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Steindachneridion scriptum is an important species as a resource for fisheries and
aquaculture; it is currently threatened and has a reduced occurrence in South America.
The damming of rivers, overfishing, and contamination of freshwater environments
are the main impacts on the maintenance of this species. We accessed the genetic
diversity and structure of S. scriptum using the DNA barcode and control region
(D-loop) sequences of 43 individuals from the Upper Uruguay River Basin (UUR)
and 10 sequences from the Upper Parana River Basin (UPR), which were obtained
from GenBank. S. scriptum from the UUR and the UPR were assigned in two
distinct molecular operational taxonomic units (MOTUs) with higher inter-specific K2P
distance than the optimum threshold (OT = 0.0079). The COl Intra-MOTU distances of
S. scriptum specimens from the UUR ranged from 0.0000 to 0.0100. The control region
indicated a high number of haplotypes and low nucleotide diversity, compatible with a
new population in recent expansion process. Genetic structure was observed, with high
differentiation between UUR and UPR basins, identified by BAPS, haplotype network,
AMOVA (FsT = 0.78, p < 0.05) and Mantel test. S. scriptum from the UUR showed
a slight differentiation (Fst = 0.068, p < 0.05), but not isolation-by-distance. Negative
values of Tajima’s D and Fu’s Fs suggest recent demographic oscillations. The Bayesian
skyline plot analysis indicated possible population expansion from beginning 2,500 years
ago and a recent reduction in the population size. Low nucleotide diversity, spatial
population structure, and the reduction of effective population size should be considered
for the planning of strategies aimed at the conservation and rehabilitation of this
important fisheries resource.

Keywords: control region mitochondrial DNA, conservation of natural resources, DNA barcode, endangered
species, freshwater fishes

INTRODUCTION

Freshwater ecosystems are among the most endangered ecosystems (Dudgeon et al., 2006). Habitat
degradation, hydrologic alterations, habitat fragmentation, sediment deposition, and overfishing
are the principal causes of declines and extinctions of freshwater fishes (Dudgeon et al., 2006;
Agostinho et al., 2008; Helfman, 2008; Hoeinghaus et al., 2009). In addition, species with
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geographically restricted distribution are more susceptible to
erosion of the genetic diversity due to habitat fragmentation
(Vrijenhoek et al., 1985). Fishery resources are an integral part
of most societies and make important contributions to economic
and social health and well-being in many countries and areas
(FAO, 2002). The understanding of the genetic diversity and
structure of wild populations of fish species are important to the
regulation of fisheries and conservation management strategies
(Carvalho and Hauser, 1994; Iervolino et al., 2010).

Steindachneridion scriptum (Miranda Ribeiro, 1918) is
a large catfish belonging to the family Pimelodidae. This
potamodromous fish species presents restricted distribution
in the Upper Uruguay River (UUR) and Upper Parana
River (UPR) basins (Marques et al., 2002). S. scriptum is
an important fishing resource to the riverine fishermen
(Schork et al., 2013); nonetheless, it was recently classified
as an endangered species according to the Chico Mendes
Institute for Biodiversity Conservation (ICMBIO, 2014).
Human activities (e.g., damming of rivers, illegal fishing, and
industrial waste) are the main threats to S. scriptum in the
UUR (Fontana et al, 2003) and are the principle reason for
population reduction in this basin (Beux and Zaniboni-Filho,
2008).

The correct management of fish stocks depends on the
precise identification of the target species, which may
present very similar morphological characteristics to other
species. The latest revision of the genera Steindachneridion
recognizes six valid species (Garavello, 2005). Using
museum specimen, Garavello (2005) suggests the presence
of S. punctatum in the UUR and UPR with few characteristics
that differ from S. scriptum. Despite the description of the
two species of the genus Steindachneridion, ichthyofauna
studies never report the presence of S. punctatum in
the UUR (Schork et al, 2012, 2013). In addition to the
correct ichthyofauna and management of fish stocks,
uncertainties of taxonomic identification may be a problem
for stock management (e.g., formation of in vivo and
in vitro banks, restocking programs) and adequate fisheries
control.

