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Kerry cattle are an endangered landrace heritage breed of cultural importance to

Ireland. In the present study we have used genome-wide SNP array data to evaluate

genomic diversity within the Kerry population and between Kerry cattle and other

European breeds. Patterns of genetic differentiation and gene flow among breeds

using phylogenetic trees with ancestry graphs highlighted historical gene flow from the

British Shorthorn breed into the ancestral population of modern Kerry cattle. Principal

component analysis (PCA) and genetic clustering emphasised the genetic distinctiveness

of Kerry cattle relative to comparator British and European cattle breeds. Modelling of

genetic effective population size (Ne) revealed a demographic trend of diminishing Ne

over time and that recent estimated Ne values for the Kerry breed may be less than

the threshold for sustainable genetic conservation. In addition, analysis of genome-wide

autozygosity (FROH) showed that genomic inbreeding has increased significantly during

the 20 years between 1992 and 2012. Finally, signatures of selection revealed genomic

regions subject to natural and artificial selection as Kerry cattle adapted to the climate,

physical geography and agro-ecology of southwest Ireland.

Keywords: cattle, conservation genomics, endangered breed, inbreeding, genetic diversity, population genomics,

selection signature, single nucleotide polymorphism

INTRODUCTION

Approximately 10,000 years ago, humans first domesticated wild aurochs (Bos primigenius)—the
progenitor of modern cattle—in the Fertile Crescent region of Southwest Asia (Larson and Fuller,
2014; Larson et al., 2014; MacHugh et al., 2017). Extant domestic cattle, which encompass humpless
taurine (B. taurus), humped zebu (B. indicus) and myriad B. taurus/indicus hybrid populations,
have, through genetic drift and natural and artificial selection, diversified into more than 1,100
recognised breeds. However, beginning in the middle of the twentieth century, socioeconomic
preferences for large highly productive dairy, beef and dual-purpose breeds have led to extinction
and increased vulnerability of more than 200 locally-adapted landrace or native cattle breeds
(Gandini et al., 2004; Food and Agriculture Organization, 2007, 2015).

With the advent of accelerating climate change, particularly in the Arctic and circumarctic
regions (Vihma, 2014; Gao et al., 2015), agro-ecological environments in north-western Europe
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will inevitably undergo significant change during the coming
century (Smith and Gregory, 2013; Wheeler and von Braun,
2013). It is, therefore, increasingly recognised that long-term
sustainability of animal production systems and food security will
necessitate conservation and management of livestock genetic
resources in this region (Hoffmann, 2010; Boettcher et al., 2015;
Kantanen et al., 2015). Locally-adapted native livestock breeds
with distinct microevolutionary histories and minimal external
gene flow will have accumulated novel genomic variation and
haplotype combinations for quantitative health, fertility and
production traits (Hill, 2014; Felius et al., 2015; Kristensen et al.,
2015). These populations may therefore be key to future breeding
programmes directed towards adaptation of European livestock
to new agro-ecological and production environments (Biscarini
et al., 2015; Boettcher et al., 2015; Phocas et al., 2016a,b).

The availability of powerful and cheap tools for genotyping
large numbers of single nucleotide polymorphisms (SNPs)
has provided conservation biologists and animal geneticists
with the opportunity to characterise genomic variation and
estimate population genetic parameters at very high resolution
in threatened or endangered livestock breeds (Pertoldi et al.,
2014; Ben Jemaa et al., 2015; Beynon et al., 2015; Mészáros
et al., 2015; Burren et al., 2016; Decker et al., 2016; Iso-
Touru et al., 2016; Manunza et al., 2016; Mastrangelo et al.,
2016; Visser et al., 2016; Williams et al., 2016; François et al.,
2017). These studies are already providing important baseline
data for genetic conservation and will underpin programmes
for managed breeding and biobanking of these populations
(Groeneveld et al., 2016).

As a native breed with a claimed ancient heritage, Kerry cattle
are considered culturally important to Ireland (Curran, 1990).
It is a landrace cattle population that remains productive in
harsh upland regions with poor quality feed, which are typical
of southwest Ireland where the Kerry breed evolved (Food and
Agriculture Organization, 2017). These cattle were often referred
to anecdotally in Ireland as the “poor man’s cow” due to their
ability to produce relatively large quantities of milk on very sparse
fodder; the Kerry breed is also considered to be a remnant of what
was once a substantially larger and more widespread historical
population. Levels of inbreeding have been estimated using
pedigree data and the accumulated figure since the foundation
of the herd book in 1887 reached 15% in 1985 (O’hUigín and
Cunningham, 1990).

