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The pirapitinga, Piaractus brachypomus (Characiformes, Serrasalmidae), is a fish from

the Amazon basin and is considered to be one of the main native species used in

aquaculture production in South America. The objectives of this study were: (1) to

perform liver transcriptome sequencing of pirapitinga through NGS and then validate

a set of microsatellite markers for this species; and (2) to use polymorphic microsatellites

for analysis of genetic variability in farmed stocks. The transcriptome sequencing was

carried out through the Roche/454 technology, which resulted in 3,696 non-redundant

contigs. Of this total, 2,568 contigs had similarity in the non-redundant (nr) protein

database (Genbank) and 2,075 sequences were characterized in the categories of Gene

Ontology (GO). After the validation process of 30microsatellite loci, eight markers showed

polymorphism. The analysis of these polymorphic markers in farmed stocks revealed

that fish farms from North Brazil had a higher genetic diversity than fish farms from

Southeast Brazil. AMOVA demonstrated that the highest proportion of variation was

presented within the populations. However, when comparing different groups (1: Wild; 2:

North fish farms; 3: Southeast fish farms), a considerable variation between the groups

was observed. The FST values showed the occurrence of genetic structure among the

broodstocks from different regions of Brazil. The transcriptome sequencing in pirapitinga

provided important genetic resources for biological studies in this non-model species,

and microsatellite data can be used as the framework for the genetic management

of breeding stocks in Brazil, which might provide a basis for a genetic pre-breeding

programme.
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INTRODUCTION

The pirapitinga (Piaractus brachypomus) is a native fish from the Amazon and Orinoco Rivers and
can reach up to 20 kg of weight (Alcântara et al., 1990). This species is used for fish farming, is
valued for its meat and has fast growth performance (Fresneda et al., 2004). In Brazil, pirapitinga
farming represents the third largest fish production operation (about 10,000 tons) among the native
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fish species (MPA, 2013a). Furthermore, this species has
been widely used for the production of interspecific hybrids,
particularly the tambatinga (female tambaqui Colossoma
macropomum × male pirapitinga P. brachypomus), and patinga
(female pacu Piaractus mesopotamicus × male pirapitinga P.
brachypomus; IBGE, 2016). The aquaculture production of
pirapitinga in Brazil is concentrated mainly in the Midwest and
North (87%), followed by the Southeast (9%), Northeast (3%)
and South (1%) (MPA, 2013b). This species also has economic
importance for aquaculture in other countries in South America
(Colombia, Peru, and Venezuela) and in Asia (China, Myanmar,
Thailand, and Vietnam; Flores Nava, 2007; Honglang, 2007; Lin
et al., 2015).

However, despite this representation of aquaculture
production, few scientific studies have focused on understanding
the biology of pirapitinga, especially of genetic traits. So, the
generation of genetic resources for this species is fundamental
to advancing studies of breeding and genetic management, as
occurred in model species used in aquaculture, such as salmon,
catfish, carp, and tilapia (Lien et al., 2011; Liu et al., 2011; Guyon
et al., 2012; Ji et al., 2012).

Model fish species, such as zebrafish Danio rerio, have been
described with more than 26,000 genes (Howe et al., 2013).
However, few genes and their metabolic pathways have been
characterized for non-model species without reference genomes,
as is the case for pirapitinga. In the field of genetics andmolecular
biology, Next-Generation Sequencing (NGS) technologies are
causing a revolution, allowing the sequencing of genome and
transcriptome of any organism, quickly and at low cost (Seeb
et al., 2011). RNA-seq (transcriptome sequencing) is considered
one of the most used strategies of NGS technology for the
transcripts analysis (Qian et al., 2014), wherein all the messenger
RNA (mRNA) of a specific tissue or set of tissues are used as a
source for sequencing. Moreover, RNA-seq is an effective tool for
discovery of molecular markers, particularly for the prospection
of gene-associated microsatellites (Teacher et al., 2012; Xu et al.,
2013).

Due to the usefulness of revealing the genetic variation among
individuals (Liu and Cordes, 2004), microsatellite markers have
proven to be efficient for genetic characterization of wild
populations and breeding stocks of farmed fish (Koljonen et al.,
2002; Lehoczky et al., 2005), such as to prevent inbreeding
(Ponzoni et al., 2008), to identify and preserve live gene banks
(Machado-Schiaffino et al., 2007), to detect genetic structure
(Do Prado et al., 2018), to direct matings during the formation
of the population base of breeding programmes (Fernández
et al., 2014), and to perform marker assisted selection (MAS) for
economic traits (Houston et al., 2010). However, these markers
are not available for pirapitinga, one of most important species
for the aquaculture in South America.

For the aquaculture of pirapitinga, analysis of genetic
variability in farmed stocks still needs to be performed, which
will allow three hypotheses to be tested: (1) farmed stocks
of pirapitinga have lower genetic diversity in relation to wild
stocks; (2) farmed stocks of pirapitinga in Brazil are genetically
structured; and (3) gene-linked microsatellites can be associated
to economic traits of pirapitinga, such as growth and disease

resistance. These analyses will support the creation of a breeding
programme to increase the productivity of pirapitinga, by
directed matings which lead to the formation of families,
avoiding the problems of bottlenecks and inbreeding in the base
population (Fernández et al., 2014), and by the identification of
quantitative trait loci (QTL), which will assist the selection of
superior genotypes by MAS (Houston et al., 2010).