Taxonomic uncertainties are common in fishes (Pereira
et al, 2013) and can be investigated using DNA barcode
methodology, which permits the unambiguous identification
of the majority of fish species (Ward, 2009). Particularly for
endangered species, prior knowledge of the distribution of
genetic variability within and among natural populations as
well as the implementation of an efficient management plan
based on genetic features are important measures for its
maintenance and recovery (Cross, 2000). The distribution of
the genetic variation within and between populations can be
assessed using the mitochondrial control region (Sivasundar
et al, 2001; Iervolino et al, 2010; Ochoa et al, 2015).
Given these findings, we tested the null hypothesis that
S. scriptum from UUR represent a single molecular operational
taxonomic unit (MOTU). Posteriorly, we investigate the
genetic diversity and population structure of S. scriptum from
the UUR and UPR basins using the mitochondrial control
region.

MATERIALS AND METHODS
Study Area and Sampling

The Uruguay River (Uru) originates in Brazilian territory (in the
Serra Geral Mountains) in Southern Brazil, together with the
Parana and Paraguay Rivers form the La Plata Basin (Zaniboni-
Filho and Schulz, 2003). Samples of S. scriptum were collected
by scientific fishing and local fishermen between 2006 and 2015,
with authorization of the Brazilian Institute of the Environment
and Renewable Natural Resources (IBAMA; protocol number:
02026.005762/2004-71). A total of 19 individuals from the Uru
River and 24 from the Canoas River (Can), UUR basin, were
sampled (Figure 1). Tissues were preserved in 95% ethanol until
extraction. This research was conducted under Animal Care
Protocol PP00788 of the Federal University of Santa Catarina
(UESQ).

DNA Extraction and Amplification of the

Mitochondrial Fragments

Total DNA was obtained with fin clips following a salt extraction
method (Aljanabi and Martinez, 1997). For the DNA barcode
analyses, a fragment of 652 bp of Cytochrome Oxidase subunit
I (COI) was amplified through polymerase chain reaction
(PCR), using primers FishF1/FishR1 (Ward et al, 2005) and
following Bellafronte et al. (2013). The partial amplification
of the mitochondrial control region (D-loop) was performed
using primers FTTP-L and DLR1-H according to Huergo et al.
(2011). The PCR products were checked for amplification using
gel electrophoresis with 1% agarose gels purified using PEG
20% (Lis, 1980). Sequencing reactions were performed using
BigDye TM Terminator v 3.1 (Applied Biosystems), and the
PCR products were sequenced for both strands in ABI 3500XL
(Applied Biosystems).

Data Analysis

DNA sequences from each individual of both genes were edited
using Geneious 5.4.4 (Wu and Drummond, 2011) to generate
a consensus sequence. For the DNA barcode analysis, we
combined the COI reference sequences of S. scriptum (access
FUPR686-09, PDCAP027-14, and PDCAP028-14) from the UPR
basin, S. parahybae (access FPSR293-10-FPSR297-10) from the
Paraiba do Sul Basin and one specimen of Pseudoplatystoma
corruscans and one specimen of Zungaro jahu to root our
phylogenetic analyses. All sequences available in Barcode of Life
Data System (BOLD). Intra- and inter-specific genetic distances
based on the Kimura 2-parameter (K2P) evolution model were
calculated using Mega 6 (Tamura et al., 2013).

We used the phylogenetic General Mixed Yule Coalescent
(GMYC) approach based on single-locus data that is a relative
robust tool for species delimitation (Pons et al., 2006; Fujisawa
and Barraclough, 2013). The ultrametric tree was generated in
BEAST v.2.2.1 (Bouckaert et al., 2014), with the substitution
model calculated in the JModelTest 2.1.4 (HKY-+G; Darriba
et al., 2012), using relaxed molecular clock with a lognormal
distribution and birth-death model. Three independent runs
were carried out with 20 million generations each. Posteriorly, the
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FIGURE 1 | Map showing the locations of sampling sites of the Steindachneridion scriptum in the Upper Uruguay River Basin. Black dots indicate sample points.
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runs were combined using the LogCombiner v.1.8.3 (Drummond
et al., 2012), with a burn-in of 25. Data mixing and effective
sample size (ESS) were verified in Tracer v1.5. GMYC was carried
out in Species Limits by Threshold Statistics (SPLITs; Monaghan
et al.,, 2009) with RStudio’, using the unique threshold method
to detect the transition point between intra- and inter-specific
relationships.