In recent decades the Kerry cattle breed has experienced
significant population fluctuations due to changing
socioeconomic and agricultural circumstances. During the
1980s, the number of breeding females decreased to less than
200, prompting the Irish agricultural authorities to introduce
a Kerry cattle conservation scheme (McParland, 2013), which
has continued to the present day in the form of the Department
of Agriculture, Food and the Marine (DAFM) Kerry Cattle
Premium Scheme (Department of Agriculture Food and the
Marine, 2017).

The formal conservation policy and supports initiated during
the early 1990s led to a significant increase in the Kerry cattle
population, such that by 2007 the number of breeding females
had increased to more than a thousand animals (Food and

Agriculture Organization, 2007). In recent years, however, due
to deteriorating economic circumstances in Ireland post-2008,
the Kerry cattle population has substantially declined once again
and is classified as endangered and under significant threat of
extinction or absorption through crossbreeding with other breeds
(McParland, 2013; Department of Agriculture Food and the
Marine, 2014).

The Kerry cattle breed was one of the first European heritage
cattle breeds to be surveyed using molecular population genetics
techniques. We have previously used autosomal microsatellite
genetic markers and mitochondrial DNA (mtDNA) control
region sequence variation for comparative evolutionary studies
of genetic diversity in Kerry cattle and other British, European,
African and Asian breeds (MacHugh et al., 1997, 1998,
1999; Troy et al., 2001). In addition, Bray et al. have
used microsatellites to examine admixture and ancestry in
Kerry cattle and the Dexter and Devon breeds (Bray et al.,
2009). Results from these studies demonstrated that Kerry
cattle exhibit markedly low mtDNA sequence diversity, but
autosomal microsatellite diversity comparable to other cattle
breeds native to Britain and Ireland. More recently, analyses
of medium- and high-density SNP genotypes generated using
genome sequence data from an extinct British B. primigenius
subfossil have shown that Kerry cattle retain a significant
genomic signature of admixture from wild aurochs (Park
et al., 2015; Upadhyay et al., 2017). This observation highlights
the genetic distinctiveness of the Kerry population and has
major implications for conservation and management of the
breed.

For the present study, and within a genetic conservation
framework, we performed high-resolution comparative
population genomics analyses of Kerry cattle and a range of
British and European cattle breeds. These analyses encompassed
phylogenetic network reconstruction, evaluation of genetic
structure and inbreeding, modelling of historical effective
population sizes and functional analyses of artificial and natural
selection across the Kerry genome.

MATERIALS AND METHODS

Kerry Cattle Population DNA Sampling in
1991/92 and 2011/12
Two different population samples from the Irish Kerry cattle
breed were used for this study (Figure 1). The first population
sample consisted of peripheral blood and semen straw genomic
DNA collected and purified from 36 male and female Kerry cattle
in 1991/92, which are a subset of the Kerry cattle population
sample (n = 40) we have previously described and used for
microsatellite-based population genetics analyses (MacHugh
et al., 1997, 1998). Pedigree records and owners were consulted
to ensure that a representative sample of animals was obtained.
This Kerry population sample group is coded as KY92.

The second Kerry cattle population sample was collected
in 2011/12 from 19 different herds located across southern
and western Ireland. Performagene (PG-100) nasal swab DNA
collection kits were used for biological sample collection (DNA
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FIGURE 1 | Photograph of a Kerry cow and locations of Kerry cattle herd DNA sampling in southern Ireland. The area of each circle corresponds to the size of each

population sample. Dark green = animals sampled during 1991/92 (KY92); light green = animals sampled during 2011/12 (KY12). Kerry cow image is copyright of the

Kerry Cattle Society Ltd.

Genotek Inc., Ottawa, Canada). Nasal swab DNA samples were
collected from a total of 75 male and female Kerry cattle and
owners were consulted to ensure that a representative sample
of animals was obtained. This Kerry population sample group
is coded as KY12. Genomic DNA was purified from 0.5ml of
each PG-100 nasal swab sample using the laboratory protocol
recommended by the manufacturer (DNA Genotek Inc.).

SNP Genotyping and Assembly of
Comparative SNP Data Sets
Illumina R© Bovine SNP50 BeadChip (Matukumalli et al., 2009)
genotyping on all 111 Kerry genomic DNA samples (KY92
and KY12 sample panels plus nine blinded sample duplicates
for quality control purposes) was performed by Weatherbys
Scientific (Co. Kildare, Ireland).

