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Boolean networks are important models of biochemical systems, located at the high end

of the abstraction spectrum. A number of Boolean gene networks have been inferred

following essentially the same method. Such a method first considers experimental data

for a typically underdetermined “regulation” graph. Next, Boolean networks are inferred

by using biological constraints to narrow the search space, such as a desired set of

(fixed-point or cyclic) attractors. We describe Griffin, a computer tool enhancing this

method. Griffin incorporates a number of well-established algorithms, such as Dubrova

and Teslenko’s algorithm for finding attractors in synchronous Boolean networks. In

addition, a formal definition of regulation allows Griffin to employ “symbolic” techniques,

able to represent both large sets of network states and Boolean constraints. We observe

that when the set of attractors is required to be an exact set, prohibiting additional

attractors, a naive Boolean coding of this constraint may be unfeasible. Such cases may

be intractable even with symbolic methods, as the number of Boolean constraints may

be astronomically large. To overcome this problem, we employ an Artificial Intelligence

technique known as “clause learning” considerably increasingGriffin’s scalability. Without

clause learning only toy examples prohibiting additional attractors are solvable: only one

out of seven queries reported here is answered. With clause learning, by contrast, all

seven queries are answered. We illustrate Griffin with three case studies drawn from the

Arabidopsis thaliana literature. Griffin is available at: http://turing.iimas.unam.mx/griffin.

Keywords: molecular networks, Boolean networks, model inference, Boolean satisfiability problem, clause

learning, biological constraints, attractors

1. INTRODUCTION

Synchronous Boolean networks (Kauffman, 1969), as simple as they are, can encode meaningful
biological information (Huang, 1999; Bornholdt, 2001, 2005, 2008; Fisher and Henzinger, 2007).
Hence, such models have emerged as valuable candidates for representing dynamics of molecular
networks. At the same time, the inference of network dynamics from experimental data (sometimes
called the “inverse problem”) has become increasingly relevant with the advent of high-throughput
technologies. Because of their simplicity, synchronous Boolean networks could become excellent
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network-inference models. Nevertheless, the problem of
synchronous Boolean-network inference is neglected, as efforts
in Boolean-network research have mainly been devoted to
analysis. Our objective is to present and illustrate the practical
use of Griffin, a computer tool for the inference of synchronous
Boolean networks.

1.1. Inference of Boolean Networks
The inference of Boolean networks from biological data is at
present coming of age. On the one hand, a methodology that
has been employed to infer a number of Boolean gene regulatory
networks has established itself. This methodology follows the
next three steps. The first one is determining the set of genes
regulating each gene, in addition to the “sign” of each regulation
based on experimental results. Second, a number of constraints
are considered. These constraints can be, for example, (a) a set
of input-output pairs representing time-series data (Liang et al.,
1998; Akutsu et al., 1999; Lähdesmäki et al., 2003; Chueh and
Lu, 2012; Haider and Pal, 2012; Berestovsky and Nakhleh, 2013;
Han et al., 2014; Barman and Kwon, 2017), (b) a desired set of
fixed-point attractors (Albert and Othmer, 2003; Li et al., 2004;
Pal et al., 2005; Mendoza, 2006; Davidich and Bornholdt, 2008;
Tarissan et al., 2008; La Rota et al., 2011; Azpeitia et al., 2013,
2014), or (c) a set of temporal-logic constraints (Bernot et al.,
2004; Chabrier-Rivier et al., 2004; Fages et al., 2004; Calzone
et al., 2006a,b; Mateus et al., 2007; Khalis et al., 2009; Richard
et al., 2012). Third, search is performed to find Boolean networks
consistent with the available information.

On the other hand, there are now many methods and
algorithms for the analysis of Boolean networks that have
demonstrated their effectiveness. We noticed that some of
these algorithms can also be used as auxiliary techniques for
the inference of network dynamics. In particular, we have
selected Dubrova and Teslenko’s (2011) algorithm for finding
cyclic attractors in synchronous Boolean networks, Garg et al.’s
(2008) method for finding basins of attraction, and Naldi
et al.’s (2007) formula for finding fixed-point attractors. (We use
the terms “steady state dynamics” and “fixed-point attractors”
interchangeably.) Griffin has combined these algorithms with
novel techniques, offering a tool automating many steps of the
inference of molecular network dynamics.

1.2. Synchronous Boolean Networks
Boolean networks have variables representing the genes, mRNA,
proteins, or any other type of molecule included in the network.
Variables have only two values, and time is discrete. A state
is a tuple (i.e., ordered list) of values, one for each variable.
A Boolean network consists of a (finite) set of states together
with a “transition” relation (sometimes also called “update” or
“successor” relation).

In asynchronous Boolean networks, states may have more
than one successor. In synchronous Boolean networks, by
contrast, states have exactly one successor. Previous studies
suggest that having multiple successors can provide a closer
description of the biological phenomena and can eliminate
dynamical artifacts (Garg et al., 2008). There may be advantages,
nevertheless, in considering synchronous networks.

1. A first advantage appears if the properties of interest
in asynchronous networks are preserved in synchronous
networks. Large models treated as synchronous networks may
be easier to analyze than if treated with more detailed models.
It is straightforward to see that the set of fixed-point attractors
of an asynchronous network is the same as in a corresponding
synchronous network (Gershenson, 2002; Bornholdt, 2008;
Garg et al., 2008; Saadatpour et al., 2010). The reason is that
the successor of a state that is a fixed-point attractor is itself,
so that the Hamming distance between such an attractor and
its successor is zero. Since a synchronous network only differs
from its corresponding asynchronous one in transitions with
a Hamming distance greater than one, the same self-loops will
be present in both. Another property that is preserved is the
set of cycles in which the Hamming distance between a state
and its successor is one. Yet another one is the set of “trap
subspaces.” A trap subspace is a set of states, all of which
have the same values for some variables, which is closed under
update. Trap spaces are important in that each trap space
contains at least one attractor (Klarner et al., 2014).
It may be the case, however, that the properties of interest
are not preserved by this reduction, so that asynchronous
networks will be preferable. For some problems, therefore,
synchronous networks may be more appropriate, and vice
versa.

2. Synchronous Boolean networks can be valuable for methods
employing non-Boolean models (such as discrete, stochastic,
or differential) (Fages and Soliman, 2008): A synchronous
Boolean network that does not have an expected set of fixed-
point attractors, for example, reflects the fact that there is
something basically wrong in more detailed models of such
a network. Hence, basic errors can be detected before using
more precise models. A reason for preferring to detect such
errors in a coarse model is that even in Boolean models a
combinatorial explosion can readily occur, so that in finer
corresponding models such an explosion is even more likely
to occur.

The rest of this article only deals with synchronous Boolean
networks. For simplicity, we will sometimes drop the
“synchronous” adjective and refer to such networks simply
as “Boolean.”

1.3. Outline of Griffin’s Methodology
In a nutshell, Griffin’s methodology is the following.
Griffin has as input a (generalization of a) “regulation”
graph (sometimes also called “interaction” or “influence”
graph), in addition to biological constraints, such as an
expected set of either fixed-point or cyclic attractors of
both the wild-type and of mutants of an organism. The
output is typically a set of Boolean networks satisfying such
constraints.

Because inGriffin the regulation graph plays a prominent role,
the definition of a regulation is fundamental. Griffin uses the
definition of Naldi et al. (2007), Richard et al. (2012), and Mori
and Mochizuki (2017).
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A regulation graph is normally an underdetermined
specification of a Boolean network because even with the
formal definition of regulation and sometimes also due to lack
of information the regulation graph may be satisfied by many
Boolean networks.

Griffin then combines the regulation graph with the biological
constraints, to reduce the number of possible networks. This is
essentially done by constructing a typically large Boolean formula
representing: (1) a formal definition of the regulation graph and
(2) the biological constraints. This formula is then given to a
“SAT solver.” These solvers employ algorithms finding value
assignments to the variables occurring in the formula that make
such a formula true. Each such assignment represents a possible
network.

Notice that both the regulation graph and many of the
biological constraints rely on biological information. Thus,
Griffin mainly produces biological meaningful solutions (i.e.,
networks that are coherent with the available experimental
information).

Griffin’s methodology required the development of multiple
innovations, including the generalization of the concept of a
regulation graph that we call R-graph, the gradual application
of biological constraints at runtime using clause learning, and
the handling of both mutations and partially known fixed-point
attractors. Some of Griffin’s innovations will be described below.

1.4. Symbolic Techniques
Griffin relies heavily on “symbolic” methods. Such methods
do not represent sets explicitly, but rather codified as Boolean
expressions. This allows for the representation of large sets of
states, as well as the pruning of large fragments of the search
space. It is important to observe that numerous off-the-shelf
symbolic computational tools exist.

1.5. Background of Griffin
The original prototype of Griffin appeared in Rosenblueth et al.
(2014), where the authors presented a formal framework for
the inference of Boolean networks from a standard regulation
graph by direct application of a SAT solver to Boolean formulas
codifying regulations, fixed-point attractors, and single-point
mutations.