In addition to the standard threshold adopted to Neotropical
fishes (Pereira et al., 2013), we calculated an optimum threshold
(OT; Collins et al., 2012) directly from all dataset, using the local
minima function in the R package SPIDER (SPecies IDentity and
Evolution in R; Brown et al., 2012). The OT value was used to
define the MOTUs using the software J]MOTU (Jones et al., 2011).
The graphical representation of the MOTUs was performed by a
neighbor-joining analysis (NJ) using the K2P model with Mega
6.6 (Tamura et al., 2013). The support of the clades was tested by
the bootstrap method with 10,000 pseudo-replicates.

DNA D-loop sequences were combined with 16 S. scriptum
sequences downloaded from GenBank, of specimens collected
between 1995 and 2002 that corresponded to the Uru River
(access EU930029.1-EU930038.1) and specimens from Tibaji

Uhttp://r-forge.r-project.org/projects/splits

River (UPR) (access EU930039.1-EU930044.1). The overall
genetic diversity was estimated using the following DnaSP
software (Rozas et al., 2003) parameters: nucleotide diversity (1)
(Nei, 1987), haplotype diversity (Hd) (Nei and Tajima, 1981),
and number of polymorphic sites (S). Genetic diversity within
and between sample sites was hierarchically tested by Analysis of
Molecular Variance (AMOVA) (Excoffier et al., 1992) with 10,000
permutations to test the pairwise population comparison (Fsr)
using Arlequin 3.1 (Excoffier and Lischer, 2010). Spatial genetic
structure was inferred using Bayesian Analysis of Population
Structure 6.0 (BAPS) software (Corander et al., 2013). First, BAPS
was run with 10 replicates for every level of k (1-6) without
origin information (“clustering of individuals”) and subsequently
using “clustering of groups of individuals.” We used Mantel
tests as implemented in the Alleles In Space (AIS) 1.0 (Miller,
2005) to test for a correlation of geographic stream distance and
genetic distance (isolation-by-distance; IBD) expressed as Fsr,
with 10,000 permutations to assess significance. Tajima’s (1989)
D, Fu’s (1997) Fs, and mismatch distributions were estimated
with DnaSP (Rozas et al.,, 2003). A median-joining haplotype
network was generated through PopART (Bandelt et al., 1999).
Demographic history was investigated using Bayesian Skyline
Plot (BSP) in BEAST 2.1.3 (Drummond et al., 2012) with the
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evolutionary model obtained in the Jmodeltest program. The
graphic was generated in Tracer 1.66 (Rambaut et al., 2014).

The COI sequences were deposited in BOLD systems
(accession UUR001-17-UUR052-17), and DNA D-loop
sequences were uploaded in GenBank (accession MF045370-
MF045412). The voucher corresponding to S. scriptum from
the UUR basin was deposited in the Zoology Museum of
the Universidade Estadual de Londrina MZUEL 15569 (Type
locality: Itaqui, RS - Uru Basin).

RESULTS
Mitochondrial DNA Barcoding

The consensus alignment of 43 COI sequences were obtained
from samples identified morphologically as S. scriptum, resulting
in a total length of 611 bp, with 7 polymorphic sites and
6 haplotypes defined. The inter-specific nucleotide frequencies
were 26.02% of Cytosine, 28.97% of Thymine, 27.19% of
Adenine, and 17.82% of Guanine. No stop codons, insertions,
or deletions were observed in the COI sequences, indicating that
they represent fragments of functional mitochondrial genes and
not nuclear mitochondrial pseudo-genes (Numts). Considering
P. corruscans and Z. jahu as the outgroup, the maximum
likelihood for the GMYC model was significantly superior
(L = 628.3242) to the likelihood of the null model (Lo = 614.7156,
p < 0.0001). The single-threshold GMYC model suggested
the presence two clusters (confidence interval 2-13) of four
ML entities (GMYC ‘species, named ‘MOTUs" herein) with a
confidence interval of 4-17 (S. scriptum, S. parahybae, and two
outgroups).