For comparative population genomics analyses, equivalent
SNP data for a range of other breeds were obtained from
previously published work (Decker et al., 2009; Flori et al., 2009;
Gibbs et al., 2009; Matukumalli et al., 2009; Gautier et al., 2010;
Park et al., 2015). The breed SNP data were split into two discrete
composite data sets: a European breed SNP data set (EU) and a
SNP data set for a subset of European breeds originating from
Britain and Ireland (BI). A population sample of West African
N’Dama B. taurus cattle from Guinea (NDAM) was also used
as an outgroup for the phylogenetic analyses. Table 1 provides
detailed biogeographical information on the cattle breed samples
used for the present study.

Sample Removal and Quality Control and
Filtering of SNPs
Genomic non-exclusion—in other words, genome-wide SNP
profiles completely compatible with parent-offspring relationship
(with allowance for very low-level genotyping error)—were used
to identify animals from the KY92 and KY12 population samples
that were parent-offspring pairs. One of the two animals in each
pair was then randomly removed to generate the working SNP
data set. Following this procedure, quality control and filtering
based on recorded SNP genotypes was performed as detailed
below for the EU and BI data sets.

Prior to quality control and filtering there were 54,057 SNPs
in the EU data set (608 animals, including KY92 and KY12)
and in the BI data set (354 animals, including KY92 and KY12).
SNP quality filtering was performed using PLINK version 1.07
(Purcell et al., 2007), such that individual SNPs with more than
10% missing data and a minor allele frequency (MAF) of ≤0.01
(1%) were removed from both data sets; however, for analyses of
genomic inbreeding and runs of homozygosity (ROH) the MAF
filtering threshold was not imposed. Only autosomal SNPs were
retained and individual animal samples with a SNP call rate less
than 90% were also removed from each of the two data sets.

SNP quality control and filtering were performed across
breeds/populations (by data set) for construction of phylogenies
and ancestor graphs, multivariate analysis, investigation of
population structure and detection of signatures of selection.
For intrapopulation analyses of effective population size (Ne)
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TABLE 1 | Cattle breed/population samples used for the present study.

Breed/population Code Data set Breed purpose Country of origin Source

Angus ANGU BI/EU Beef Scotland 1, 2

Belted Galloway BGAL BI Beef Scotland 2

British Shorthorn BSHN BI/EU Dual purpose England 2

Brown Swiss BRSW EU Dairy Switzerland 1, 2, 3

Charolais CHAR EU Beef France 1, 2, 3

Devon DEVN BI Beef England 2

Dexter DXTR BI Dual purpose Ireland 2

English Longhorn ELHN BI Beef England 2

Finnish Ayrshire FAYR BI/EU Dairy Scotland/Finland 2

Galloway GALL BI Beef Scotland 2

Gelbvieh GELB EU Dual purpose Germany 2, 4

Guernsey GNSY BI/EU Dairy Channel Islands 1, 2

Hereford HRFD BI/EU Beef England 1, 2

Holstein HOLS EU Dairy The Netherlands 1, 2, 5

Jersey JRSY BI/EU Dairy Channel Islands 1, 2, 3

Kerry sampled 1991/92 KY92 BI/EU Dairy Ireland Current

Kerry sampled 2011/12 KY12 BI/EU Dairy Ireland Current

Limousin LIMS EU Beef/draft France 1, 2

Lincoln Red LNCR BI Beef England 2

Montbeliarde MONT EU Dairy France 2, 5

N’Dama NDAM – Dual purpose Guinea (West Africa) 1

Norwegian Red NRED EU Dairy Norway 1

Piedmontese PDMT EU Dual purpose Italy 1, 2

Red Angus RANG BI/EU Beef Scotland 1

Red Poll REDP BI Beef England 2

Romagnola ROMG EU Beef/draft Italy 1

Scottish Highland SCHL BI Beef Scotland 2

Simmental SIMM EU Dual purpose/draft Switzerland 2, 4

South Devon SDEV BI Beef England 2

Sussex SUSX BI Beef/draft England 2

Welsh Black WBLK BI Dual purpose Wales 2

White Park WHPK BI Dual purpose/draft England 2

1Gibbs et al. (2009); 2Decker et al. (2009); 3Gautier et al. (2010); 4Matukumalli et al. (2009); 5Flori et al. (2009).

and genomic inbreeding, all SNPs genotyped (54,057) were
filtered within breeds/populations as detailed above. However,
an additional filtering procedure was used to remove SNPs
deviating from Hardy-Weinberg equilibrium (HWE) with a P-
value threshold of < 0.0001. Also, for the Ne analysis, a more
stringent MAF threshold of 0.05 was used.