Examples illustrating the use of Griffin already appeared in:
Rosenblueth et al. (2014), employing sets of desired fixed-points
for mutations; Weinstein et al. (2015), looking for interactions
that are necessary for the existence of a cyclic attractor; García-
Gómez et al. (2017), verifying if a set of regulations was enough
to obtain a desired set of expected attractors; and Azpeitia et al.
(2017), making extensive use of hypotheses and partially defined
sets of attractors for multi-point mutations.

Features illustrated in previous articles mentioning Griffin
have been left out from this work. We demonstrate in this
article Griffin’s new functionalities through three cases studies in
section 2.2.

1.6. Organization
The rest of this article is organized as follows. The section
“Results” has two parts: first we give a description of Griffin, and

then we turn our attention to three case studies. Next follows the
section “Discussion,” relating our work with other approaches
and summarizing our results. Section 4 gives formal definitions
appearing in the pseudo-code of the algorithms. Finally, the
Supplementary Material includes all query files for the case
studies, and a detailed explanation of the syntax used to formulate
partially defined fixed-point constraints.

2. RESULTS

This section first gives an account of Griffin, and then presents
three case studies.

2.1. Griffin
2.1.1. R-Graphs
A first contribution of Griffin is a generalization of the ordinary
regulation graph that we call “R-graph” (for “regulation”). In
an R-graph, vertices are, as in an ordinary regulation graph,
molecular species. However, instead of having edges denoting
only two kinds of regulation (positive or negative), an R-graph
has 16 kinds of labels for edges, allowing the user to express
a range of nuances of what is known about a regulation.
Table 1 shows these 16 possible labels. In addition to having the
ordinary positive and negative regulations (first two lines), we
have ambiguous regulations (third line). Ambiguous regulations
are regulations that depending on the “context” are negative or
positive. As in ordinary regulation graphs, it is also possible
to indicate the fact that we know that there is no regulation
from one molecule to another (fourth line). We, however, view
labels of edges as Boolean functions over the set of positive
and negative regulations. This allows us to represent additional

TABLE 1 | Interpretation of the 16 R-regulations between vertices u and v for an

R-graph.

Depiction Meaning Acronym Formula

Mandatory, positive, unambiguous MPU R+ ∧ ¬R−

Mandatory, negative, unambiguous MNU ¬R+ ∧ R−

Mandatory, ambiguous MA R+ ∧ R−

No regulation NR ¬R+ ∧ ¬R−

Mandatory, positive, possibly ambiguous MPPA R+

Mandatory, negative, possibly ambiguous MNPA R−

Mandatory, unknown sign, unambiguous MUSU ¬(R+ ↔ R− )

Mandatory, unknown sign, possibly ambiguous MUSPA R+ ∨ R−

Optional, positive, unambiguous OPU ¬R−

Optional, negative, unambiguous ONU ¬R+

Optional, ambiguous OA (R+ ↔ R− )

Optional, positive, possibly ambiguous OPPA R+ ∨ ¬R−

Optional, negative, possibly ambiguous ONPA ¬R+ ∨ R−

Optional, unknown sign, unambiguous OUSU ¬(R+ ∧ R− )

Contradiction False 0

Tautology True 1

Each R-regulation is denoted by an acronym. Leaving out trivial regulations false, NR, and

true, R-regulations can be classified as optional or mandatory. In the case of no regulation

(NR), edges are not depicted. The last column shows the constraint added by Griffin

in each case (R+ denotes a positive regulation from u to v for the Boolean network f

(R+ (u, f , v)), R− a negative regulation (R− (u, f , v)), see definition 3).
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possibilities in a uniform manner. For example, we can represent
the contingency in which we know that in certain contexts a
regulation is positive, but we do not know whether or not there
are other contexts where such a regulation is negative. This case
would correspond to the fifth line (“Mandatory, positive, possibly
ambiguous”).

Other interesting situations are the optional regulations. Such
regulations can be used to test or predict putative regulations.
Just as in mandatory regulations, the sign of optional regulations
can vary. For instance, the first optional line (“Optional, positive,
unambiguous”) represents a situation where we wish to allow for
the possibility of no regulation, but in case there is one it should
be positive and cannot be negative. In line 14 (last line before
“Contradiction”), by contrast, we allow for the possibility of a
positive regulation, a negative regulation, or no regulation.

The last column of Table 1 shows the corresponding Boolean
function over positive and negative regulations (R+ and R−),
defined in section 4.

We can thus represent any combination of necessity
and possibility for positive and negative regulations. This
generalization includes two trivial functions (Contradiction and
Tautology) listed in the last two lines of Table 1.

2.1.2. Meaning of a Regulation
The next question we have to address is the meaning of a
(positive or negative) “functional regulation” (i.e., R+ and R−).
This meaning is important in the sense that it establishes a
connection between regulation graphs (or R-graphs) and state
graphs. We take the meaning proposed by Naldi et al. (2007)
(and used also by Richard et al., 2012 and Mori and Mochizuki,
2017). According to this definition, a regulation is functional if
it is sufficient to modify the activity of the regulated variable in
a non-empty set of (molecular) contexts. A context is a specific
combination of values of all other variables. Observe that it is the
formal definition of regulation (Defn. 3) that allows us to define
R-graphs. Some previous works (e.g., Espinosa-Soto et al., 2004)
have inferred gene network dynamics manually, and without
employing a formal definition of regulation. As a result, it is
not clear in such inferences whether or not all possibilities of
networks that are coherent with the experimental information
have been explored.

2.1.3. Tractability of Boolean-Network Inference
Apart from an R-graph, an important input to Griffin can
be a desired set of attractors (be they fixed-point or cyclic).
Writing a Boolean formula representing a desired fixed-point,
for instance, is straightforward (Rosenblueth et al., 2014). Hence,
a set of such fixed-points can be represented as the conjunction
(the “AND” function) of such formulas. The resulting formula,
however, does not say anything about the unwanted fixed-points,
and the solution networks might have additional fixed-points.
Although such solutions, with additional fixed-points, might
be acceptable, it may also be the case that we do not wish
additional fixed-points. We must then explicitly express so in the
Boolean formula (a “clause”), so as to block each unwanted fixed-
point from solutions. This situation is analogous to the “frame
problem” (Shanahan, 1997) in Artificial Intelligence. As a result,
a direct approach to coding an exact set of fixed-point attractors

Algorithm 1: Griffin strategy for network iteration

Input: Q, a griffin query
Output: writes all satisfying Boolean networks

1 begin

2 i← 0, n←∞
3 if Q.limit-Boolean-networks then n← Q.limit
4 ψ ←equisatisfiable-CNF(encode(Q))
5 E←SAT-engine.instance(ψ)
6 while E.satisfiable() and i < n do

7 N←decode-network(E.next-assignment())

8 if not Q.allow-additional-cycles then
9 S← Dubrova-Teslenko(N)

10 for A ∈ S do

11 if |A| > 1 then
12 if A /∈ allowed-cycles(Q) then

13 block-attractor(E, A)
14 end

15 else

16 if Q.block-steady-a-posteriori then
17 if A /∈

allowed-fixed-points(Q)
then

18 block-attractor(E, A)
19 end

20 end

21 end

22 end

23 else

24 if Q.block-steady-a-posteriori then
25 S← Naldi-Thieffy-Chaouiya(N)

26 for A ∈ S do

27 if A /∈ allowed-fixed-points(Q)
then

28 block-attractor(E, A)
29 end

30 end

31 end

32 end

33 write(N)

34 i← i+ 1
35 end

36 end

37 Function block-attractor(engine, attractor):
38 φ←encode-attractor(attractor)
39 engine.add-clauses(equisatisfiable-CNF(¬φ))

40 return

41 end

(not allowing additional ones) produces a formula whose size
is proportional to the number of states (i.e., exponential in the
number of molecular species). Such an approach is not scalable.
Moreover, if we are looking for solutions with no cyclic attractors,
then coding this into a Boolean formula results in an intractable
combinatorial explosion even for small networks.
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Armed with Dubrova and Teslenko’s (2011) method for
detecting attractors in synchronous Boolean networks, Griffin
does not block all unwanted attractors in the initial formula, but
performs a “lazy” blocking, gradually adding the subformulas
of unwanted attractors that appear in potential solutions. This
technique, called “clause learning” (Franco and Martin, 2009), is
used in SAT solvers, but at a lower level than Griffin does.

Table 2 shows how the gradual application of biological
constraints at runtime is able to tackle all queries in our case
studies. Griffin exhibits a significant increase in scalability as
compared with the 2014 prototype of Griffin that did not have
this feature.

2.1.4. Partially Known State Transitions
Griffin is able to represent partially known state transitions, in
particular those corresponding to fixed-point attractors where
the value of some species is unknown.

2.1.5. Whole Queries and Query Splitting
It is also possible to have certain user control in the search
for Boolean networks through an operating mode called query
splitting. In the query-splitting mode, Griffin can (1) first
instantiate an R-graph into all possible ordinary regulation
graphs, (2) next obtain answers for each such instance, and (3)
finally combine all resulting answers. It may be useful to partition
a problem this way, as the time required to solve all instances
might be less than the time required for solving the original
query. Figure 1 shows an example of query splitting using the
“radial” exploration strategy (see Algorithm 2).