The optimal threshold calculated for all S. scriptum sequences
used in this study was OT = 0.0079 (0.79%) of divergence. From
the set of the genus Steindachneridion sequences available on
BOLD, three MOTUs were identified using the OT value and
software jJMOTU: S. scriptum from the UUR, S. scriptum from
the UPR, and S. parahybae. The COI inter-MOTU between
S. scriptum from the UUR and S. scriptum from the UPR
showed values larger than the OT (mean 0.012, minimum
0.010), while intra-MOTU values for fishes from both basins
were lower than the average OT (UUR = 0.000 to 0.010;
UPR = 0.000) (Table 1). The minimum inter-specific distances
between S. scriptum MOTUs (UUR and UPR) and S. parahybae
were 0.100 (10%) and 0.090 (9%), respectively.

The NJ-K2P (Supplementary Figure SI 1) and Bayesian
Inference topologies (Figure 2) were clustered in two principal
clusters, corresponding to S. scriptum and S. parahybae species.
The S. scriptum clade appeared divided into two well-supported
sub-clades formed by UUR and UPR individuals, in both NJ
and BI phylogenetic trees. Based on these results, all specimens
from Uru were composed of a single MOTU, named here as
S. scriptum.

Mitochondrial DNA D-Loop

The final alignment size of the 59 D-loop consensus sequences
of S. scriptum specimens from the UUR and UPR (43 newly
sequenced, 16 downloaded from GenBank) was 865 bp. A total

TABLE 1 | Intra-MOTU distances (in bold) and inter-MOTU genetic distances
using the COI gene and K2p model.

1 2 3
1S. scriptum 0.001 (0.000-0.010)
UUR
2 S. scriptum 0.012 (0.010-0.017)  0.000 (0.000)
UPR

3S. parahybae  0.102 (0.100-0.106)  0.090 (0.090)  0.003 (0.000-0.003)

Distance range in parentheses. UUR = Upper Uruguay River; UPR = Upper Parana
River.

of 56 variable sites were found in the region defining a
total of 36 haplotypes. Overall, 30 haplotypes identified in the
analyses were unique and exclusive. Of these, 20 were from
the Uru, 4 from Can, and 6 from UPR basin (Tibagi River).
The most common haplotype was HS8, which was recorded
12 times and was shared by samples from the Uru and Can
rivers, and haplotypes H4 and H27, both with three records,
were exclusive to the Uru and Can rivers, respectively. The
haplotype network (Figure 3) revealed a high degree of similarity
between the specimens from the Uru and Can rivers, even
though with slight differences in the haplotype frequencies
and exclusive haplotypes from each river. These specimens
were also differentiated from the samples of UPR by 12
mutations.

The average nucleotide frequencies were 34.38% of Adenine,
33.17% of Thymine, 12.19% of Guanine, and 20.26% of Cytosine.
Genetic variability, expressed as Hd) and nucleotide diversity (1),
was higher in S. scriptum from the Uru (Hd = 0.959/7 = 0.007) in
comparison with the Can River (Hd = 0.837/m = 0.004) (Table 2).
In addition, the samples from UPR have high diversity indices, in
comparison with samples from UUR (N = 6; Nh = 6; Hd = 1.0000,
m = 0.00698; D = —0.88901, p = 0.24002; Fs = —1.81313,
p=0.07768).

The patterns of genetic variability found within and between
populations in the AMOVA were based on the two principal
clusters: Uruguay vs. Parana Basins and Uru vs. Can rivers
(Table 3). When the populations were considered as two
basin groups, the AMOVA among groups was 78.17% and
Fsr value was highly significant (Fst = 0.781; p = 0.000).
Genetic divergence between individuals from the Uruguay Basin
(Uru vs. Can rivers) was low but significant (Fst = 0.0682,
p = 0.00475). The population groupings generated by the BAPS,
without origin information of the samples, revealed the existence
of three clusters (K = 3, Supplementary Figure SI 2), with
slight differentiation between Can and Uru individuals. On the
other hand, analysis with the individuals identified by sample
group indicated two clusters (K = 2, Figure 4), corresponding
to Uruguay and Parand Basins. The IBD analysis showed a
significant positive correlation (12 = 0.85, p < 0.001) between
the geographical distance and corresponding Fsr for S. scriptum
from UUR and UPR (Supplementary Figure SI 3). On the other
hand, Fgst values plotted over distance no reveal patter of isolation
by distance for S. scriptum from UUR (r = —0.052, p = 0.682).