Generation of Identity-by-State (IBS) Matrix
Using the filtered genome-wide SNP data, PLINK v1.07 was also
used to generate identity-by-state (IBS) values for all pairs of
Kerry cattle (KY92 and KY12), including the nine blinded sample
duplicates for sample verification and tracking purposes.

Construction of Phylogenetic Trees and
Ancestry Graphs
Maximum likelihood (ML) phylogenetic trees with
ancestry graphs were generated for the EU and BI data
sets using the TreeMix (version 1.12) software package
(Pickrell and Pritchard, 2012). The West African B. taurus

NDAM breed sample (n= 22) was used as an outgroup. TreeMix
was run without using SNP blocks (as described in the TreeMix
software documentation) and ML phylogenetic trees were
generated with no migration edges (m = 0) up to ten migration
edges (m= 10).

Population Differentiation and Genetic
Structure
To visualise the main axes of genomic variation among cattle
breeds and individual animals, multivariate principal component
analysis (PCA) was performed for the composite EU and BI
SNP data sets using SMARTPCA from the EIGENSOFT package
(version 4.2) with default settings (Patterson et al., 2006).

To further investigate genetic structure and admixture history
for Kerry cattle and other breeds the fastSTRUCTURE software
package (Raj et al., 2014) was used to analyse the EU and
BI data sets for a range of K possible ancestral populations
(K = 2–15). For the present study, the simple prior approach
described by Raj et al. (2014) was used, which is sufficient for
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modelling population/breed divergence. To identify the “true”
K-value for the number of ancestral populations, a series of
fastSTRUCTURE runs with pre-defined K-values were examined
using the chooseK.py script (Raj et al., 2014). Outputs from the
fastSTRUCTURE analyses were visualised using the DISTRUCT
software program (Rosenberg et al., 2002) using standard
parameters.

Modelling Current and Historical Effective
Population Size (Ne)
Current and historical Ne trends were modelled with genome-
wide SNP linkage disequilibrium (LD) data for the KY92 and
KY12 populations plus a selection of BI and EU breeds using the
SNeP software tool as described by Barbato et al. (2015). This
method facilitates estimation of historical Ne values from SNP
linkage disequilibrium (LD) data using the following equation
(Corbin et al., 2012):

NT(t) =
(

4f (ct)
)−1

(

E
[

r2adj|ct

]−1
− α

)

where NT is the effective population size t generations ago

calculated as t =
(

2f (ct)
)−1

(Hayes et al., 2003), ct is the
recombination rate defined for a specific physical distance
between SNP markers, r2

adj
is the LD value adjusted for sample

size and the recommended default α value= 1 was used to correct
for the occurrence of mutation (Barbato et al., 2015). In addition,
the SNeP program option for unphased SNP data was used for
the analyses described here.

Evaluation of Genomic Inbreeding and
Runs of Homozygosity (ROH)
Individual animal genomic inbreeding was evaluated as genome-
wide autozygosity estimated from SNP data using ROH and the
FROH statistic introduced by McQuillan et al. (2008). The FROH
statistic was calculated as the ratio of the total length of defined
ROH (LROH) to the total length of the autosomal genome covered
by SNPs:

FROH =

∑

LROH

LAUTO

PLINK v1.07 was used to define ROH using a sliding
window approach and procedures modified from previous
recommendations for Illumina R© Bovine SNP50 BeadChip and
similar SNP data sets (Purfield et al., 2012, 2017). The criteria
for defining individual ROH were set such that the ROH was
required to be at least 500 kb in length, with a minimum
density of one SNP per 120 kb and that there was a gap of
at least 1,000 kb between each ROH. A sliding window of 50
SNPs was incrementally advanced one SNP at a time along the
genome; each discrete window could contain a maximum of one
heterozygous SNP and no more than two SNPs with missing
genotypes. Following Purfield et al. (2012) all filtered genomic
SNPs (without a MAF threshold), including those located in
centromeric regions, were used to estimate FROH values for
individual animals.

Genome-Wide Detection of Signatures of
Selection and Functional Enrichment
Analysis
In the absence of hard selective sweeps, single selection tests
using high-density SNP data do not perform well in detecting
signatures of selection from individual livestock breeds (Kemper
et al., 2014). Therefore, for the present study, genomic signatures
of selection were identified using the composite selection signal
(CSS) method introduced by Randhawa et al. (2014). The CSS
method has been shown to be a robust and sensitive approach
for detecting genomic signatures of selection underlying
microevolution of complex traits in livestock (Randhawa et al.,
2015). The CSS is a weighted index of signatures of selection
from multiple estimates; it is a nonparametric procedure that
uses fractional ranks of constituent tests and does not depend
on assumptions about the distributions of individual test
results.

