). Twelve paired-end
sequence data sets were generated using read lengths and insert
sizes commonly used with the Illumina technology (Table 1):
read lengths 100 and 150 and insert sizes 350 and 550 bp (with
a standard deviation of 10% of the insert size for each data
set). The default per base sequencing error rate of 0.02 was
used in all simulations. For each read length/insert size pairing
three data sets, each comprised of 50 samples (Table S1), were
generated based on sequencing depth: high (10x−25x coverage),
medium (5x−10x coverage), and low (1x−5x coverage). For
each of the data sets, the sequencing depth of each sample was
chosen uniformly at random within the coverage bounds. For
each sample, DWGSIM generates reads that should map to the
reference genome, as well as random reads that should not be

TABLE 1 | Parameters for simulated data sets used in this study.

Data Set Insert size (bp) Read length (bp) Genomic coverage

H350_100 350 100 High (10x−25x)

H350_150 350 150 High (10x−25x)

H550_100 550 100 High (10x−25x)

H550_150 550 150 High (10x−25x)

M350_100 350 100 Medium (5x−10x)

M350_150 350 150 Medium (5x−10x)

M550_100 550 100 Medium (5x−10x)

M550_150 550 150 Medium (5x−10x)

L350_100 350 100 Low (1x−5x)

L350_150 350 150 Low (1x−5x)

L550_100 550 100 Low (1x−5x)

L550_150 550 150 Low (1x−5x)

mapped. Reads from all simulated data sets were mapped to chr1
of the of the Sscrofa 11.1 genome assembly.

In addition to the simulated data sets, we incorporated five
real data sets (R1–R5), each comprised of five animals; two sets
from cattle and three from swine (Table 2). Data from sets R1
and R4 have been previously described in Keel et al. (2017) and
Snelling et al. (2015), respectively. Genomic DNA was extracted
from semen or blood using one of the following standard
DNA extraction protocols: phenol-chloroform extraction, salt
extraction, a QIAampDNAMini kit (Qiagen, Germantown,MD)
or a Wizard SV96 Genomic Purification kit (Promega Corp.,
Madison, WI, USA). Genomic DNA was sheared to 350–550 bp,
and libraries prepared using either the Agilent SureSelect Target
Enrichment System Kit I or Kit II (Agilent Technologies Inc.,
Santa Clara, CA), the TruSeq DNA sample prep kit, version 2
(Illumina, San Diego, CA), or the TruSeq DNA PCR-Free sample
prep kit (Illumina, San Diego, CA). Libraries were paired-end
sequenced using either an Illumina HiSeq2500 or NextSeq500
instrument. Reads from data sets R1, R2, and R3 were mapped
to the latest swine genome assembly, Sscrofa 11.1, which was
constructed using Pacific Biosciences’ long read sequencing
technology. Reads from data sets R4 and R5 were mapped to a
preliminary version of the bovine long read assembly [Genbank:
NKLS00000000.1].

Mappers Compared
Three BWT-based mapping algorithms were compared in this
study, BWA (version 0.7.15), Bowtie2 (version 2.2.6), and
HISAT2 (version 2.1.0). Bowtie2 utilizes a BWT backtracking
strategy to perform a depth-first search through a suffix trie that
contains all suffixes of the reference genome, which terminates
when the first alignment that satisfies specific criteria is found.
Similar to Bowtie2, BWA employs a BWT backtracking strategy
to search for inexact matches. However, for BWA the search
is bounded by a lower limit of number of mismatches in
the alignment of the reads. Hence, BWA defines a smaller
search space, increasing the efficiency of the search. HISAT2
uses a backtracking strategy very similar to that of Bowtie2.
However, unlike BWA and Bowtie2, it employs two different
types of FM indices: a global FM index representing the entire
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genome, as well as numerous overlapping local FM indices
for regions that collectively span the genome. The use of the
overlapping local indices makes it easier to align reads that
span regions covered by two global indices. Although HISAT
(version 1) was originally developed to serve as an aligner
for RNA sequencing data, it was expanded to align genomic
DNA sequences in its second version, HISAT2. The selected
mappers were run with their default parameters (Table S2),
with one exception. The maximum insert size parameter (−X
parameter) for the 550 bp samples was increased to 650 bp in
HISAT2 and Bowtie2 from their default maximum insert size
of 500 bp.

Computational Resource and Time
Measurement
A server with 40 Intel(R) [Xeon(R) CPU E5-2660 v3 @ 2.60
GHz] processors and 128 GB of RAM running CentOS 7.3.1611

operating system was employed for the alignment jobs. In all
cases, the number of threads was fixed to 24. Maximum memory
consumption and time measurements were obtained using the
Unix “time” command.

Mapper Robustness Measurement
Aligners were evaluated using two standard performance
measures, precision and recall. For a given sample and alignment
method, recall (sensitivity) is the number of correctly aligned
reads over the total number of reads that should have been
aligned, i.e., recall = #TP

#TP+#FN , and precision (positive predictive
value) is the number of correctly aligned reads over the total
number of aligned reads, i.e., precision =

#TP
#TP+#FP . Here,

TP, FP, and FN denote true positive, false positive, and false
negative instances, respectively. Precision and recall values were
computed using the dwgsim_eval program from DWGSIM. To
evaluate overall aligner performance we used the area under the

TABLE 2 | Real data sets used in this study.