Thus, the objective of the present study was to characterize
genetic resources for the proper management of this non-model
species in aquaculture, through transcriptome characterization
and genetic variability analysis of stocks using microsatellite
markers.

MATERIALS AND METHODS

Ethics Statement
This study was carried out in strict accordance with the
animal welfare guidelines of the National Council for Control
of Animal Experimentation (Brazilian Ministry for Science,
Technology, and Innovation). The present study was performed
under authorization N◦ 33435-1, issued through ICMBio (Chico
Mendes Institute for the Conservation of Biodiversity, Brazilian
Ministry for Environment). No animal was housed or cared
for in the laboratory. Fish were euthanized by benzocaine
anesthetic overdose for collection of liver tissue for transcriptome
sequencing. For microsatellite validation and genetic variability
analysis, fin fragments were collected from each fish under
benzocaine anesthesia and all efforts were made to minimize
suffering.

Samples for Transcriptome Sequencing
To perform the transcriptome sequencing, samples of liver
tissue were taken from 10 individual fish from three different
Brazilian fish farms and one wild population: Aquaculture
Center of São Paulo State University, CAUNESP, Jaboticabal, SP
(n = 3); Projeto Peixe fish farm, Sales Oliveira, SP (n = 1);
Fazenda São Paulo fish farm, Brejinho de Nazaré, TO (n = 5);
and Tocantins River, Lajeado, TO (n = 1). Individuals from
different origins were used in order to achieve the highest genetic
variability in microsatellite discovery analysis. Liver samples
were selected for transcriptome studies because the liver plays
a critical role in coordinating various physiological processes,
including digestion, metabolism, detoxification, and endocrine
system immune response (Martin et al., 2010).

Samples for Genetic Variability Analysis
Analyses of microsatellite validation were performed in 22
individual pirapitinga collected from the Tocantins River (TO)
from Lajeado City, Tocantins State, Brazil. We then used the
microsatellite markers to study the genetic variability in samples
collected from four commercial fish farms: TO1 (n = 25) and
TO2 (n = 26), from Tocantins State (North Brazil); and SP1
(n = 36) and SP2 (n = 20), from São Paulo State (Southeast
Brazil). To maintain the confidentiality of these fish farms, the
names of and information on the fish farms have been preserved.
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Analysis of Genetic Purity in Pirapitinga
Individuals
According Hashimoto et al. (2014), interspecific hybrids have
been detected in broodstocks of Brazilian fish farms. The
pirapitinga can be crossed with tambaqui C. macropomum or
pacu P. mesopotamicus, resulting in viable and fertile hybrids
(Hashimoto et al., 2012, 2014). Therefore, in the present study,
special attention was given to analyze pure pirapitinga, and not
interspecific hybrids. The analysis of genetic purity in all animals
herein studied was performed using the mitochondrial genes,
Cytochrome C Oxidase subunit I (mt-co1) and Cytochrome b
(mt-cyb); and the nuclear genes, α-Tropomyosin (tpm1) and
Recombination Activating Gene 2 (rag2), according to the
protocols and methods of Hashimoto et al. (2011). Fish identified
as interspecific hybrids were excluded from further analysis in
this study.

cDNA Library Construction and Roche 454
Platform Sequencing
Samples of ∼100mg of liver fixed in RNAlater were extracted
with Rneasy Mini Kit (Qiagen). Each sample was quantified
by spectrophotometry using NanoDrop ND-1000 equipment
and the quality (integrity) was checked by 2100 Bioanalyzer
equipment. It succeeded the preparation of an equimolar pool of
total RNA samples (from 10 individuals) to mRNA enrichment
with µMACS mRNA Isolation Kit (Miltenyi Biotech).

A non-normalized cDNA library was prepared using cDNA
Synthesis System Kit with random primer GS Rapid Library
Prep Kit and GS Rapid Library MID Adaptors Kit (Roche).
The High Sensitivity DNA LabChip Kit (Agilent Technologies)
with 2100 Bioanalyzer was used for quality analysis of the
cDNA library. The concentration of sample (molecules/µL)
was obtained by QuantiFluorTM—ST fluorimeter (Promega).
Titration of emPCR (emulsion PCR) was performed with the
GS FLX Titanium SV em PCR Kit (Lib-L) (Roche), according
to the emPCR Amplification Method Manual—Libl SV, GS
FLX+ Series, to identify the optimal number of DNA molecules
per bead (cpb = copies per bead). After emPCR titration, the
emPCR was performed with GS FLX Titanium LV emPCR
Kit (Lib-L) (Roche), according to the emPCR Amplification
Method Manual—LibL LV, GS FLX+ Series. The transcriptome
sequencing was conducted using the Roche/454 technology (GS
FLX Titanium Sequencing Kit XL +) from HELIXXA company
(Campinas, SP, Brazil), which has been used for transcriptome
analysis of non-model fish species (Renaut et al., 2010).