As described in detail by Randhawa et al. (2014), the CSS
method can be used to combine the fixation index (FST), the
change in selected allele frequency (1SAF) and the cross-
population extended haplotype homozygosity (XP-EHH) tests
into one composite statistic for each SNP in a population
genomics data set. For the present study, we used 36,621 genome-
wide SNPs genotyped in 98 individual Kerry cattle samples (from
both the KY92 and KY12 populations) and a sample of 102
randomly selected cattle (six random cattle from each breed of
the EU data set). To mitigate against false positives, genomic
selection signatures were only considered significant if at least
one SNP from the set of the top 0.1% genome-wide CSS scores
was flanked by at least five SNPs from the set of the top 1% CSS
scores.

The Ensembl BioMart data mining resource (Smedley et al.,
2015) was used to identify genes within ± 1.0Mb of each
selection peak (Ensembl release 90, August 2017). Following
this, Ingenuity R© Pathway Analysis (IPA R©: Qiagen, Redwood
City, CA, USA; release date June 2017) was used to perform
an overrepresentation enrichment analysis (ORA) with this gene
set to identify canonical pathways and functional processes of
biological importance. The total gene content of Ensembl release
90 version of the UMD3.1 bovine genome assembly (Zimin et al.,
2009) was used as the most appropriate reference gene set for
these analyses (Timmons et al., 2015).

RESULTS AND DISCUSSION

Sample Removal and SNP Filtering and
Quality Control
Genomic non-exclusion identified 20 parent-offspring pairs
from the KY12 population and one sample from each pair
was randomly removed (sample codes: KY12_01, KY12_05,
KY12_13, KY12_14, KY12_17, KY12_18, KY12_19, KY12_46,
KY12_55, KY12_67). Thereafter, general SNP quality control and
filtering led to additional samples being excluded (KY12_26,
KY12_28 and KY12_54), giving a total filtered KY12 population
sample of 62 animals for downstream population genomics
analyses.
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After SNP quality control and filtering across the two
composite data sets (EU and BI), there were 36,621 autosomal
SNPs from 605 individual animals in the EU data set and
there were 37,395 autosomal SNPs from 351 animals in the
BI data set. When the West African NDAM breed sample
(n = 22) was included for the ML phylogenetic tree and
ancestry graph analyses, the number of SNPs used was 36,000
from 627 animals for the EU data set and 37,490 from 373
animals for the BI data set. The final numbers of SNPs used
for individual breed/population analyses of Ne and genomic
inbreeding after all quality control and filtering (including
additional filtering for deviations from HWE) are shown in
Table 2.

All data sets, including EU and BI composite data sets
and individual breed/population data sets had total SNP
call rates of > 99%. The IBS values estimated for Kerry
cattle (KY92 and KY12) from filtered genome-wide SNP
data are reported in Supplementary Table 1 and described

further in section Genomic Relationship and Analysis of
Inbreeding.

Observed Heterozygosity (Ho) Estimated
from Genome-Wide SNP Data
Table 2 provides genome-wide Ho values for each of the
breeds/populations used for the present study. The lowest
genome-wide Ho value was observed for the West Africa
NDAM B. taurus breed, which is likely a consequence of
ascertainment bias introduced by a focus on polymorphic SNPs
in European B. taurus during design of the Illumina R© Bovine
SNP50 BeadChip (Matukumalli et al., 2009).

Generally, as shown in Table 2 for the EU and BI breeds and
populations, local landrace or heritage breeds display lower Ho

values compared to more widespread production breeds such as
the Simmental (SIMM), Holstein (HOLS) or Charolais (CHAR)
breeds. In addition, as might be expected, production breeds

TABLE 2 | Breed/population sample size, observed heterozygosity and SNP filtering information.