Study Species SRA accession DNA Ext. methoda Library kitb Read length Insert size Seq. platform

R1 Swine SRP090776 PC, SE TS 100 350 HiSeq2500

R2 Swine SRP125874 PC, SE TS 150 350 NextSeq500

R3 Swine SRP125874 WIZ TS-PCRF 150 550 NextSeq500

R4 Cattle SRP076471 PC, QIA AGI 100 350 HiSeq2500

R5 Cattle SRP076471 PC, QIA AGI 150 350 HiSeq2500

aPC, pheno-chloroform extraction; SE, salt extraction; WIZ, Wizard SV96 Genomic Purification Kit; QIA, QIAamp DNA Mini kit.
bTS, TruSeq DNA sample prep kit; TS-PCRF, TruSeq DNA PCR-Free sample prep kit; AGI, Agilent SureSelect Target Enrichment System Kit I or Kit II.

FIGURE 1 | Input data size vs. execution time for the five real data sets used in this study.
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precision-recall curve (PR AUC), which takes on values between
0 and 1 with larger area indicating better performance.

Additionally, the percentage of properly paired reads was
used as a measure of aligner performance. Paired-end reads are
generated by sequencing both ends of the fragment. A read
pair is said to be properly paired if both reads were mapped in
the correct orientation and the insert size was maintained. The
Samtools (version 1.3; Li et al., 2009) software was employed to
compute the percentage of properly paired reads in each SAM
file.

RESULTS AND DISCUSSION

Computational Resource Requirement and
Execution Time
Computational time and resources are critical components of
the genome mapping process. Each of the three aligners being
evaluated was run using 24 threads, and memory consumption
and runtime were recorded. As expected, in all data sets the
execution time increased with the size of the input data. For
the five real data sets, the execution time of each of the aligners
was linearly proportional to the size of the input data (Figure 1,
Table S3). A similar trend was observed in the simulated data sets
(Figures S1–S4). A comparative analysis of alignment times in the
simulated data showed that, in general, HISAT2 was significantly
faster than BWA and Bowtie2 (Tables S4–S9).

Figure 2 shows the maximum memory consumption for each
of the mappers in the real data sets. Unlike the execution time,
memory usage was not consistently proportional to the input
data size. Not only did Bowtie2 require the least amount of
RAM in all data sets, but also it had the smallest variation in
memory requirements, with usage ranging from 3.48 to 4.36 Gb
RAM. Both BWA and HISAT2 exhibited fluctuations in memory
consumption with respect to the input data size. Figures S5–S8
show the maximum RAM usage for the simulated data sets.
HISAT2 utilized significantly less RAM than both BWA and
Bowtie2 in all simulated sets (Tables S10–S15).

Precision and Recall of the Mappers
NGS platforms provide vast quantities of data, with associated
error rates ranging from 0.1 to 15% (Goodwin et al., 2016).
It is essential that alignment algorithms used to map sequence
data to the reference genome are able to compensate for
these inherent raw data errors. Accuracy of the three mappers
were assessed in our simulated data sets using the area under
the precision recall curve (PR AUC), a standard performance
measure.

Tables 3, 4 show the PRAUC for eachmapper in the simulated
350 and 550 bp insert size data sets, respectively. All three of the
mappers exhibited high PR AUC values across the 12 data sets,
indicating that they are highly robust with respect to sequencing
parameters. Regardless of coverage level and insert sizes, BWA

FIGURE 2 | Input data size vs. execution time for the five real data sets used in this study.
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TABLE 3 | Area under the precision-recall curve (PR AUC) for each mapper in

each of the 350 bp insert simulated data sets.

Data set/Mapper PR AUCa Data set/Mapper PR AUCa

BWA_H350_100 0.9940 (0.0109) BWA_H350_150 0.9937 (0.0112)

Bowtie2_H350_100 0.9883 (0.0152) Bowtie2_H350_150 0.9951 (0.0099)

Hisat2_H350_100 0.9666 (0.0254) Hisat2_H350_150 0.9664 (0.0255)

BWA_M350_100 0.9940 (0.0109) BWA_M350_150 0.9936 (0.0112)

Bowtie2_M350_100 0.9883 (0.0152) Bowtie2_M350_150 0.9950 (0.0099)

Hisat2_M350_100 0.9666 (0.0254) Hisat2_M350_150 0.9664 (0.0255)

BWA_L350_100 0.9883 (0.0152) BWA_L350_150 0.9936 (0.0113)

Bowtie2_L350_100 0.9883 (0.0152) Bowtie2_L350_150 0.9950 (0.0100)

Hisat2_L350_100 0.9667 (0.0254) Hisat2_L350_150 0.9664 (0.0255)

aStandard error is given in parentheses.

TABLE 4 | Area under the precision-recall curve (PR AUC) for each mapper in

each of the 550 bp insert simulated data sets.