In the radial exploration strategy, an ordinary regulation
graph resulting from removing all optional regulations of an R-
graph, called a center, is obtained. Next, combinations of optional
regulations are added to the obtained center. The number of
optional regulations added to the center is called the radius.

2.1.6. Griffin’s Structure
Algorithm 1 shows the exploration strategy used by Griffin to
find the set of satisfying solutions to a query. Figure 2 depicts the
processing of a query by Griffin.

2.2. Case Studies
We demonstrate Griffin’s functionalities with three different
Boolean network models taken from the literature. The first
example allows us to illustrate queries for (a) finding Boolean
networks given an R-graph, (b) finding the sets of fixed-point
attractors of the Boolean networks of a given R-graph, and
(c) finding Boolean networks given an R-graph and a desired set
of fixed-point attractors.

The second example is devoted to hypothetical regulations.
Such regulations will enable us to exemplifyGriffin’s whole-query
vs. query-splitting approaches.

The third example shows how uncertainty in the steady state
behavior of a system can be effectively expressed by combining
partially known fixed-point attractors and explicit exclusions of
fixed-point attractors.

Algorithm 2: Radial exploration strategy for query
splitting

Input: Q, a griffin query
τ , the exploration radius

Output: writes all satisfying networks
1 begin

2 core← ∅, Vm ← ∅, Vo ← ∅

3 I← Q.get-R-interactions()
4 Q.allow-hypotheses← false
5 for i ∈ I−{NR, true, false} do
6 if |options(i)| = 1 then
7 core← core∪ options(i)
8 else if ∅ /∈ options(i) then

9 Vm ← Vm ∪ options(i)
10 else

11 Vo ← Vo ∪ ( options(i)−∅)
12 end

13 end

14 formantle ∈ one-of-each(Vm) do

15 center← mantle ∪one-of-each(core)
16 for n ∈ 0 . . τ do
17 for crust ∈ one-of-each(combinations(

Vo , n)) do

18 Q.set-as-known-regulations (center∪
crust)

19 write(Griffin.find-all-networks(Q))

20 end

21 end

22 end

23 end

24 Function options(i):
25 S← ∅

26 if i ∈ {MNU, MNPA, MUSPA, MUSU, ONPA, ONU, OUSU} then

27 S← {{source(i) ⊣ target(i)}}
28 end

29 if i ∈ {MPU, MPPA, MUSPA, MUSU, OPPA, OPU, OUSU} then

30 S← S ∪ {{source(i)→ target(i)}}
31 end

32 if i ∈ {MA, MNPA, MPPA, MUSPA, OPPA} then

33 S← S ∪ {{source(i)→
target(i),source(i) ⊣ target(i)}}

34 end

35 if i ∈ {OA, ONPA, ONU, OPPA, OPU, OUSU} then
36 S← S ∪ {∅}
37 end

38 return S

39 end

40 Function one-of-each(A):

41 return← {x | x ⊆
⋃

A and ∀y ∈ A :

∣

∣x ∩ y
∣

∣ = 1}
42 end
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TABLE 2 | Scalability increase through clause learning in Griffin.

R-graph size No. of Boolean networks Exclusion of attractors

n m
indegree

∏n
i=1 2

(

2di
) No. of exclusionary clauses Griffin

d #
∑2n

k=1 (2
n)!/(k(2n − k)!) NE CL

Small R-graphs with constant indegree

1 1 1 1 4 3 3 3

2 2 1 2 16
24 3 3

2 4 2 2 256

3 3 1 3 64

16, 072 3 3
3 6 2 3 4, 096

3 9 3 3 16, 777, 216

A. thaliana root (questions 5 and 6)

11 50

1 1

4.9× 10173 2.2× 105,891 7 3

3 2

4 3

5 2

6 1

7 1

8 1

A. thaliana modified root (question 7)

11 90

4 1

4.8× 101,661 2.2× 105,891 7 3

7 1

8 5

9 2

10 1

11 1

A. thaliana flower (questions 1, 2, and 3)

13 45

1 5

1.3× 10151 4.2× 1028,499 7 3

2 1

3 1

4 2

6 2

7 1

8 1

A. thaliana sepal (question 4)

21 32

1 12

2.9× 1020 8.6× 1012,346,634 7 32 7

3 2

The first four columns (from the left) are the R-graph parameters used in a query. The first column shows the number of vertices, n; the second column shows the number of edges, m;

the thrid column, labeled d, is an indegree, while the fourth column, labeled #, is the number of vertices in the R-graph having indegree d. The fifth column, no. of Boolean networks, is

an upper bound of the number of satisfying Boolean networks. The last three columns give an idea of the difficulty of achieving an exclusion of attractors in Griffin’s solutions through

two different strategies. These columns show an estimate of the number of clauses required to exclude all possible attractors (column labeled no. of exclusionary clauses) and whether

adding such constraint is tractable using naive encoding (column labeled NE) or using clause learning (column labeled CL). Naive encoding is the strategy used in early versions of Griffin

and consists of adding in advance all constraints to the formula that prohibit the unwanted attractors. With naive encoding, the size of the formula required to enforce an exact set of

desired attractors is too big in all case studies presented here (although question 4 do not ask for such condition), while clause learning allows Griffin to provide answers to all queries.

Clause learning endows Griffin with a significant improvement in scalability.

Some features, such as the use of constraints on mutants
and specification of desired cyclic attractors, have been left
out from this article. However, we have illustrated the use of

these capabilities in previous articles (Rosenblueth et al., 2014;
Weinstein et al., 2015; Azpeitia et al., 2017; García-Gómez et al.,
2017).
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FIGURE 1 | Left: An R-graph G. Right: The set of all instantiations of G, GG (see definition 12). In the radial exploration strategy used by Griffin there are two centers

contained in the continuous ovals. The nested dotted ovals illustrate regulation graphs that are at a certain radius from each center: continuous oval for radius 0, inner

dotted ovals for radius 1, second inner dotted ovals for radius 2 and so on. In this example, each regulation graph of GG corresponds to an R-graph of a query

member of a query splitting. The strategy used for this query splitting is shown in Algorithm 2. In general, the number of queries in the query splitting does not

correspond to the number of instantiations of an R-graph, due to the fact that a member of the splitting may not have satisfying solutions, while all instantiations of G

have satisfying solutions.

Algorithm 3: Exploration of sets of fixed point
attractors
Input: Q, a griffin query
Output: S, a sample of collections of fixed point attractors

1 begin

2 S← ∅

3 ϕ← griffin.encode(Q)
4 while griffin.has-more-models(ϕ) do

5 f ← griffin.next-Boolean-network(ϕ)
6 A← griffin.compute-attractors(f)
7 ψ ← griffin.encode(A)
8 ϕ← ϕ ∧ ¬ψ

9 S← S ∪ A

10 end

11 return S

12 end

2.2.1. First Case Study: Arabidopsis thaliana Flower

Model
We start by taking the A. thaliana floral organ determination
gene regulatory networkmodel developed byAlvarez-Buylla et al.
(2010) (henceforth referred to as A. thaliana flower model). In

their work (Mendoza and Alvarez-Buylla, 1998; Mendoza et al.,
1999; Espinosa-Soto et al., 2004; Alvarez-Buylla et al., 2010), these
authors report that this network is capable of reproducing the
stable gene expression observed during the development of the
flower organs, plus some inflorescence stages. Observe that these
authors do not use a formal definition of regulation. Moreover,
the search for networks satisfying the regulation graph (built
from the literature) is done manually and without employing
the expected set of fixed points to guide the search. Normally,
these authors report only one Boolean network consistent with
the regulation graph and recovering a set of fixed points coherent
with the experimental information. We will show our attempts
at reproducing their last results (Alvarez-Buylla et al., 2010) with
Griffin.

2.2.1.1. Regulation graph as input
We first illustrate a direct attempt at trying to recover the
10 known fixed-points (i.e., steady states) for the model of
A. thaliana without using the desired set of fixed-points as
input. This approach assumes that genes do not oscillate. This
assumption can be justified by observing that even with such a
constraint we did not recover the desired set of steady states.
Hence, if we allowed for the possibility of cyclic attractors, thus
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FIGURE 2 | Schematic of Griffin’s information flow. The query at the top-left corner is first parsed. Depending on the options it is either directly encoded into a Boolean

formula or split into simpler queries. The Boolean formula is fed into a SAT solver. Each satisfying assignment returned by the SAT solver is decoded into a synchronous

Boolean network, a candidate solution. It is also possible that the SAT solver concludes that the formula is a contradiction, that is, there are no synchronous Boolean

networks satisfying the query. If a candidate solution is found, blocking constraints prevent finding the same solution twice. Further properties of the candidate solution

are verified, possibly resulting in the generation of additional constraints. The runtime blocking analysis concludes with the rejection or acceptance of the candidate

solution. If no candidate solution passes the runtime blocking analysis, then Griffin concludes there are no satisfying solutions to the query.
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enlarging the size of the search space, we would be even less likely
to recover the desired set of fixed-point attractors.

Question 1. The first question we asked Griffin was:What are the
Boolean networks satisfying the known regulation graph of the
A. thaliana flower model (Figure 3A) and that do not have cyclic
attractors?