Breed/population Code Data set Sample size (n)

post-filtering

Observed

heterozygosity Ho

No. SNPs Ne

modelling

No. SNPs genomic

inbreeding

Angus ANGU BI/EU 72 0.3048 31,413 39,576

Belted Galloway BGAL BI 4 0.2902 25,997 39,582

British Shorthorn BSHN BI/EU 10 0.2549 29,038 39,576

Brown Swiss BRSW EU 31 0.2894 – –

Charolais CHAR EU 48 0.3209 – –

Devon DEVN BI 4 0.2859 – –

Dexter DXTR BI 4 0.2458 24,753 37,903

English Longhorn ELHN BI 3 0.2232 – –

Finnish Ayrshire FAYR BI/EU 7 0.3064 – –

Galloway GALL BI 4 0.2942 – –

Gelbvieh GELB EU 8 0.3125 – –

Guernsey GNSY BI/EU 19 0.2764 – 50,323

Hereford HRFD BI/EU 35 0.2964 – 39,535

Holstein HOLS EU 70 0.3192 36,152 43,135

Jersey JRSY BI/EU 44 0.2718 31,358 43,136

Kerry sampled 1991/92 KY92 BI/EU 36 0.2965 37,556 51,731

Kerry sampled 2011/12 KY12 BI/EU 62 0.3042 36,428 50,756

Limousin LIMS EU 45 0.3122 – –

Lincoln Red LNCR BI 7 0.2789 26,350 34,173

Montbeliarde MONT EU 31 0.3019 – –

N’Dama NDAM – 22 0.2158 – –

Norwegian Red NRED EU 20 0.3190 – –

Piedmontese PDMT EU 23 0.3240 – –

Red Angus RANG BI/EU 14 0.3092 – –

Red Poll REDP BI 5 0.2905 – –

Romagnola ROMG EU 21 0.2943 – –

Scottish Highland SCHL BI 8 0.2823 – –

Simmental SIMM EU 9 0.3136 – –

South Devon SDEV BI 3 0.3070 – –

Sussex SUSX BI 4 0.2792 – –

Welsh Black WBLK BI 2 0.3203 – –

White Park WHPK BI 4 0.2270 – –
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originally derived from minor island populations (Jersey [JRSY]
and Guernsey [GNSY]) also exhibit relatively low Ho values. In
the context of genetic conservation it is therefore encouraging
that the KY92 and KY12 population samples display intermediate
Ho values that are at the upper end of the range observed for the
heritage breeds.

Maximum Likelihood Phylogenetic
Ancestry Graphs Using Genome-Wide SNP
Data
To examine microevolutionary patterns of genetic differentiation
and gene flow among cattle breeds and populations, ML
phylogenetic ancestry graphs were generated using TreeMix.
For the EU data set, the ML tree topology was consistent
for all values of m, with the exception of m = 2 migration
edges, where the Hereford breed (HRFD) was observed to group

with the HOLS breed. The ML tree generated with m = 5 is
shown in Figure 2, which highlights the genetic similarity of the
Northern European breeds (British, Irish and Scandinavian). As
expected the two Kerry population samples (KY92 and KY12)
are genetically very similar and emerge on the same branch as
the HRFD breed. It is also noteworthy that there is a high-weight
migration edge between the British Shorthorn breed (BSHN) and
the root of the two Kerry population samples, supporting the
hypothesis of historical gene flow from the British Shorthorn
breed into the ancestral population of modern Kerry cattle
(Curran, 1990).

For the ML trees generated using the BI data set,
breed/population differentiation was less apparent, possibly due
to similar biogeographical origins for these breeds and/or smaller
sample sizes for some of the populations sampled. Figure 3 shows
the ML tree generated with m = 5 for the BI data set. For m = 5,
all migration edges stem from the BSHN/Lincoln Red (LNCR)

FIGURE 2 | Maximum likelihood (ML) phylogenetic tree network graph with five migration edges (m = 5) generated for genome-wide SNP data (36,000 autosomal

SNPs) from European cattle breeds (EU data set). The West African taurine N’Dama breed sampled in Guinea is included as a population outgroup. Coloured lines

and arrows show migration edges that model gene flow between lineages with different migration weights represented by the colour gradient.

FIGURE 3 | Maximum likelihood (ML) phylogenetic tree network graph with five migration edges (m = 5) generated for genome-wide SNP data (37,490 autosomal

SNPs) from cattle breeds of British and Irish origin (BI data set). The West African taurine N’Dama breed sampled in Guinea is included as a population outgroup.

Coloured lines and arrows show migration edges that model gene flow between lineages with different migration weights represented by the colour gradient.
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branch, including a medium-weight migration edge connecting
to the Kerry cattle branch. These results support the hypothesis
that there was significant gene flow during the eighteenth and
nineteenth centuries from British Shorthorn cattle into the
ancestral populations for a range of modern British and Irish
cattle breeds (Grobet et al., 1998; Felius et al., 2011, 2015).

Multivariate Principal Component Analysis
of Genome-Wide SNP Data
To investigate inter- and intra-population genomic diversity and
genetic relationship among individual animals from multiple
cattle breeds and populations, PCA was performed using
genome-wide SNP data. Principal component plots of the first
(PC1) and second (PC2) principal components are shown in
Figures 4, 5 for the EU and BI data sets, respectively.