Bioinformatic Analysis
Filtering of the initial quality of the 454 sequences in sff format
was performed using the Roche Newbler programme. Sequence
analysis was performed using the high-throughput sequencing
module of CLC Genomics Workbench (version 7.5.1; CLC bio,
Aarhus, Denmark). The raw reads were cleaned by trimming
low quality sequences with quality scores of <20. Terminal
nucleotides (five nucleotides at each extremity 5′ and 3′),
ambiguous nucleotides, adapter sequences and reads <15 base
pairs (bp) were discarded. For de novo assembly, contigs<200 bp
were also discarded and the default local alignment settings were
used to rank potential matches (mismatch cost of 2, insertion cost

of 3, deletion cost of 3). The highest scoring matches that shared
≥50% of their length with ≥80% of similarity were included in
the alignment. The assembled transcripts were subjected to cd-
hit-est programme with an identity threshold of 90% to remove
redundancy (Li and Godzik, 2006; Duan et al., 2012). In order
to remove any mitochondrial and ribosomal contamination,
sequences were compared against pacu mitochondrial genome
and zebrafish ribosomal RNA RefSeqs (NCBI database) using
CLC Genomic Workbench (version 8.0.3; CLC Bio, Aarhus,
Denmark).

Functional annotation of the unique consensus sequences was
performed by homology searches against the National Center
for Biotechnology Information (NCBI) non-redundant protein
database (nr) (cutoff E-value of 1E-3) using BLAST2GO software
(Conesa et al., 2005) to obtain the putative gene identity. All
BLASTx hits were filtered for redundancy in protein accessions.
The gene ontology (GO) terms were assigned to each unique gene
based on the GO terms annotated to the corresponding homologs
in the NCBI database (e-value cutoff 1e-6). The transcripts
were further annotated in InterPro, Enzyme code (EC), and
Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic
pathways analysis through the Bi-directional Best Hits (BBH)
method.

Microsatellites were identified in the contigs using
msatcommander software (Faircloth, 2008). Primers flanking
the microsatellite loci were designed with Primer3plus software
(Rozen and Skaletsky, 2000). The six possible reading frames of
the consensus sequence of each functionally annotated contig
containing microsatellite were compared against the NCBI
protein database using BLASTx (e-value 1e-10) in order to
find Open Reading Frame (ORF) regions. These approaches
allowed us to locate microsatellites in coding sequences (CDS)
or untranslated regions (5′UTR and 3′UTR) through graphical
sequence viewer Tablet (Milne et al., 2013).

Microsatellite Genotyping and Validation
DNA was extracted from fin fragments using the Wizard
Genomic DNA Purification Kit (Promega), according to the
manufacturer’s protocol. Microsatellite validation was performed
in 30 loci, selected according to the motif and functional
annotation of the contigs. Amplifications were performed by
polymerase chain reaction (PCR) in a total volume of 25 µl
containing 100µM of each dNTP (dATP, dTTP, dGTP, and
dCTP), 1.5mM MgCl2, 1X Taq DNA buffer (20mM Tris-HCl,
pH 8.4, and 50mM KCl), 0.1µM of each primer, 0.5 units of
Taq Polymerase (Invitrogen) and 10-50 ng of genomic DNA.
The reactions were performed in a thermocycler (ProFlexTM

PCR System, Life Technologies) following initial denaturing for
10min at 95◦C; 35 cycles of 30 s at 95◦C, 30 s at 55–60◦C
(adjusted for each primer set), 20 s at 72◦C; and a final extension
at 72◦C for 20min.

Microsatellites that showed polymorphism in 6%
polyacrylamide gels were analyzed in a 3130xl sequencer
(Life Technologies) to get better accuracy of allele determination.
The sequencing strategy adopted in this study was according
to protocols described by Schuelke (2000), using the CAGtag
primer (5′-CAGTCGGGCGTCATCA-3′; Shirk et al., 2013)
labeled with the fluorochromes HEX or FAM. The genotyping
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PCR was performed with the following reagents: 100µM of
each dNTP, 1.5mM MgCl2, 1X Taq DNA buffer, 0.1µM of each
primer (F and R), 0.01µMof the CAGtag primer, 0.5 units of Taq
Polymerase (Invitrogen), and 10–50 ng of genomic DNA. The
cycling programme for amplification consisted of: nine cycles at
95◦C for 30 s, 55–60◦C for 30 s (adjusted for each primer set),
72◦C for 20 s; then, 30 cycles at 95◦C for 30 s, 50◦C for 30 s,
and 72◦C for 20 s. During the first nine cycles, the annealing
temperature of 55–60◦C allows incorporation of the primers
(F and R) from the microsatellite loci. Then, in the following
30 cycles, the temperature of 50◦C facilitates the annealing
of the fluorescent dye-labeled CAGtag primer. PCR products
were analyzed by capillary electrophoresis with a 3130xl genetic
analyzer, using the DS-30 matrix, with the GeneScan 500 ROX
dye Size Standard (Thermo). The programme GeneMapper 3.7
(Applied Biosystems) was used to determine the allele sizes.