Listing 1 in Supplementary Material shows the corresponding
query as posed to Griffin. Griffin’s answer was positive, giving a
large number of satisfying Boolean networks before exhausting
the available resources. We hence limited to 100 the number
of answers. These answers, however, were similar to each other,
and none of them had the desired set of fixed-point attractors.
Consequently, we devised search strategies to look for diversity
in the answers.

Question 2. What are the possible distinct fixed-point attractor
sets (FPASs) for Boolean networks compatible with the known
regulatory interactions of A. thaliana flower model and that do not
have cyclic dynamics?

Normally, Griffin can be used through a query language.
However, if such a language is not expressive enough for the
desired query, it is possible to run Griffin through its application
programming interface (API). Algorithm 3 exemplifies the use
of Griffin via its API. This algorithm computes distinct FPASs.
To prevent the possibility of finding the same combination
more than once, there is a blocking constraint representing the
negation of that particular FPAS.

It is important to note that this search algorithm is not
complete, in the sense that some FPASs may be excluded from
the answer as a result of the blocking strategy. Adding a blocking
clause not only prevents a particular FPAS from being found
again; it also blocks all FPASs that are a superset of the FPAS
of a satisfying solution found by Griffin. If the whole set of
FPASs is required, this algorithm would have to be modified with
more sophisticated blocking techniques. In our case, this was
not deemed necessary because the computation of the sample of
FPASs already exhausted the computational resources.

Griffin found 2,896 Boolean networks. The sets of attractors
were not only distinct but some of them also had distinct
cardinalities. The minimum number of fixed-point attractors for
the networks in the sample was two; the maximum was 15. We
found 133 different fixed-point attractors in such a sample. Of
the 10 desired fixed-point attractors that are compatible with the
regulation graph for A. thaliana flower (Figure 3A), Griffin was
only able to find nine, as explained in Figure 4.

To assess the diversity of the sample, we analyzed the
similarity of the FPASs between each pair of found networks.
Figure 5 is a visualization of the similarity matrix computed for
the 2,896 networks in the sample. The visualization shows not
only that many FPASs share common elements, but also that
there are significant number of them that do not share any fixed-
point attractor (2,8962 × 0.46 entries in the matrix are zeros;
that is, 46% of pairs are completely different in their fixed-point
attractors). Our conclusion is that results produced by Griffin
show that there is a significant diversity of fixed-point attractors

in Boolean networks with dynamics compatible with a given
regulation graph (see Figure 6).

Note that a regulation graph (without biological constraints)
can be satisfied by a vast number of Boolean networks
corresponding to different dynamic behaviors. Therefore, in
addition to the regulation graph, biological constraints on
Griffin’s input (as the set of desired attractors) are important for
producing more accurate Boolean networks.

We show next that Griffin was able to find fully compliant
Boolean networks once steady-state constraints were added to the
query.

2.2.1.2. Regulation graph plus expected set of attractors as

input
Question 3. The third question we asked Griffin was: Are
there any Boolean networks satisfying the known regulatory
interactions of the A. thaliana flower model that have exactly the
known set of fixed-point attractors?

Listing 2 in Supplementary Material has a new constraint
with respect to the previous query, asking Griffin to limit the
search to those Boolean networks having exactly the set of known
fixed-point attractors of Figure 4. As with the previous question,
Griffin’s answer was positive, giving a large number of satisfying
Boolean networks. Before exhausting the resources,Griffin found
328,565 Boolean networks satisfying the constraints. We observe
that were it not for the fact that Griffin blocks attractors on the
fly (as opposed to blocking unwanted attractors in advance), the
resources would be exhausted when building the formula (given
the length of the formula required for blocking any additional
fixed-point or cyclic attractor). After adding to the input the
set of desired attractors, the number of solutions was still vast.
Griffin allows adding constrains that could reduce even more the
number of solutions. An example of such constraints is the effect
of mutations on the set of attractors (Rosenblueth et al., 2014;
Azpeitia et al., 2017).

As well as inferring Boolean networks, Griffin can be used to
perform analysis, as we show next. Figure 7 depicts a state space
diagram for the 10 basins of attraction for the network having
the combination reported in the sixth row of Table 3. Our results
would suggest that gene regulatory networks are robust allowing
them to be stable in developmental and evolutionary scales, as
observed for flowers (Drinnan et al., 1994).

2.2.2. Second Case Study: A. thaliana Sepal

Primordium Polarity
La Rota et al. (2011) developed a model of sepal primordium
polarity in the young flower of A. thaliana. These authors
defined a set of expected attractors by analyzing the expression
patterns of the most important genes during sepal development.
Then, using published data, they defined the set of known
regulatory interactions and looked for putative binding sites
indicating putative missing regulatory interactions. Finally, using
mathematical programming, they built Boolean networks that
conformed with the known and missing interactions to verify
if any of such networks could produce the set of expected
attractors.We chose this example as it enables us to illustrate how

Frontiers in Genetics | www.frontiersin.org 9 March 2018 | Volume 9 | Article 39

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Muñoz et al. Griffin: Inference of Synchronous Boolean Networks

FIGURE 3 | Regulation graphs for A. thaliana models used in the section Case Studies. (A) Flower development model of Alvarez-Buylla et al. (2010). Nodes LUG and

CLF have been omitted from the diagram because they are constant inputs to the model. (B) Sepal primordium polarity model of La Rota et al. (2011). For all figures:

positive regulations are shown as green lines with arrow tips, negative regulations are shown as red lines with orthogonal line tips, dashed lines represent hypothetical

interactions (it is unknown whether they are present or not). Blue dashed lines with square tips represent hypothetical interactions of unknown sign. (C) Root cell stem

niche model of Azpeitia et al. (2013). (D) Modified root cell stem niche model of Azpeitia et al. (2013) is shown with several new hypotheses.

incomplete knowledge about the regulators of specific genes can
be captured in a Griffin query. In the following subsection, we
also illustrate how to set a query-splitting strategy.

2.2.2.1. Hypothetical regulations
The model of sepal primordium polarity for A. thaliana
of La Rota et al. (2011) (henceforth referred to as A. thaliana
sepal) was integrated considering incomplete knowledge and
uncertainty in the data. After analyzing the data, these workers
concluded that the model based on experimental data was

unable to obtain the set of expected attractors. Then, based
on bioinformatic data, they included a number of hypothetical
missing regulations that could be necessary to obtain the
desired attractors. The computational methods used by La Rota
et al. (2011) were based on mixed integer linear programming
representations and iterative procedures. They used their
algorithm to reproduce steady states and regulatory interactions
to be functional, as well as other biologically meaningful
constraints. We were interested in testing Griffin’s ability to find
satisfying solutions to this problem.
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FIGURE 4 | A sample of 133 fixed-point attractors that are compatible with the interaction graph of Figure 3A. Black squares represent expressed genes; gray

squares represent unexpressed genes. From bottom-left to top-right, there are seven groups of 19 rows and 13 columns each. Each column is labeled with a

particular gene. Each row is an expression profile for the 13 genes and corresponds to a compatible fixed-point attractor for the regulations present in the interaction

graph. At the top-right corner the 10 known fixed-point attractors corresponding to the cell types: inflorescence shoot apical meristem I1, I2, I3, I4; sepal SE; petal

PE1, PE2; stamen ST1, ST2; and carpel CA. Nine of the 10 fixed-point attractors present in the sample have been highlighted in green. The algorithm used to

generate the sample did not find the I4 profile highlighted in red.

Question 4. The question we asked Griffin was: Are there
any Boolean networks satisfying the known and hypothetical
regulations of A. thaliana sepal model that have the known set of
fixed-point attractors with no constraints on possible additional
attractors?

Listing 3 in Supplementary Material shows the Griffin query
used to answer the previous question. It is simple to list
hypothetical regulations, such as the 19 hypotheses formulated
by La Rota et al. (2011) in their regulation graph (Figure 3B
[based on Figure 3D of La Rota et al., 2011]). By construction,
the regulations of satisfying networks found by Griffin, if any,
are functional (Rosenblueth et al., 2014). Therefore, no special
instruction is needed to specify this requirement. We included
the expected fixed-point attractors as a constraint. Additionally,

we asked Griffin to perform query splitting (see definition 16,
below) on the question using the radial exploration strategy of
Algorithm 2. By varying the query option corresponding to the
radius, Griffin limited the number of simultaneous hypotheses
considered at a time for each query q ∈ s(P) in the splitting (see
definition 16).

We asked several queries varying the radius (paragraph
“Whole Queries and Query Splitting”). As there are 19
hypotheses, this is also the maximum possible radius. Table 4
summarizes the results. It can be seen that having control on
the radius provided valuable information about the hypotheses.
In particular, Griffin found all combinations of hypothetical
regulations that reproduced the expected attractors, including the
smallest set of required hypothetical regulations to obtain the
attractors. In this case, there were no satisfying networks below
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FIGURE 5 | Similarity matrix of sets of fixed-point attractors for a sample of 2,896 Boolean networks satisfying the interaction graph of A. thaliana flower model shown

in Figure 3A and that do not have cyclic attractors. The similarity matrix shows the degree to which different sets of fixed-point attractors share the same elements.