Tajima’s (1989) D-neutrality tests, applied to detect evidence
of strong selective pressures, and Fu’s (1997) Fs-tests, used
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posterior probabilities. Codes FUPR, PDCAP, and FPSR were downloaded from the BOLD system. Pseudoplatystoma corruscans and Z. jahu are outgroups.
Vertical lines in Blue = ]MOTU MOTUSs, and vertical lines in Green indicate GMYC MOTUs.

specifically to detect population expansion, revealed significant
negative values for all individuals from the UUR (D = —1.907,
p < 0.05; Fs = —19.246, p < 0.01; Table 3). Non-significant
negative values were estimated for D and Fs indexes for
specimens from the Can River and UPR, whereas fish sampled in
the Uru showed significant negative values estimated for D and
Fs indexes. The BSP analysis (Supplementary Figure SI 4), used
to explore previous demographic signals of S. scriptum, indicated

early demographic expansion approximately 2,500 years ago as
well as a fairly recent population reduction.

DISCUSSION

The DNA barcode confirmed the identification of all the
individuals of S. scriptum from UUR as a single MOTU.
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represent the number of mutations by which haplotypes differ.

FIGURE 3 | Median-joining network of Steindachneridion scriptum, based on haplotypes of mtDNA control region. The colors indicate locality according to the
legend, size of the circles illustrates the number of identical haplotypes, and small black circles, hypothetical ancestors or unsampled haplotypes. Hatch marks
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TABLE 2 | Genetic diversity of Steindachneridion scriptum from the Uruguay and Canoas rivers (Upper Uruguay River Basin) estimated using D-loop control region.

Sampling Site N Nh Hd n D Fs
Canoas River 24 12 0.837 0.004 —0.049 —2.223
Uruguay River 29 23 0.959 0.007 —2.016* —16.346*
Total 53 32 0.932 0.005 —1.907* —19.246**

N = number of sequenced individuals; Nh = number of haplotypes,; Hd = haplotype diversity; = = nucleotide diversity; D = Tajima’s D-test; Fs = Fu’s Fs-test. Significant

values to D-test and Fs-test: *p < 0.05, **p < 0.01.

The different methods, jMOTU and GMYC, were congruent
in delimiting S. scriptum and S. parahybae. However, within
S. scriptum, J]MOTU methodology identified two distinct MOTUs
between UUR basin and UPR basin, while GMYC only
one, despite strongly supported clade. Inter-MOTU divergence
between S. scriptum from the UUR and the UPR was higher
than the OT and the mean intra-specific divergence found
for freshwater fish (0.3%) (Ward et al., 2005; Lara et al,
2010; Pereira et al., 2013). The MOTUs do not necessarily
represent species (Blaxter et al., 2005) but can indicate molecular
entities (Casiraghi et al, 2010). The two MOTUs estimated
between S. scriptum from the UUR and S. scriptum from

the UPR could be explained by geographic isolation between
watersheds that occurred during the Miocene epoch (between
5 and 24 million years ago) when the UUR and the UPR
became isolated (Albert and Reis, 2011). Based on the results,
S. scriptum from these two hydrographic systems are most
likely in the process of incipient allopatric speciation since
the genetic structuring in fish is in fact often evidenced and
influenced principally by geological, ecological, and behavioral
factors (Allan and Flecker, 1993). Congeners S. scriptum
and S. parahybae species showed mean inter-MOTUs 10
times greater than the OT, indicating the existence of the
barcode gap (Hebert et al, 2003, 2004) that allows us to
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TABLE 3 | Hierarchical AMOVA analysis and Fst values for Steindachneridion
scriptum according to their geographical location, estimated using D-loop control
region.