Microsatellite Diversity and Population
Analysis
For statistical analysis, we initially used GenAlex analysis 6.1
software (Peakall and Smouse, 2012) to convert the arrays
into specific formats for each programme. The observed (Ho)
and expected (He) heterozygosity, Hardy-Weinberg Equilibrium
(HWE) and Analysis of Molecular Variance (AMOVA) (Excoffier
et al., 1992) were calculated using the Arlequim 3.5 programme
(Excoffier and Lischer, 2010). The levels of significance for the
HWE test were adjusted with the Bonferroni correction (Rice,
1989). The inbreeding coefficient (FIS) was performed using
Genepop 4.0.11 (Rousset, 2008), based on Weir and Cockerham
(1984) estimates. The fixation index (FST) was calculated using
FSTAT 9.3.2 software (Goudet, 1995). Wright (1965) threshold
values were adopted, FST = little genetic differentiation (0–
0.05); moderate genetic differentiation (0.05–0.25); high level of
genetic differentiation (> 0.25). The programme Cervus v.3.0.7
(Marshall et al., 1998) was applied to verify the presence of
null alleles. Linkage disequilibrium (LD) was estimated using
Arlequin v.3.5.2.2. The levels of significance were adjusted to
multiple tests using the Bonferroni correction.

After LD analysis, level of admixture among population
samples was inferred by estimating the optimum number of
clusters (K), as suggested by Evanno et al. (2005), using
the programme STRUCTURE version 2.3.4 (Pritchard et al.,
2000) without prior information about population. Primarily,
we determined the distribution of 1K, an ad hoc statistic
based on the rate of change in the log probability of data
between successive K values. The range of clusters (K) was
predefined from 1 to 5. The analysis was performed in 25
replicated runs using 200,000 iterations after a burn-in period of
50,000 runs. The K value most likely to explain the population
structure is the modal value of this 1K. The outputs of
STRUCTURE analysis were visualized through the STRUCTURE
HARVESTER programme (Earl, 2012).

Analysis for population bottlenecks was tested using
BOTTLENECK (Cornuet and Luikart, 1996; Piry et al., 1999), by
using the mutation–drift equilibrium assuming the two-phase
model (TPM) with 70% stepwise mutation model (SMM)

and 30% infinite allele model (IAM). Deviations between the
observed and expected frequency distributions were tested using
the Wilcoxon’s signed rank test. BOTTLENECK was run for
10,000 iterations.

RESULTS

Transcriptome Sequencing
The results of liver transcriptome sequencing in pirapitinga
yielded a total of 192,373 reads, which were deposited in the
Short Read Archive (SRA) of NCBI under the accession number
SRR6303971. The raw reads presented an average length of 395.5
bp, comprising a total of ∼76 Mbp. After the trimming process,
the average length of the reads was of 362.1 bp, resulting in a
total of ∼69 Mbp (192,077 reads; Table 1). As P. brachypomus
is considered a non-model organism, and therefore without
reference genome, de novo assembly strategy was performed
for transcriptome analysis, which yielded 3,696 non-redundant
contigs as a result of 174,272 overlapping reads (63,460,229 bp).
The size characteristics of the contigs are presented in Table 1.
A total of 17,805 remaining reads (6,084,530 bp) was considered
as singletons, and therefore they were not used for subsequent
analysis.

Non-redundant sequences were annotated by BLASTx
algorithm against the NCBI databases: non-redundant protein
(nr), protein RefSeq of zebrafish and fugu. A total of 2,568
unique protein accessions (69.4% of transcripts) had significant
similarity in the nr database. In relation to the protein RefSeq of
zebrafish and fugu, we found similar numbers of annotated genes,
which were of 2,498 (67.6%) and 2,419 (65.4%), respectively.
No sequence showed homology with known pirapitinga protein
sequences deposited in NCBI database, because the available
sequences database is still limited to mostly mitochondrial
sequences.

Of the 2,568 contigs with correspondence in the nr database,
2,075 (80.8%) were annotated in the categories of Gene Ontology
(GO). A total of 1,831 assignments to Biological Process (88.2%)
were found, followed by 1,757 to Molecular Function (84.6%)
and 1,378 to Cellular Component (66.4%). In relation to the
GO subcategories, the most abundant terms were related to:
metabolic process, cellular process, and single-organism process
of the Biological Process category; binding, catalytic activity, and

TABLE 1 | Data of de novo assembly from liver transcriptome of pirapitinga

Piaractus brachypomus.

Matched reads for assembly 174,272

Total nucleotides of matched reads 63,460,229

Number of contigs 3,797

Total of contig nucleotides 2,999,680

Minimum contig length (bp) 202

Maximum contig length (bp) 7,812

Average contig length (bp) 790

N75 (bp) 593

N50 (bp) 861

N25 (bp) 1,383
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transporter activity of the Molecular Function; cell, organelle,
and membrane of the Cellular Component (Figure 1). In the
present study, genes assigned to the immune system, growth
and reproduction were found, and therefore these data will
serve as support for future studies on the aquaculture of
pirapitinga.

The transcripts characterization in the KEGG database
demonstrated that 1,122 sequences were identified in 106
metabolic pathways. Genes involved in the biosynthesis of
antibiotics, purine metabolism and glycolysis/gluconeogenesis
were able to be highlighted (Figure 2).