Each row and column represents a particular witness. The entry (i, j) represents the similarity between the fixed-point attractor sets of witness i and witness j. The

maximum similarity between two networks equals 1 if they have the same set of fixed-points. Algorithm 3 ensures that the witnesses have different sets of fixed-point

attractors. Therefore, the only entries in the similarity matrix that are equal to one are in the diagonal. The minimum similarity between two networks is zero. This

happens when the intersection of their sets of fixed-point attractors is empty. High values of similarity are colored red while low values of similarity are colored blue.

Zero similarity corresponds to black. The similarity of two sets was found using the cosine similarity given by sim(x, y) = x·y
‖x‖‖y‖ where x and y are binary vectors

encoding the presence or absence of different fixed-point attractors.

a radius eight. In other words, the simplest models able to satisfy
the constraints must include the right combination of at least
eight hypotheses. There were 32 solutions at this radius, and only
eight different right combinations (same number of associated
interaction graphs). Griffin was able to compute all the solutions
for the query, a total of 439,296. Notice that in the R-graph
of this example, there are 19 hypothetical regulations, which is
equivalent to 219 = 524,288 ordinary regulation graphs. Griffin
analyzed all these possible ordinary regulation graphs in a single

question. We can also see the difference between the cardinality
of the query splitting |s(P)| = 524,288 and the cardinality of the
instantiations of the corresponding R-graph |GG| = 6,912. That
is, only about 1.32% of the ordinary regulation graphs produced
solutions. To measure the computational cost of the query-
splitting strategy, we compared the computing time for a single
query (with no query-splitting strategy). This example shows that
making 524,288 questions needed fewer computational resources
than a single complex question did. Figure 8 shows graphically
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FIGURE 6 | A histogram with 30 bins, showing the distribution of entries in the

similarity matrix of Figure 5. Low similarity values are more frequent than high

similarities reflecting high diversity in the sets of fixed-point attractors.

the information of the table. It can be seen that the computing
time correlates well with the number of solutions found.

2.2.3. Third Case Study: A. thaliana Root Stem Cell

Niche
The A. thaliana root stem cell niche is a model system for
the study of plant development and stem cell niche dynamics.
We consider here the work of Azpeitia et al. (2013). These
authors have used multiple strategies for finding missing gene
interactions able to explain the observed experimental steady
state dynamics. Their study faces the computational complexity
of searching within the space of potential Boolean functions,
which is large and grows exponentially in the number of regulator
genes. Here, we review some of their proposed procedures for
predicting missing interactions, expressing such procedures as
symbolic constraints. In fact, we have previously used Griffin
(Rosenblueth et al., 2014) to reproduce and extend (by finding
other satisfying Boolean networks) a previously published
Boolean network for A. thaliana root stem cell niche (Azpeitia
et al., 2010). In this subsection, we illustrate how Griffin can
deal with uncertainty in the gene interactions as well as in the
attractors.

2.2.3.1. Using R-graphs to express hypotheses
In the next question, we explore the root stem cell niche model of
Azpeitia et al. (2013) (henceforth referred to as A. thaliana root
model). From the point of view of the Boolean network inference
problem, this model is interesting because it is rich in hypotheses,
that is, it incorporates uncertainties about the existence or sign of
its regulatory interactions.

Question 5. Does there exist a Boolean network satisfying the
A. thaliana root model?

The A. thaliana root model includes 30 hypothetical regulations
as well as 20 known regulations. Figure 3C shows the set of

regulations and Listing 4 in Supplementary Material exhibits
the query file for the corresponding question. Griffin’s answer
to the query was negative. This is compatible with the results
reported by Azpeitia et al. (2013). Griffin’s conclusion, however,
is important for the following reasons:

1. The search space of Boolean functions is vast. The number
of regulators for each gene is as follows (see Figure 3C):
ACR4, 1; AUX_IAA, 4; AUXIN, 3; CLE40, 3; JKD, 5; MGP,
5; MR165, 4; PHB, 8; SCR, 6; SHR, 4; WOX5, 7. The total
number of possible Boolean networks is then given by:

22
1
× 22

4
× 22

3
× · · · × 22

7
≈ 4.9× 10174.

2. Azpeitia et al. (2013) performed extensive exploration of
the search space, applying a set of procedures designed
to reduce the complexity of the search and to focus
on solutions with biological relevance. Their technique
incorporated a heuristic search that tested combinations of
hypothetical regulations adding each regulation one at a
time. After three months of testing no solution was found.
Because only a portion of the search space was explored,
it was not possible to conclude whether or not there were
satisfying Boolean networks.

3. When Griffin’s answer is negative, i.e., when it concludes
that the query is unsatisfiable, its conclusion is often found
as a consequence of a trivial contradiction in the Boolean
formula given to the SAT solver. If that is the case, the
answer is found immediately. In our case, however, Griffin
took 6.8 ms to give the answer.

4. Despite the size of the search space, this example
illustrates thatGriffin’s runtime blocking strategy is effective.
Inspecting Griffin’s log files, we learned that there is no
trivial contradiction in the query formula. Griffin iterates
over 22 candidate Boolean networks, rejecting all because
they exhibit additional attractors. Griffin blocks 15 fixed-
point attractors, five cyclic attractors of length two, and
two cyclic attractors of length three. After blocking one
of the incompatible attractors of the 22nd network, a
contradiction is generated, allowing Griffin to conclude the
nonexistence of a satisfying solution.

The fact that no network satisfied the constraints suggested
that such constraints might be incorrect. After analyzing the
assumptions of the model, we learned that there existed
uncertainty about the specification of the fixed-point attractors
of the model. In particular, the model contains (1) an hormone,
auxin, whose distribution is graded along the A. thaliana root,
and (2) a mobile peptide, CLE40, that diffuses from its expression
domain. Neither the exact region where auxin is active nor the
diffusion coefficient of CLE40 are known. Thus, their Boolean
values in the attractors is not clear. Griffin is able to express such
degree of uncertainty by the use of partially known fixed-point
attractors. This is explored in the following subsection.

2.2.3.2. Partially known fixed-point attractors
Uncertainty in stationary gene expression profiles when inferring
the dynamics of a molecular network from the literature occurs
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FIGURE 7 | Depiction of basins of attraction for the ten known fixed-point attractors corresponding to the Boolean network having the combination of basin sizes

reported in the sixth row in Table 3. The biggest component with 2,488 states corresponding to ST2 is colored red, the second biggest with 2,432 states,

corresponds to CA and is colored light blue, I1 is colored purple, I2 dark green, I3 dark blue, I4 orange, SE brown, PE1, the smallest component with only four states,

is colored yellow, PE2 pink and ST1 light green. The fixed-point attractors are represented by bigger circles than those of non stationary states. Griffin use the

algorithm of Dubrova and Teslenko (2011) to compute the attractors of the Boolean networks. Binary Decision Diagrams and the backward reachable set algorithm

of Garg et al. (2008) are applied to each attractor to compute their corresponding basins.

TABLE 3 | Frequency of sizes of basins of attraction for the 10 known fixed-point attractors of Figure 4 in a sample of 328,565 Boolean networks found by Griffin that

recover the exact set of fixed-point attractors.

I1 I2 I3 I4 SE PE1 PE2 CA ST1 ST2 Num. of networks

896 896 512 512 2,596 4 2,592 48 40 96 156,227

884 884 524 524 2,596 4 2,592 48 40 96 95,352

908 908 500 500 2,596 4 2,592 48 40 96 57,725

968 968 440 440 2,596 4 2,592 48 40 96 19,259

896 896 512 512 2,588 4 2,584 52 44 104 1

916 916 524 524 164 4 168 2,432 56 2,488 1

Cyclic attractors were prohibited in the query. There are only six different combinations of basin sizes. The last column shows the number of Boolean networks having the corresponding

combinations of basin sizes.
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TABLE 4 | Satisfying R-graphs and Boolean networks found by Griffin for the center-radius exploration strategy applied to A. thaliana sepal model.

Radius Regulation

graphs at radius

Cumulative

regulation graphs

Cumulative satisfying

Regulation graphs

Cumulative

satisfying networks

Cumulative

computing time [h:m]

8 75,582 1,69,766 8 32 0:01

9 92,378 2,62,144 84 448 0:03

10 92,378 3,54,522 410 3,120 0:05

11 75,582 4,30,104 1,243 14,048 0:11

12 50,388 4,80,492 2,651 45,120 0:28

13 27,132 5,07,624 4,303 1,08,912 1:06

14 11,628 5,19,252 5,675 2,04,496 2:08

15 3,876 5,23,128 6,481 3,07,968 3:22

16 969 5,24,097 6,809 3,86,496 4:22

17 171 5,24,268 6,897 4,25,968 4:54

18 19 5,24,287 6,911 4,37,728 5:08

19 1 5,24,288 6,912 4,39,296 5:10

Each row summarizes the results of individual runs. The first column shows the radius. The second column has the corresponding binomial coefficient giving the number of combinations

of active hypotheses at each radius. The third column has the cumulative number of R-graphs. Not all R-graphs are consistent with the specified constraints. As we can see in the fourth

column that gives the total number of satisfying R-graphs for each run, it is necessary to add at least eight simultaneous hypotheses to find satisfying networks. Each satisfying R-graph

can have one or more satisfying Boolean networks. The total number of satisfying networks is shown in the fifth column. The processing time for each query is shown in the last column.