In Figure 4, for the EU data set, PC1 and PC2 account for
18.2% and 16.8% of the total variation for PC1–10, respectively.
The PC1 plot axis differentiates the British Angus (ANGU),
Red Angus (RANG) and BSHN and Irish KY92 and KY12
populations from the rest of the European breeds, including the
British HRFD and GNSY and JRSY Channel Islands breeds. In
addition, the ANGU and RANG and the Kerry (KY92 and KY12)
emerge at the opposite extremes of the PC2 plot axis. In Figure 5,
for the BI data set, PC1 and PC2 account for 23.7% and 22.7%
of the total variation for PC1–10, respectively. The PC1 plot
axis recapitulates PC2 in Figure 4 and differentiates the Kerry
(KY92 and KY12) from the ANGU and RANG breeds with the
other British breeds emerging between these two extremes. These
results highlight the genetic distinctiveness of the Kerry cattle

breed in comparison to a wide range of British production and
heritage landrace cattle breeds and support their status as an
important cattle genetic resource that should be prioritised for
conservation.

The PC2 plot axis in Figure 5 differentiates the HRFD breed
from the other British and Irish breeds and reveals substantial
genetic diversity among individual HRFD animals. However, in
this context, it is important to note that the pattern of genetic
diversity revealed here for the HRFD population sample may
be due to ascertainment bias as a consequence of the strategy
used to design the Illumina R© Bovine SNP50 BeadChip. In this
regard, many of the SNPs that constitute this first-generation
SNP array were identified from heterozygous positions in the
inbred Hereford female (L1 Dominette 01449) bovine genome
assembly or through comparisons of random shotgun reads
from six diverse cattle breeds that were aligned directly to the
same Hereford genome assembly (Matukumalli et al., 2009). This
approach to SNP array design will inevitably lead to elevated
intrabreed genomic variation using the Illumina R© Bovine SNP50
BeadChip with Hereford cattle (Meuwissen, 2009) and accounts
for the dispersed pattern of individual HRFD samples in
Figure 5.

Examination of Figures 4, 5 indicates that two of the KY12
animals sampled may exhibit a genetic signature of ancestral
crossbreeding with another cattle population, which, anecdotally,
is likely to have been due to crossbreeding with Angus cattle.
Therefore, another PCA plot was generated (Supplementary
Figure 1) that shows PC1 and PC2 for individual animals from
the KY92, KY12, ANGU and RANGpopulation samples. The two

FIGURE 4 | Principal component analysis plot constructed for PC1 and PC2 from genome-wide SNP data (36,621 autosomal SNPs) for the EU data set of 605

individual animals. The smaller histogram plot shows the relative variance contributions for the first 10 PCs and PC1 and PC2 account for 18.2% and 16.8% of the

total variation for PC1–10, respectively.
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FIGURE 5 | Principal component analysis plot constructed for PC1 and PC2 from genome-wide SNP data (37,395 autosomal SNPs) for the BI data set of 351

individual animals. The smaller histogram plot shows the relative variance contributions for the first 10 PCs and PC1 and PC2 account for 23.7% and 22.7% of the

total variation for PC1–10, respectively.

animals exhibiting a genetic signature of possible crossbreeding
(KY12_06 and KY12_58) are indicated on Supplementary
Figure 1. Notwithstanding the KY12_06 and KY12_58 data
points, the genetic similarity among all Kerry cattle sampled
is evident by comparison of the tight KY92 and KY12 sample
cluster to the dispersion of the ANGU and RANG samples on
the PCA plot in Supplementary Figure 1.

The values for the variation accounted for by PC3, PC4
and PC5 in Figure 4 (EU data set) are relatively high (15.7,
13.8, and 10.4%, respectively). For Figure 5 (BI data set), the
variation accounted for by PC3 is also relatively high (19.1%).
Therefore, we generated additional PCA plots of PC1 for each of
the two data sets vs. these additional principal components (see
Supplementary Figures 2–5).

Analysis of Genetic Structure Using
Genome-Wide SNP Data
The results of the fastSTRUCTURE analyses using the EU and
BI data sets are shown in Figures 6, 7, respectively. For both
analyses, the Kerry cattle (KY92 and KY12) cluster as a single
group at K = 2 and are differentiated from all other European
or British and Irish cattle breeds. The other breed group that
is clearly differentiated at K = 2 in Figure 7 is the cluster
composed of the ANGU and RANG breeds. These results mirror
the pattern shown for PC1 in Figure 5, and again emphasise
the genetic distinctiveness of Kerry cattle compared to other
European production and landrace heritage breeds. Using the
chooseK.py script the “true” number of clusters corresponding to

the likely number of ancestral populations was estimated to be
between 12 and 14 for the EU data set and either 7 or 8 for the BI
data set.