Microsatellite Diversity and Population
Analysis
The search for short sequence repeats (SSR) in the 3,696 contigs
resulted in the discovery of 130microsatellite markers distributed
in 95 contigs. In total, 75 pairs of primers were designed
adjacent to the microsatellite loci, including the following
sequence repeats: 56 di, 13 tri, 4 tetra, and 2 pentanucleotide.
Among the dinucleotide motifs, the main repeats were the
types AC (48.28%), AG (39.65%), AT (10.35%), and CG
(1.72%). In relation to the trinucleotide motifs, we identified
seven types (AGC, AGG, ATC, AAT, ACG, CCG, and AAG).
The tetranucleotide (ATCT, AAAG, AATG, and AAAT) and
pentanucleotide (ACTAT and ATAGT) sequences were described
with the presence of four and two types of motifs. In relation
to the gene position, 26.76% of the microsatellite markers were
found in the 3′UTR (untranslated region), 19.71% in the 5′UTR,
and 29.58% in the cds (coding sequence).

In the process of microsatellite validation, 30 markers
were evaluated in 22 samples of pirapitinga collected from
the wild. Of these markers, eight microsatellite loci showed
polymorphism (GenBank accession numbers MG595996—
MG596003), revealed by the presence of different fragment
sizes (Table 2). The number of alleles was low, which ranged
from 2 (loci C25, C64, C410, and C1832) to 5 (C1376) and
mean of 2.750 ± 0.366. The expected (He) and observed (Ho)
heterozygosity in the wild population had an average of 0.466
± 0.061 and 0.355 ± 0.076, respectively. Most of the loci
showed positive values for FIS, except the locus C64. Three
microsatellite loci (C13, C25, and C1716) showed significant
deviation from the Hardy–Weinberg Equilibrium (HWE) after
Bonferroni correction (adjusted p= 0.00625).

The results of genetic variability in farmed stocks revealed that
North fish farms TO1 and TO2 had higher diversity than the wild
population, demonstrated by number of alleles (mean of 4.500±
0.423 and 3.375 ± 0.596, respectively) and average values of He

(0.589 ± 0.033 and 0.488 ± 0.044, respectively) and Ho (0.520 ±
0.060 and 0.447± 0.040, respectively;Table 3). The Southeast fish
farms SP1 and SP2 showed the lowest genetic variability when
compared to other populations, with lower allele number (mean
of 2.250 ± 0.313 and 3.125 ± 0.581, respectively), and average
of He(0.226 ± 0.077 and 0.278 ± 0.085, respectively; p < 0.05)
and Ho (0.259 ± 0.103 and 0.251 ± 0.079, respectively; Table 3).
Most of the microsatellite loci were characterized with positive
values of FIS, except for SP1 and SP2. The mean value of

FIS and null alleles was positive in most populations, with the
exception of SP1 (−0.071 ± 0.076 and −0.011 ± 0.080). The
majority of the markers were in concordance to HWE, after
Bonferroni correction, with the exception of C25 (TO1, SP1, and
SP2), C64 (SP1 and SP2) and C1376 (SP1) (Table 3). Linkage
disequilibrium was found between the microsatellites C410 and
C1005 (p < 0.00625). Although molecular markers on linkage
disequilibrium were not applied in genetic variability studies,
this information can be useful in future analysis of genetic
mapping.

In bottleneck analyses, evidence for recent reductions in
population size (bottleneck) using TPM was not found, except
for the wild population of Tocantins River (p= 0.027).

In the evaluation of the level of admixture among stocks by
STRUCTURE, the model-based clustering analyses detected K
= 3, allowing the identification of 3 main clusters between the
populations: Group 1 (SP1 and SP2), Group 2 (TO1 and TO2),
and Group 3 (wild) (Figure 3).

The global FST was 0.379, which showed high genetic
differentiation among the populations (p < 0.05). Pairwise
FST detected a higher genetic differentiation between the wild
population and all farmed stocks, particularly when compared
to SP1 (FST = 0.538, p < 0.05) and SP2 (FST = 0.537, p <

0.05). Additionally, high genetic structure was found between
the populations from North and Southeast Brazil, as observed
between TO2 with SP1 (FST = 0.463, p < 0.05) and TO1 with
SP2 (FST = 0.380, p< 0.05;Table 4). Moreover, values of pairwise
FST after stock clustering detected a higher genetic differentiation
when comparing Group 1/Group 2 (FST = 0.379, p < 0.05),
Group 1/Group 3 (FST = 0.549, p < 0.05), and Group 2/Group
3 (FST = 0.144, p < 0.05).

The results of AMOVA showed that the majority of
genetic variation (29.11%, FCT = 0.291, p < 0.001) occurred
between groups (according to STRUCTURE clustering), while
the variation among individuals within populations was only
8.21% (FIS = 0.126, p < 0.001) and among populations within
groups presented 6.06% of genetic variation (FSC = 0.085,
p < 0.001).

DISCUSSION

Transcriptome Sequencing
Currently, genetic resources for pirapitinga P. brachypomus
are limited only to sequences of the mitochondrial genome
(Chen et al., 2016). Thus, one of the main results of
this study was the data generated through transcriptome
sequencing, because little knowledge was available about
the genes of this species. The efficiency of the Roche/454
sequencing system in the functional genomics analysis of
pirapitinga can be observed because of the 3,696 transcripts
that were generated in this study. According to Seeb et al.
(2011), genome reduction strategies for NGS sequencing (e.g.,
transcriptome sequencing) are more viable when the objective
is to prospect molecular markers and genetic information for
use in aquaculture, in a low cost and fast way. Roche/454
sequencing technology is one of the main methods used in
NGS transcriptome of non-model fish (Renaut et al., 2010;
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FIGURE 1 | Results of functional annotation and the assignment of genes in the GO categories and subcategories.