As a comparison of performance, we also timed the query without using the center-radius strategy. The elapsed time was of 5:14 h. This illustrates that, in this case, splitting the query

into several simpler ones (the third column gives the exact number of queries run), does not add time. The center-radius strategy finished over 4 min before the single query did.

frequently. To an extent, Griffin can deal with uncertainty by
using partially known fixed-point attractors. We show in the
following question that partially known fixed-point attractors,
combined with explicit exclusion of certain fixed-point attractors,
can be used to formulate complex hypotheses.

Question 6. Does there exist a Boolean network satisfying the
A. thaliana root model having uncertainty in the definition of its
steady-state behavior?

Listing 5 in Supplementary Material shows a modified query
of the previous question. The constraints on the fixed-point
attractors have been changed. Instead of just asking for nine
well-defined fixed-point attractors, some uncertainty in the
specification of them has been introduced by including partially
known fixed-point attractors as well as prohibitions. A detailed
explanation on the syntax and meaning of the constraint can be
found in Table S1 in Supplementary Material. Griffin was able
to find a satisfying solution after 2.9 s. This example shows that
being able to express uncertainty (due to lack of information) in
the attractors could also be important when inferring a molecular
network, and that Griffin can easily express such uncertainty.

In the following example, we would like to significantly
extend the number of hypothetical regulations of the A. thaliana
root model (henceforth referred to as the modified A. thaliana
root model), and test whether Griffin is able to cope with the
complexity of the query.

Question 7. What are the Boolean network satisfying the
modified A. thaliana root model having uncertainty in the
definition of its steady-state behavior?

The modified A. thaliana root model included the 20 known
interactions of the original model, as well as 70 hypothetical

interactions, 66 of which were of unknown sign and four were
positive. The corresponding R-regulation graph is shown in
Figure 3D.

The significance of this example is twofold:

1. The search space of Boolean functions is significantly larger
than that of the originalA. thaliana rootmodel. The number
of regulators for each gene is as follows (see Figure 3D):
ACR4, 8; AUX_IAA, 10; AUXIN, 9; CLE40, 7; JKD, 8; MGP,
8; MR165, 4; PHB, 11; SCR, 9; SHR, 8; WOX5, 8. The total
number of possible Boolean networks is then given by:

22
8
× 22

10
× 22

9
× · · · × 22

8
≈ 4.8× 101,661.

2. Griffin required 5,520 variables to represent the update
function in this problem, plus 160 regulation variables
(the R+s and R−s) plus an unidentified number of
switching variables required to represent the formula in an
“equisatisfiable” conjunctive normal form (Tseitin, 1968).

The query for question 7 is shown in Listing 6 in Supplementary
Material. A satisfying Boolean network was found after 24 min.,
which has a total of 83 regulations, as can be seen in Figure 9.

For questions 1, 2, 3, and 7 we ranGriffin on a Dell PowerEdge
T320 Server with 80 GB of RAM. For the rest of the questions we
used a laptop computer with Intel(R) Core(TM) i7-4710HQCPU
@ 2.50GHz and 16 GB of RAM.

3. DISCUSSION

In this section, we first give a summary ofGriffin. Next, we review
methods for Boolean-network inference and related formalisms,
so as to place Griffin in context within this area of research.
Finally, we discuss possible directions for future work.
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FIGURE 8 | Center-radius exploration strategy for the sepal model. Values have been normalized by their maximum in each category. The number of R-graphs grows

rapidly with the radius. It is given by the binomial coefficient
(h
r

)

, where h is the number of hypotheses and r the radius. It can be seen that the computing time is highly

correlated with the number of cumulative satisfying networks.

3.1. Overview of Griffin
In the inference of Boolean networks form regulation graphs,
the fact that multiple networks might be consistent with
the same (given) regulation graph is sometimes neglected.
Often, publications reporting the inference of Boolean networks
consider a single network. Even if several such networks
are analyzed, only a fragment of the possibly vast number
of consistent networks is usually considered. Griffin, by
contrast, employs a formal definition of regulation (Naldi
et al., 2007; Richard et al., 2012; Mori and Mochizuki, 2017)
to build an implicit representation of all possible networks
satisfying the regulation graph. Griffin then augments such a
representation with biological constraints, resulting in a uniform
representation of all potential networks and at the same time
reducing such potential number of solution networks. This
representation is then given to a powerful, symbolic search
mechanism.

A key contribution to Model Checking (Clarke et al., 1999)
was the incorporation of symbolic representations of data (Burch
et al., 1992). Such representations allowed Model Checking to
verify systems, first with 1020 states, and subsequently with
many more. As with model checkers, Griffin is able to handle
large systems because of also using symbolic data structures.

There exist two main symbolic techniques: binary-decision
diagrams (BDDs) and SAT solvers. Griffin employs both, for
solving different subproblems. Griffin finds cyclic attractors
with a SAT solver (Dubrova and Teslenko, 2011), whereas it
computes basins of attraction (Garg et al., 2008) with BDDs.
The top level in Griffin, which builds a Boolean formula
representing all biological information and constraints, also
employs a SAT solver. Griffin thus capitalizes on the phenomenal
recent developments of such solvers. This dramatic progress has
“resulted in speed-ups of many orders of magnitude that have
turned many problems that were considered intractable in the
1980s into trivially solved problems now.” (Franco and Martin,
2009).

Another strong point of our tool is the concept of an
R-graph, a generalization of ordinary regulation graphs. R-
graphs represent advantages from both the user and the
computational viewpoints. The user has available the whole
repertoire of combinations involving the sign of a regulation
and whether a regulation is compulsory or simply hypothetical.
For example, the user can specify a hypothetical regulation that,
if present, should be negative and cannot be positive. From
a computational point of view, an R-graph encompasses all
hypothetical regulations in one formula, thus avoiding having
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FIGURE 9 | Modified A. thaliana root Boolean network found by Griffin satisfying question 7. (A) Interaction graph of the solution has 83 regulations of the 90 possible

(see Figure 3D). (B) There are 11 fixed-point attractors in the solution. For each expression profile active genes are shown in green while inactive genes are shown in

gray. The number corresponds to the decimal notation used in Table S1 in Supplementary Material.

to perform many separate tests. Computer tools employing
ordinary regulation graphs, by contrast, usually test all possible
combinations of presence and absence of all hypothetical
regulations, resulting in numerous analyses.

Griffin is hence not only an innovative but also powerful
computer tool for the inference of Boolean networks. It is
possible, for example, to detect erroneous inferences due to the
experimental, error-prone nature of biological data. Regulations
that were believed to be positive might in fact turn out to be
negative or vice versa. Griffin has detected these situations, as
reported in Azpeitia et al. (2017).

3.2. Related Work
As a first comparison between our work and related articles,
it is important to point out a difference in the type of
input data. In this work, Griffin input is composed of
(partial) information about the network topology (R-graphs)
along with other data representing biological constraints. R-
graphs contain information on genetic connectivity that was
inferred from data obtained by direct measurement of gene
expression or protein interaction. By contrast, inference methods
proposed by other authors (e.g., Laubenbacher and Stigler,
2004) have an input composed of time series together with
other data that capture information on the network dynamics.
Time series, unlike the R-graphs, represent experimental data
obtained by direct measurement of gene expression or protein
interaction.

There are a number of tutorials on Boolean-network
inference (D’haeseleer et al., 2000; Markowetz and Spang, 2007;
Karlebach and Shamir, 2008; Hecker et al., 2009; Hickman and

Hodgman, 2009; Berestovsky and Nakhleh, 2013). From these
tutorials we can classify algorithms according to (1) the expected
input, (2) the kind of model inferred, and (3) the search strategy.

Much of the effort in Boolean-network inference has
been aimed at having a binarized time-series data as input.
Hence, multiple methods have been proposed and some of
them have been compared with each other (Berestovsky and
Nakhleh, 2013). An influential method in this category is
REVEAL (Liang et al., 1998) (employing Shannon’s mutual
information between all pairs of molecules to extract an
influence graph; the truth tables of the update functions for
each molecule are simply taken from the time series). The
use of mutual information and time-series for the inference of
Boolean networks continues to develop (Barman and Kwon,
2017), as well as alternative methods based on time series.
Example are Han et al. (2014) (using a Bayesian approximation),
Shmulevich et al. (2003), Lähdesmäki et al. (2003), Akutsu
et al. (1999), Laubenbacher and Stigler (2004), and Layek
et al. (2011) (using a generate-and-test method, generating all
possible update functions for one gene and testing with the
input data). Extra information can be included in addition
to time-series data. For example, an expected set of stable
states (Layek et al., 2011), previously known regulations (Haider
and Pal, 2012) and gene expression data (Chueh and Lu,
2012) are used as an aid to curtail the number of possible
solutions.

Griffin belongs to a second family of methods taking as input
a possibly partial regulation graph (perhaps obtained form the
literature). There are also approaches employing both time-series
data and a regulation graph, such as Ostrowski et al. (2016).
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A third important area of research is the development of
algorithms taking as input temporal-logic specifications, based
on Model Checking (Clarke et al., 1999). Works following this
approach are: Calzone et al. (2006b), Mateus et al. (2007),
and Streck and Siebert (2015).