Data set/Mapper PR AUCa Data set/Mapper PR AUCa

BWA_H550_100 0.9943 (0.0106) BWA_H550_150 0.9938 (0.0111)

Bowtie2_H550_100 0.9875 (0.0157) Bowtie2_H550_150 0.9947 (0.0103)

Hisat2_H550_100 0.9672 (0.0252) Hisat2_H550_150 0.9667 (0.0254)

BWA_M550_100 0.9943 (0.0106) BWA_M550_150 0.9939 (0.0110)

Bowtie2_M550_100 0.9874 (0.0157) Bowtie2_M550_150 0.9947 (0.0103)

Hisat2_M550_100 0.9673 (0.0252) Hisat2_M550_150 0.9668 (0.0253)

BWA_L550_100 0.9944 (0.0106) BWA_L550_150 0.9939 (0.0111)

Bowtie2_L550_100 0.9875 (0.0157) Bowtie2_L550_150 0.9947 (0.0103)

Hisat2_L550_100 0.9673 (0.0252) Hisat2_L550_150 0.9666 (0.0254)

aStandard error is given in parentheses.

demonstrated the highest performance when the read length was
100 bp, while Bowtie2 was favorable when the read length was
150 bp.

Properly Paired Reads
The percentage of properly paired reads was used as an additional
measure of performance. Paired end reads are said to be properly
paired if both reads are mapped in the correct orientation with
the correct insert size. Figure 3 shows the average percentage
of properly paired reads identified by each of the mappers in
the 12 simulated data sets. Percentages of properly paired reads
ranged from 90.56 to 94.91%. BWA showed high percentages of
properly paired reads across all 12 data sets, while Bowtie2 had
high percentages in the 550 bp insert data sets. HISAT2 showed
the lowest percentages of properly paired reads with particularly
low percentages in the 100 bp read length data sets.

CONCLUSION

The selection of an appropriate aligner is a crucial step in the
NGS analysis process. There are various technical and biological
features that can complicate the alignment process. For example,
each genome has unique characteristics, such as number of
chromosomes, GC content, and size. During the sequencing

FIGURE 3 | Heatmap of the average percentage of properly paired reads for

the 12 simulated data sets.

process there are a wide set of parameters that need to be
chosen, including sequencing platform, paired-end or single-read
reads, insert size, and read length. Performance of the aligners
depends on all of these aspects. In this study, we evaluated the
performance of three BWT-based alignment algorithms on a
large mammalian genomes sequenced on the Illumina platform.

BWA and Bowtie2 demonstrated greater robustness than
HISAT2. They were found to have higher PR AUC values than
HISAT2, with BWA having superior values in the 100 bp read
length data sets and Bowtie2 being favored in the 150 bp read
length data sets. BWA exhibited strong performance in the
percentage of properly paired reads across the 12 data sets. In
fact, it had the highest percentage in all but the 550 bp insert,
read length 100 bp data sets. Bowtie2 showed high percentages of
properly paired reads in the 550 bp insert data sets.

Comparative analysis of execution time and memory
consumption using the simulated data sets showed that HISAT2
was significantly faster and used less memory than both BWA
and Bowtie2. However, in the 5 real data sets it was Bowtie2
that required the least amount of RAM, and it had the smallest
variation in memory requirements.

All of the features described above should be taken into
account when choosing an aligner. Taking the results from this
study into account, Table 5 depicts an overall scoring of the
aligners based on our evaluation criteria. Our results do not lead
to a single mapper to be used in all scenarios but rather show that
the choice of alignment tool should be driven by the application
and sequencing technology.

AUTHOR NOTES

The U.S. Department of Agriculture (USDA) prohibits
discrimination in all its programs and activities on the
basis of race, color, national origin, age, disability, and where
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TABLE 5 | Scoring of aligners for various sequencing parameters based on criteria evaluated in this study; + indicates low score, ++ indicates medium score, and +++

indicates high score.

Execution time Memory usage Accuracy % Prop. paired reads

Ins. (bp) 350 550 350 550 350 550 350 550

RL (bp) 100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150

BWA + + + + + + + + +++ +++ +++ +++ +++ +++ +++ +++

Bowtie2 ++ ++ ++ ++ +++ +++ ++ ++ +++ +++ +++ +++ ++ ++ +++ +++

HISAT2 +++ +++ +++ +++ +++ +++ +++ +++ ++ ++ ++ ++ + + + +

applicable, sex, marital status, familial status, parental status,
religion, sexual orientation, genetic information, political beliefs,
reprisal, or because all or part of an individual’s income is derived
from any public assistance program. (Not all prohibited bases
apply to all programs). Persons with disabilities who require
alternative means for communication of program information
(Braille, large print, audiotape, etc.) should contact USDA’s
TARGET Center at (202) 720-2600 (voice and TDD). To file a
complaint of discrimination, write to USDA, Director, Office
of Civil Rights, 1400 Independence Avenue, S.W., Washington,
D.C. 20250-9410, or call (800) 795-3272 (voice) or (202)
720-6382 (TDD). USDA is an equal opportunity provider and
employer.
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