FIGURE 2 | Transcripts characterized in metabolic pathways database of KEGG enzymes (Kyoto Encyclopedia of Genes and Genomes).

Shin et al., 2012; Calduch-Giner et al., 2013; Mutz et al.,
2013).

The results of functional annotation showed that the
sequences of pirapitinga had a high proportion of annotated
genes when compared to the database of zebrafish and
fugu proteins. The gene annotation allowed identification
of genomic regions responsible for ontogenetic development
processes, biological regulation, the immune system, and
regions involved in processes of growth and reproduction.
Consequently, the present data can be used as the basis
of further biological studies of other areas of aquaculture

or for future breeding programmes. In addition, through
transcriptome sequencing, the discovery of gene-associated
microsatellites can be considered to be the main result
which can be applied to pirapitinga aquaculture, as already
demonstrated in previous studies of fish (Renaut et al., 2010;
Helyar et al., 2012; Shin et al., 2012). The use of gene-
associated markers becomes even more important in the
construction of genetic maps (Shin et al., 2012) because, by
comparative genomics using fish genome references already
sequenced, it is possible to presume the location of each studied
locus.
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TABLE 2 | Characterization of the genetic diversity of eight polymorphic microsatellites in the wild population of pirapitinga (Piaractus brachypomus).

Locus Sequence

description

Gene

position

Motifs Primers 5′
−3′ TA◦C Size range Na Ho He P(HWE) FIS F(Null)

C13 dihydroxyvitamin d24-like 3′UTR (AGC)6 F: TCTCTTCAAGCCTCCTCTGC

R: ATGCTGCAGCTCCTCCTGT

60◦C 143–149 3 0.545 0.669 0.000 0.188 0.075

C25 cytosolic 5-nucleotidase

3a-like isoform x 1

3′UTR (AT)11 F: CTTTGTCTGCTTTGGGTCGT

R: CTTAGAAGAATGTGCAAATTGAAA

60◦C 117–120 2 0.000 0.169 0.001 1.000 0.887

C64 sodium-coupled neutral

amino acid transporter

5′UTR (AAAG)7 F: CAAAGCAAACTCAAAAAGGAAAA

R: TGGGAACGTTTAGCATCTCA

55◦C 143–151 2 0.545 0.474 0.650 −0.156 −0.082

C410 apolipoprotein e 3′UTR (AG)8 F: CGCACAGGTCTAAAGGCACT

R: CTCCCACACAGTGAAAAGCA

60◦C 125−127 2 0.273 0.359 0.271 0.245 0.125

C1005 apolipoprotein e 3′UTR (AG)7 F: AGTTGTTGCACCAAATGCAG

R: CTTGTTCCCTCCCACACAGT

60◦C 137−141 3 0.318 0.369 0.225 0.140 0.090

C1376 frutose-biphosphatase

1-like

5′UTR (AC)10 F: GTGTTACATGGCAGGCGTTT

R: CAAGTGAGACCAAATCCAAGG

60◦C 157–175 5 0.500 0.608 0.185 0.180 0.073

C1716 vacuolar atp synthase 16

kda proteolipid subunit

3′UTR (GT)7 F: AACCGAAGAGAGGGGAGTGT

R: GCATTTACAAGGGGACGCAC

60◦C 155–171 3 0.545 0.659 0.000 0.175 0.059

C1832 – – (AC)6 F: GGTGCTATGTCGTAGAGGCC

R: AGGAAGGCATGACCAGTGTG

60◦C 159–169 2 0.111 0.529 0.036 0.800 ND

The wild population analyzed corresponds to 22 individuals collected on the Tocantins River. TA, annealing temperature (
◦C); Na, number of alleles per locus; Ho, observed heterozygosity;

He, expected heterozygosity; P (HWE), p-value from Hardy-Weinberg equilibrium and FIS, inbreeding coefficient. F(Null), Null alleles; ND, not performed.

Moreover, some examples have demonstrated that
gene-linked microsatellite markers can be correlated with
interesting productive traits, especially for growth performance.
In the fish Sparus aurata, a dinucleotide microsatellite in the
5′ UTR of the growth hormone gene (GH) is linked with
faster growth rate, especially the alleles 250 and 254, which
can be used for breeding management and genetic selection
for this trait (Almuly et al., 2005). In other fish species, such as
Oreochromis niloticus and Lates calcarifer (Yue et al., 2001; Yue
and Orban, 2002), microsatellites have also been reported for
genes of interest (prolactin, GH and igf2) and, therefore, they
can be used in marker-assisted selection (MAS) programmes.
In the present study, eight polymorphic microsatellite loci were
validated, some of them located in gene regions that may be
useful for productive characteristics in aquaculture. In this case, a
microsatellite locus was found in the gene Tetraspanin−3 isoform
x1 (C1832), which plays a role in viral infection pathology
(Martin et al., 2005; Shoshana and Shoham, 2005). There is
another microsatellite in the gene Cytosolic 5 – nucleotidase 3
a-like (NTC5C3) (C25), which contributes in the production
of red blood cells and its mutation can cause hemolytic anemia
and influence on the immune system (Aksoy et al., 2009).
Thus, the microsatellites described in this study will be also
important in future analysis of (QTL) linked to traits of disease
resistance, which has received special attention in aquaculture
species, such as turbot (Scophthalmus maximus), rainbow trout
(Oncorhynchus mykiss), salmon (Salmo salar), Nile tilapia (O.
niloticus), and cod (Gadus morhua), investigating the resistance
to pathogens (Pardo et al., 2008; Ødegård et al., 2010, 2011;

Yáñez et al., 2014; Evenhuis et al., 2015). Furthermore, one
microsatellite locus was also detected in the gene apolipoprotein
e (C410), which is associated with the central nervous system
and the senescence process (Wang et al., 2014). These markers
can provide useful information for studies of the biology of
the pirapitinga, besides serving as a framework for other native
species.