As for the kind of model inferred, here we would be
concerned with Boolean networks and similar formalisms.
Among the nonprobabilistic approaches, we find synchronous
Boolean networks, asynchronous networks based on Thomas’s
formalism (Bernot et al., 2004; Khalis et al., 2009; Corblin
et al., 2012; Richard et al., 2012), and polynomial dynamical
systems (Laubenbacher and Stigler, 2004). Typically, methods
based on temporal logic infer Kripke structures, which are closely
related to Boolean networks. Probabilistic models, one the other
hand, include Bayesian networks, and have the advantage of
being able to deal with noise and uncertainty.

From the search-strategy point of view, Boolean-network
inference methods may employ a simple random-value
assignment (Pal et al., 2005), exhaustive search (Akutsu et al.,
1999) or more elaborate algorithms. The work of Chueh
and Lu (2012) is based on p-scores and that of Liang et al.
(1998) guides search with Shannon’s mutual information.
Genetic algorithms are used by Saez-Rodriguez et al. (2009)
and Ghaffarizadeh et al. (2017). Linear programming is the
basis of Tarissan et al. (2008). The methods of Ostrowski et al.
(2016) and Corblin et al. (2012), are based on Answer Set
Programming (Brewka et al., 2011). Algebraic methods use
reductions (of polynomials over a finite field) modulo an ideal of
vanishing polynomials.

Approaches based on temporal logic (sometimes augmented
with constraints), such as Calzone et al. (2006b) andMateus et al.
(2007), normally employ Model Checking (Clarke et al., 1999).
Model Checking, in turn, is often based on symbolic approaches:
BDDs and SAT solvers. Biocham (Calzone et al., 2006b) and
SMBioNet (Bernot et al., 2004; Khalis et al., 2009; Richard et al.,
2012) use a model checker as part of a generate-and-test method.

Having classified various approaches, we now mention a work
similar to ours in spirit: Pal et al. (2005). These authors also
propagate fixed-point constraints onto the truth tables of the
update functions of each variable (molecule species). There is,
however, no search technique, other than randomly giving values
to the remaining entries of such truth tables. There is a random
assignment of values to such entries, and a check for unwanted
attractors. Neither is there a formal definition of regulation.

In contrast with the logical approach of our work, we
devote our attention now to an algebraic approach to the
problem of inference (reverse engineering) of Boolean networks.
Instead of using a Boolean network to model the dynamics
of a gene network, the algebraic approach (Laubenbacher and
Stigler, 2004; Jarrah et al., 2007; Veliz-Cuba, 2012) uses a
polynomial dynamical system F : Sn → Sn where S has
the structure of a finite field (Z/p for an appropriate prime
number p). The first benefit of this algebraic approach is
that each component of F can be expressed by a polynomial
(in n variables with coefficients in S) such that the degree
of each variable is at most equal to the cardinality of the
field S.

Following a computational algebra approach, in a framework
of modeling with polynomial dynamical systems, Laubenbacher
and Stigler (2004) propose a reverse-engineering algorithm. This
algorithm takes as input a time series s1, . . . , sm ∈ Sn of network
states (where S is a finite field), and produces as output a
polynomial dynamical system F = (F1, . . . , Fn) : Sn → Sn such
that ∀i ∈ {1, . . . , n}: Fi ∈ S[x1, . . . , xn] and Fi(sj) = sj+1,i
for j ∈ {1, . . . ,m}. An advantage of the algebraic approach
of this algorithm is that there exists a well-developed theory
of algorithmic polynomial algebra, with a variety of procedures
already implemented, supporting the implementation task. The
time complexity of this algorithm is quadratic in the number of
variables (n) and exponential in the number of time points (m).

Comparing Griffin with the reverse-engineering algebraic
algorithms proposed by Laubenbacher and Stigler (2004) and
Veliz-Cuba (2012), we found three basic differences. (1)
Algebraic algorithms can handle discrete multi-valued variables,
while Griffin only handles Boolean (two-valued) variables. Multi-
valued variables give more flexibility and detail to the modeling
process, but Boolean variables (of Boolean networks) lead to
simpler models (see section 1). (2) The input of the algebraic
algorithms, typically time series, provides simple information
coming directly from experimental measurements, while input
of Griffin, R-graphs and Griffin queries, provides structured
information allowing a more precise specification of the required
Boolean network. (3) The algebraic algorithm of Veliz-Cuba
(2012) uses a formal definition of regulation, but this definition
does not match the definition of regulation used byGriffin. While
Griffin allows for R-regulations based on Boolean combinations
of positive and negative regulations, Veliz-Cuba (2012) uses
regulations restricted to unate functions h such that, for all
variable x: h does not depend on x, or h depends positively on
x, or h depends negatively on x.

Finally, we observe that sometimes results might have been
reported overoptimistically. There have been some doubts
cast upon the effectiveness of a number of methods of
inference of network dynamics (Wimburly et al., 2003),
especially those based on more general-purpose learning
methods. It is therefore important to establish tests such as
the DREAM challenges (Stolovitzky et al., 2007) emphasizing
reproducibility.

3.3. Future Work
Both Griffin and model checkers are based on symbolic search-
algorithms, either SAT solvers or BDDs. Hence, a natural
possibility to consider is the use of an off-the-shelf model checker
as a search mechanism for Griffin. Model checkers take as
input a temporal-logic formula. We did not find any advantage,
however, in using a temporal logic, such as computation-tree
logic (CTL) or linear-time logic (LTL), for expressing regulation
over ordinary Boolean logic. Once a problem is expressed in
Boolean logic, a SAT solver is precisely a method for finding
a solution to such a problem. Hence, we disposed of temporal
logic and directly expressed the regulation graph in Boolean
logic.

Lacking a temporal logic makes the regulation graph the main
means of communication of the user with Griffin. This suggested
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enriching the concept of a regulation graph as much as possible,
which resulted in our generalization: the R-graph. In addition, the
value of a number of parameters can be established with Griffin’s
query language. Nevertheless, as shown in our case studies,
from a Biology point of view, it is easy to fall into situations
where Griffin’s query language is not expressive enough. In such
situations, the user can employ Griffin’s API, thus bypassing the
query language. Moreover, Griffin’s query language (apart from
the R-graph, which can be viewed as a shorthand of a Boolean-
logic formula) does not have a logical basis. Therefore, compared
with a model checker, it would be desirable that Griffin have a
temporal logic.

Temporal logic has been shown to be effective for the analysis
of Boolean networks (Arellano et al., 2011; Carrillo et al., 2012;
Klarner and Siebert, 2015). At the same time, our case studies
have shown that clause learning could be effective in pruning
the search space. This suggests combining Model Checking with
clause learning. Much more complex queries than are currently
possible could be formulated to Griffin in this manner. This is,
therefore, an important avenue of research.

Another possibility for future research would explore the
combination of Griffin with different approaches of Boolean
network inference. If the search space is too large for Griffin to
give useful solutions because of exhausting available resources,
Griffin could incorporate algorithms based on other approaches,
such as genetic algorithms, through its API.

Yet another direction of future work would extend Griffin
to include either (a) biological information relating species with
each other, such as protein complexes, thus reducing the size of
the search space, or (b) partially defined Boolean functions for a
particular gene.

Finally, we mention an important improvement that would
allow the computation and the output of sets of Boolean networks
instead of a single network at a time. Currently, the SAT solver
employed by Griffin returns one assignment of all the variables
appearing in the Boolean formula representing the R-graph
together with the constraints (i.e., a “minterm”) at a time. By
contrast, it would be more useful to have a SAT solver returning
a set of assignments represented by a partial assignment (i.e., a
term that is not necessarily a minterm). This would allow Griffin,
in turn, to output sets of Boolean networks.

4. MATERIALS AND METHODS

This section gives definitions and fixes the notation employed in
Griffin’s algorithms.

4.1. General Notation
N
+ is the set of positive natural numbers. Unless differently stated,

we assume that n ∈ N
+. N

+
n is an initial segment of N

+, N
+
n =

{x ∈ N
+ | x ≤ n}. B = {0, 1} is a set of Boolean values. If

b ∈ B, then b′ is the complement of b. If x ∈ B
n, we say that x is a

state and xi denotes the i-th component of x. We sometimes omit
parentheses and commas when writing a state. If f : X→ X, and
k ∈ N

+, we write f k to denote the iterated composition of f with
itself, i.e., f 1 = f and f n+1 = f ◦ f n. If v ∈ B

k, p ∈ (N+n )
k, and

pi 6= pj for i 6= j, then x[v/p] is the state resulting from replacing,

for all i ∈ N
+
k
, the pi-th component of x by vi. We denote as x∼i

the vector resulting from replacing the i-th component of x with
the complement of xi, that is, x∼i = x[x′i/i]. Given k < n,

v ∈ B
k, and p ∈ (N+n )

k, B
n[v/p] is a subspace of B

n defined
by B

n[v/p] = {x[v/p] | x ∈ B
n}. Alternatively, we describe

subspaces by means of strings of zeros, ones, and asterisks used
as wildcards indicating the free (unknown value) components.
For example, B

6[(0, 1, 0)/(1, 4, 6)] can be written simply
as 0∗∗1∗0.