Type of variation Component % of Fst (p)
of variation variation
UUR x UPR
Between Basins 9.22585 78.17 0.78167*(0.0000)
Within Basins 2.57696 21.83
Upper Uruguay Basin
Between populations 0.17916 6.83 0.06825* (0.0047)
Within populations 2.44580 93.17

UUR = Upper Uruguay River; UPR = Upper Parana River. *Significant value: p-value
(Fs7) = < 0.05.

assign an unknown Steindachneridion specimen to its species
using a genetic distance criterion with an insignificant error
rate.

Although they belong to the same watershed, individuals
from the Can River and the Uru River showed a slight
genetic differentiation probably due to the topography of the
region and the interaction between the species’ biology and
environmental characteristics (e.g., the Can River is located
at a higher altitude with a lower water temperature than
the Uru River). The haplotype network indicated a greater
genetic similarity between the specimens from the Can and
Uru, whereas is possible to observe differences in the haplotype
frequencies, and exclusive haplotypes for each river. Recent
studies with potamodromous fish species reported genetic
structure in hydrographic systems without apparent physical
barriers, resulting from behaviors related to IBD (Hardy and
Vekemans, 1999; Primmer et al, 2006; Han et al., 2010),
homing (Windle and Rose, 2005; Batista and Alves-Gomes,
2006; Neville et al., 2006), and isolation-by-time (IBT) (Hendry
and Day, 2005; Braga-Silva and Galetti, 2016; Ribolli et al,
2017).

Nucleotide diversity of S. scriptum from the UUR was low
in comparison with the values found in neotropical freshwater
fish (m = 1.5%) (Batista and Alves-Gomes, 2006; Iervolino
et al., 2010; Ashikaga et al., 2015). The high haplotype diversity
and low nucleotide diversity seem quite compatible with a
new population in recent expansion process, similar to what
is shown in BSP analyses. This pattern may be a signature
of such expansion that is long enough to examine a change
in the haplotypes resulted from the mutation, but is not
long enough to accumulate large differences between sequences
(Avise, 2000).

Individuals from the Uru River were genetically more diverse
than fishes from the Can River, indicating that the main
channel of the Uru River allows the meeting of individuals
of different areas (or tributaries), favoring the maintenance
of the highest level of genetic diversity. Although it is a
relevant fishing resource, useful molecular markers such as
microsatellites, extensively employed in fish genetic studies, are
still not developed for any Steindachneridion species, and the
knowledge about genetic characteristics of the genus is incipient.
RAPD markers indicated low genetic diversity for S. scriptum

Parana
River

Uruguay River Canoas River

FIGURE 4 | Estimate of the probable groups of populations produced by the
BAPS between Steindachneridion scriptum from Upper Uruguay and Upper
Parana Basins, assigned to two clusters (K = 2).

from the UUR, as reported by Ramella et al. (2006), as well as
for S. melanodermatum from the Iguagu River Basin (Matoso
et al,, 2011). Low genetic diversity may indicate recent or
historic reduction of this diversity; however, some endangered
populations may have a historic maintenance of small effective
population sizes (Matocq and Villablanca, 2001). In this way,
the low diversity detected in S. scriptum from the UUR can be
attributed to the following: (1) population history of this species:
a Bayesian skyline plot analysis revealed a subtle increase in
effective population size over time and demographic swings in
the recent past, with a notable increase in effective population size
between 1,000 and 2,500 years ago and a subsequent reduction
in the effective size of females; and (2) evolutionary history of
the species: according to Garavello (2005) and Swarca et al.
(2005), S. scriptum notably maintain conserved morphological
and cytogenetic patterns.

In general, concerns and actions of conservation are more
related to the perception of the disappearance of a given
species than of genetic diversity reduction (Frankham, 2005).
Therefore, given the low genetic diversity associated with
the current scenario of fragmentation of the UUR basin and
the population reduction of S. scriptum in some stretches
of the Itd and Machadinho reservoirs (Schork et al., 2012,
2013), this study highlights the necessity of mitigation measures
and more intense monitoring of illegal fishing to avoid
the collapse of this important fishing resource. In addition,
our results were congruent, identifying great differentiation
between individuals from the UPR and UUR Basins. Further
studies with a larger number of samples morphological
analyze to better define the taxonomic status of endangered
S. scriptum.
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