Population Analysis
The validation of eight microsatellites showed a low level
of genetic diversity in these loci, both in wild and farmed
stocks. In the wild, the observed heterozygosity (Ho) ranged
from 0.000 to 0.545 and an average of 2.750 alleles per
locus. These values confirm the low genetic variability when
compared with related species, such as pacu P. mesopotamicus
(Ho range from 0.068 to 0.911 and average of 8.5 alleles per
locus), and tambaqui C. macropomum (Ho range from 0.430
to 0.880 and average of 12.8 alleles per locus; Calcagnotto
and DeSalle, 2009; Fazzi-Gomes et al., 2017). In contrast
to neutral markers (microsatellites in noncoding regions),
gene-associated microsatellites might be more susceptible to
selection pressure and, therefore, they have low values of gene
diversity.

Analysis of the genetic diversity in pirapitinga farmed stocks
showed significant differences between fish farms in different
regions of Brazil, two from the Southeast (São Paulo State:
SP1 and SP2) and two from the North (Tocantins State: TO1
and TO2). In general, farmed stocks were expected to have
low genetic variability as a result of genetic decline, genetic
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TABLE 3 | Values of genetic diversity of eight microsatellite loci of Piaractus brachypomus.

Stocks Loci

C13 C25 C64 C410 C1005 C1376 C1716 C1832

Wild N 22 22 22 22 22 22 22 9

Na 3 2 2 2 3 5 3 2

Ho 0.545 0.000 0.545 0.273 0.318 0.500 0.545 0.111

He 0.669 0.169 0.474 0.359 0.369 0.608 0.659 0.529

P(HWE) 0.000 0.001 0.650 0.271 0.225 0.185 0.000 0.036

FIS 0.188 1.000 −0.156 0.245 0.140 0.180 0.175 0.800

F(Null) 0.075 0.887 −0.082 0.125 0.090 0.073 0.059 ND

TO1 N 25 25 25 25 25 25 25 25

Na 4 5 3 3 4 6 6 5

Ho 0.600 0.160 0.560 0.520 0.560 0.440 0.760 0.560

He 0.536 0.704 0.495 0.537 0.562 0.609 0.782 0.580

P(HWE) 0.650 0.001 0.365 0.267 0.421 0.010 0.545 0.388

FIS −0.121 0.776 −0.133 0.034 0.004 0.282 0.028 0.035

F(Null) −0.067 0.620 −0.065 −0.015 −0.034 0.164 0.011 −0.001

TO2 N 26 21 26 26 26 26 26 26

Na 3 2 2 2 2 6 5 5

Ho 0.500 0.380 0.346 0.384 0.384 0.538 0.461 0.653

He 0.528 0.315 0.382 0.506 0.506 0.632 0.515 0.638

P(HWE) 0.840 1.000 0.626 0.256 0.256 0.020 0.030 0.670

FIS 0.055 −0.212 0.096 0.244 0.244 0.151 0.107 −0.253

F(Null) 0.018 −0.103 0.040 0.127 0.127 0.055 0.067 −0.027

SP1 N 14 14 14 14 14 14 14 14

Na 2 1 1 3 2 3 3 3

Ho 0.143 – – 0.287 0.500 0.857 0.143 0.143

He 0.137 – – 0.264 0.494 0.634 0.140 0.203

P(HWE) 1.000 – – 1.000 1.000 0.000 1.000 0.109

FIS −0.040 – – −0.083 −0.011 −0.368 −0.019 0.306

F(Null) −0.028 – – −0.069 −0.023 −0.215 −0.027 0.272

SP2 N 19 19 19 19 19 16 18 19

Na 2 2 1 3 3 5 3 6

Ho 0.368 0.000 – 0.157 0.157 0.625 0.222 0.473

He 0.308 0.193 – 0.152 0.152 0.790 0.207 0.486

P(HWE) 1.000 0.002 – 1.000 1.000 0.112 1.000 0.387

FIS −0.200 1.000 – −0.038 −0.385 0.214 −0.070 0.027

F(Null) −0.099 0.916 – −0.032 −0.032 0.093 −0.051 0.024

Wild, population from the Tocantins River; TO1 and TO2, fish farms from Tocantins; SP1 and SP2, fish farms from São Paulo, Na, number of alleles; Ho, observed heterozygosity; He,

expected heterozygosity; P (HWE), P-value from Hardy-Weinberg equilibrium; FIS, inbreeding coefficient; F(Null), Null alleles; ND, not performed.