4.2. Synchronous Boolean Networks,
Regulation Graphs, and State Graphs
Definition 1. We define a synchronous Boolean network with n
components as a function f : B

n → B
n. The i-th component

of f is a function fi : B
n → B such that fi(x) = f (x)i.

We use BN to denote the class of Boolean networks with n
components.

To relate a synchronous Boolean network with a molecular
network dynamics, we interpret each component of a state x as
representing the activation state of a particular variable denoting
a molecule included in the network (which can be a gene, a
protein, a hormone, for example). Given a set of variables V , we
use a bijective function v : N

+
n → V to relate the components of a

state x with their respective variables. The molecule represented
by the variable v(i), also denoted vi, is said to be active if xi = 1
and inactive otherwise.

Definition 2. If p ∈ (N+n )
k, and v ∈ B

k with k ∈ N
+
n , the

mutation of f by p = v is defined as f p=v : B
n → B

n, where,
for all x ∈ B

n and j ∈ N
+
k
, f

p=v
pj (x) = vj, and f

p=v
i (x) = fi(x) if

i ∈ N
+
n −{p1, . . . , pk}. We say that f p=v is a single-point mutation

of f if k = 1, and amulti-point mutation if k > 1.

Definition 3. (Naldi et al., 2007; Richard et al., 2012; Mori and
Mochizuki, 2017). A positive regulation between variables vi and
vj is a function R+ : V × BN × V → B such that

R+(vi, f , vj) =

{

1 if ∃x ∈ B
n
: fj(x) 6= fj(x∼i) and xi = fj(x)

0 otherwise

Similarly, a negative regulation between vi and vj is a function
R− : V × BN × V → B such that

R−(vi, f , vj) =

{

1 if ∃x ∈ B
n
: fj(x) 6= fj(x∼i) and xi 6= fj(x)

0 otherwise

Definition 4. We say that G is a regulation graph if G =

(V , I+, I−), where: V is the set of vertices, I+ ⊆ V × V is the
set of positive regulations, and I− ⊆ V × V is a set of negative
regulations. If i ∈ I+∩I−, we say that i is an ambiguous regulation.

Definition 5. The regulation graph of f is Gf = (V , I+, I−)
where:

a. (vi, vj) ∈ I+ iff R+(vi, f , vj) = 1.

b. (vi, vj) ∈ I− iff R−(vi, f , vj) = 1.
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Intuitively, the regulation graph of f , Gf , describes the structure
of f and its interpretation as a molecular network where edges
represent molecular regulations. Note that Gf may have both
a positive and a negative regulation from j to i. Observe
that whereas a Boolean network f has a unique regulation
graph, a regulation graph may have more than one Boolean
network.

Definition 6. Given a regulation graph G, we say that f is a
satisfying Boolean network of G, denoted by f � G, if G = Gf .
The set of all satisfying Boolean networks of G is denoted by
FG = {f | f � G}.

Definition 7. The state graph of a Boolean network f is the graph
Ĝf = (Bn, {(x, f (x)) | x ∈ B

n}).

Definition 8. We say that ω ⊆ B
n is an attractor of f if ω is a

terminal strongly connected component of Ĝf (Ruet, 2017). That
is, ω is an attractor if ω is strongly connected (each state in ω is
reachable from any other state in ω) and no state or edge of Ĝf

can be added to ω without causing ω to be no longer strongly
connected. In particular, ω is a fixed point (or stationary state)
of f if |ω| = 1, it is a cyclic attractor otherwise. The size k of
an attractor is defined as its cardinality. The set of attractors of
f is denoted as A(f ). The set of fixed points of f is denoted as
FP(f ). The set of cyclic attractors of f is denoted as CA(f ). If
ω ∈ A(f ), the basin of attraction of ω is BA(ω) = {x | x ∈
B
n and ∃k ∈ N

+
2n−1 : f k(x) ∈ ω}.

4.3. Boolean-Network Inference
4.3.1. Constrained-Regulation Graphs and R-Graphs
Before formally introducing a Boolean network query, we
provide additional definitions that will allow us to express partial
knowledge of regulation graphs.

Definition 9. A constrained-regulation graph G = (V , I) is a
labeled graph over the set of variables V , where I is a set of
constrained regulations I ⊆ V × L × V . Labels L = {g |
g : V × BN × V → B} are regulation constraints limiting the
acceptable Boolean networks.

Definition 10. We say that f satisfies a constrained-regulation
graph G = (V , I), f � G, if ∀u, v : (u, g, v) ∈ I implies g(u, f , v) =
1. The set of all satisfying Boolean networks of G is denoted by
FG = {f | f � G}.

It can be proved that given a regulation graph G = (V , I+, I−), if
G′ = (V , I) is defined in such a way that (u, g, v) ∈ I iff

a. (u, v) ∈ I+ implies g(u, f , v) = R+(u, f , v) and

b. (u, v) ∈ I− implies g(u, f , v) = R−(u, f , v),

then ∀f ∈ BN : f � G iff f � G′.

Definition 11. An R-graph is a constrained-regulation graph G =
(V , I) where the constraints are Boolean combinations of positive
and negative regulations, that is, ∀(u, g, v) ∈ I : ∃h : B

2 → B such
that g(u, f , v) = h(R+(u, f , v),R−(u, f , v)) with f ∈ BN. Edges of
an R-graph are called R-regulations.

Table 1 shows the list of possible R-regulations for an R-graph.
An example of an R-graph is shown in Figure 1. R-graphs are of
special interest because they can be viewed as generalizations of
ordinary regulation graphs, that are able to express hypotheses
and incomplete knowledge about the dependencies between
network variables.

Definition 12. Given a regulation graph G1 = (V , I+, I−) and a
constrained-regulation graph G2 = (V , I), we say that G1 is an
instantiation of G2 if there exists f ∈ BN such that f � G1 and
f � G2. The set of all instantiations of G is denoted as GG.

Instantiations of constrained-regulation graphs are regulations
graphs that share the same satisfying networks, Figure 1 shows
an example of the set of all instantiations of an R-graph.

4.3.2. Network Constraint Problems and Queries
Definition 13. A network constraint c is a Boolean function on the
class of Boolean networks, c :BN → B.

The previous definition is a particular case of a Boolean
constraint of arity k as defined in Creignou et al. (2001) and
Dantsin and Hirsch (2009). In our case k = n2n, given that we
have 2n states in B

n and for each state x there are n components
specifying the next state F(x).

Examples of meaningful network constraints include, but are
not limited to:

1. Network equality: c(f ) = 1 iff f = f0 for f0 ∈ BN.

2. Network membership: c(f ) = 1 iff f ∈ F0 for F0 ⊂ BN.

3. Attractor equality: c(f ) = 1 iff A(f ) = S0 for S0 ⊂ P(B).

4. Steady-state inclusion: c(f ) = 1 iff FP(f ) ⊇ B0 for B0 ⊂ B
n.

5. Steady-state prohibitions: c(f )=1 iff x0 /∈ FP(f ) for x0∈ B
n.

6. Fixed-point equality after mutation:
c(f ) = 1 iff FP(f p=v) = B0

for p ∈ (N+n )
k, v ∈ B

k, k ∈ N
+
n and B0 ⊂ B

n.

7. Fixed-point inclusion after mutation:
c(f ) = 1 iff FP(f p=v) ⊆ B0

for p ∈ (N+n )
k, v ∈ B

k, k ∈ N
+
n and B0 ⊂ B

n.

8. State transition presence:
c(f ) = 1 iff f (x0) = y0 for x0, y0 ∈ B

n.

Note that network constraints are different from the constraint
regulations of definition 9. As can be seen in the previous listing,
the former refer to general properties of f , the Boolean network
to be inferred, whereas the latter refer to specific properties of the
regulations between pairs of variables, for example restricting a
regulation to be a positive regulation.

Definition 14. Given a constrained-regulation graph G = (V , I)
and a set of network constraints C, we say that P is a network
constraint problem (NCP) P = (G,C), where C = {c1, . . . , cm} is
a set of network constraints. We say that f ∈ BN is a solution of
P, denoted as f � P, if f � G and for all c ∈ C, c(f ) = 1. The set
of all solutions of P is FP.
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Definition 15. Given a network-constraint problem P = (G,C),
we consider two possible queries over the set of solutions of P:

a. k-search queries, denoted searchk(P): find any F0 ⊆ BN
such that ∀f ∈ F0 : f � P and |F| = min(k, |FP|),

b. All-search queries, denoted search(P): find all f such that
f � P.

A query Q over a set of solutions of P is denoted as Q(P). The
class of queries is symbolized by Q. The set of solutions satisfying
a query Q is denoted as FQ. We call Griffin queries the queries
implemented in Griffin, a subset of the class Q (see http://turing.
iimas.unam.mx/griffin/guide.html#examplesfile).

Definition 16. Given a query Q(P) with P = (G,C), a query
splitting is a function s : Q→ P(Q) such that

a. ∀q(g,C) ∈ s(Q) : f � g → f � G and

b. f � G→ ∃q(g,C) ∈ s(Q) : f � g.
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