drift, selection and inbreeding (Theodorou and Couvet, 2015).
However, the results of this study showed higher genetic
variability in breeding stocks from North fish farms in relation
to the wild stocks (p < 0.05; higher values of allelic frequency
and heterozygosity), which was also observed in studies with
other related species (Barroso et al., 2005; Panarari-Antunes et al.,
2011). The basis of this result could be considered from three
different perspectives: (1) North fish farms had originated from
different wild stocks resulting in high level of genetic variability;

(2) problems of sample size bias, such as few microsatellite
loci and individuals analyzed; (3) evidence for recent genetic
bottlenecks in the wild population. Some studies of fish have
reported bottlenecks in natural populations, particularly due to
habitat loss and fragmentation by human disturbance (Brauer
et al., 2016). In the case of pirapitinga, the fragmentation of
the Tocantins River by hydroelectric dams in the 80′s and
90′s (e.g., Tucuruí and Luiz Eduardo Magalhães dams, where
wild fish were collected for this study) could be responsible for
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FIGURE 3 | Evaluation of the level of admixture among stocks by

STRUCTURE, showing three main clusters between the populations: Group 1

(SP1 and SP2) in green, Group 2 (TO1 and TO2) in red, and Group 3 (wild) in

yellow.

TABLE 4 | Analysis of pairwise FST based on eight microsatellite loci between

populations of Piaractus brachypomus.

SP1 SP2 TO1 TO2 wild

SP1 –

SP2 0.18438 –

TO1 0.39201 0.38080 –

TO2 0.46373 0.42999 0.08345 –

wild 0.53856 0.53782 0.16086 0.17915 –

Wild, population from the Tocantins River; TO1 and TO2, fish farms from Tocantins; SP1

and SP2, fish farms from São Paulo. All results of FST were significant statistically p< 0.05.

a population reduction and subsequent genetic variation loss
detected by our microsatellite analysis. There are considerable
numbers of hydropower dams in the basin, which can affect
the reproduction, migratory routes, and egg and larvae drift
of fish (Agostinho et al., 2008). Alteration of the migratory
flow consequently leads to a decrease in or interruption of
the gene flow, reducing the population size, which makes the
fish more susceptible to the effects of genetic drift (Hatanaka
and Galetti, 2003), which results in genetic structure for some
fish species (Calcagnotto and DeSalle, 2009; Do Prado et al.,
2018).

STRUCTURE and pairwise FST analyses suggested a
high genetic structure between the stocks herein analyzed,
particularly as result of the fixation of specific alleles in some
loci, which resulted in three clusters (Figure 3). There are
three hypothetical explanations for these genetic patterns:
(1) differentiation of wild population in relation to farmed
stocks, which could be due to the selection of the fittest
individuals for farming systems or low number of founders
for the establishment of the farmed broodstocks; (2) lower
genetic structure in North/wild than Southeast/wild, which
suggests that North fish farms had frequent broodstock
renovation from the wild; (3) fish farms were genetically
clustered due to the geographic distribution, i.e., the degree
of genetic similarity is higher when one fish farm is closer
to the other, indicating interchange of individuals between
nearby fish farms, common origin of the farmed broodstocks,
or fixation/selection of specific alleles for different climatic
conditions that are found in Brazil (North and South). However,
these genetic patterns should be also evaluated using neutral

markers (microsatellites in noncoding regions) and through
techniques of higher genome coverage (SNP, single-nucleotide
polymorphism).

Through AMOVA analysis, the main genetic variation was
found to be present within populations (64.8%). This genetic
pattern has also been reported in studies carried out with
pacu (Calcagnotto and DeSalle, 2009; Iervolino et al., 2010)
and tambaqui (Aguiar et al., 2013). Moreover, highly significant
genetic variation was associated with differences between groups
(Wild, SP, and TO), which represented 29.11% of genetic
variation, in contrast to low differences among populations
within groups (6.06%).

In general, our study of genetic characterization in piratininga
farmed stocks provides important insights which can lead
to better management of this species in aquaculture. Our
results are fundamental to beginning a breeding programme,
since the genetic structure should be taken into consideration
when composing an initial base population, where matings
between farmed individuals from North and Southeast Brazil
are shown to result in higher genetic variability in the families.
Moreover, the data suggested levels of genetic diversity which
were higher in farmed stocks than in wild fish, discarding the
occurrence of inbreeding. In general, lack of knowledge on
genetic variability of stocks can result in inbreeding and fixation
of deleterious genes, reduced growth rates, disease resistance
problems and reduced ability to adapt to new environments
(Arkush et al., 2002; Gallardo et al., 2004; Neira et al.,
2006; Hillen et al., 2017). Therefore, besides the identification
of QTL to assist in the selection of superior genotypes by
MAS, studies of microsatellites are important for genetic
monitoring, supporting pirapitinga aquaculture and increasing
its productivity.

FINAL CONSIDERATIONS

The prospection of genetic data for pirapitinga is one of
the priority issues for aquaculture, since this species is
of high economic importance in national and global fish
farming. The identification of gene-associated microsatellites
by NGS is fundamental to understanding the genetic
structure of wild and farmed populations, providing
support for further management programmes and genetic
pre-breeding programmes. Moreover, the microsatellites
described herein are interesting targets used to find QTL
markers, specifically related to the immune system of
pirapitinga.
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