For both data sets, animals from the KY12 population sample
appear to be more genetically homogenous compared to the
KY92 population sample. This observationmay be a consequence
of increasing use, since the early 1990s, of small numbers of
artificial insemination (AI) Kerry sires. It is also noteworthy
that the two individual animals detected with a substantial
signature of putative historical crossbreeding (KY12_06 and
KY12_58) show marked patterns of population admixture in the
fastSTRUCTURE results, which are indicated by red arrows in
Figures 6, 7.

Modelling Historical Effective Population
Size (Ne) Using Genome-Wide SNP Data
The results from modelling historical Ne in a selection of
production and heritage cattle breeds and populations (KY92,
KY12, DXTR, BSHN, BGAL, LNCR, ANGU, JRSY, and HOLS)
are provided in Supplementary Table 2 and visualised in
Figure 8. The “demographic fingerprints” (Barbato et al., 2015)
of the two Kerry populations shown in Figure 8 and tabulated
in Supplementary Table 2 are more similar to those of the
production breeds with large census populations (BSHN, ANGU,
JRSY, HOLS) than the other heritage breeds with relatively
small census population sizes (DXTR, BGAL, LNCR). The KY92,
KY12, BSHN, ANGU, JRSY, and HOLS populations show a
declining trend from historicalNe peaks between 1,500 and 2,000
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FIGURE 6 | Hierarchical clustering of individual animals using genome-wide SNP data (36,621 autosomal SNPs) for the EU data set of 605 individual animals. Results

are shown for modelled ancestral populations K = 2–14. The cluster numbers corresponding to the likely number of ancestral populations are highlighted with a light

red overlay and the two outlier Kerry samples (KY12_06 and KY12_58) are indicated with red arrows.

more than 900 generations ago to Ne values estimated to be less
than 200 within the last 20 generations. One the other hand,
the DXTR, BSHN, BGAL and LNCR populations display a more
severe decline from historical Ne peaks between 2,500 and 4,000
more than 900 generations ago to Ne values estimated to be less
than 150 within the last 20 generations.

It is important to keep in mind these Ne trends may be
partly a consequence of the relatively small sample sizes for the
DXTR, BGAL, and LNCR breeds (see Table 2), coupled with
different histories of migration, gene flow and, in particular,
strong artificial selection in the production cattle populations.
Notwithstanding these caveats, the most recent modelled Ne

values for the KY92 and KY12 population samples are 89 and
88, respectively. These values are Ne estimates for 12 generations
in the past and assuming a generation interval of between 4 and
6 years, which is based on a pedigree estimate from a similar
heritage cattle population of 5.66 (Mészáros et al., 2015), this
corresponds to between 48 and 72 years before 2012 (for the
KY12 population). This is approximately the period between
1940 and 1965, which is during the time that the Kerry breed
started to decline precipitously in census population size and also

Ne estimated from herd book data (O’hUigín and Cunningham,
1990; Food and Agriculture Organization, 2007).

From a conservation perspective, livestock populations
generally exhibit Ne values relative to total census population
sizes (Nc) that are substantially lower than seen in comparable
wild mammal populations (Hall, 2016). Also, estimation of Ne

using methods such as SNeP that leverage genome-wide SNP
linkage disequilibrium (LD) data will tend to underestimate Ne

because of physical linkage between many of the SNPs in the data
set (Waples et al., 2016). Nevertheless, taking this into account,
there is still cause for concern that the most recent Ne values
modelled for the KY92 and KY12 population samples are below
the critical Ne threshold of 100 recommended by Meuwissen
(2009) for long-term viability of discrete livestock breeds and
populations.

Genomic Relationship and Analysis of
Inbreeding
Supplementary Table 1 shows a genomic relationship matrix in
terms of genotype IBS for the genome-wide SNP data generated
for individual animals in the KY92 and KY12 population
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FIGURE 7 | Hierarchical clustering of individual animals using genome-wide SNP data (37,395 autosomal SNPs) for the BI data set of 351 individual animals. Results

are shown for modelled ancestral populations K = 2–9. The cluster numbers corresponding to the likely number of ancestral populations are highlighted with a light

red overlay and the two outlier Kerry samples (KY12_06 and KY12_58) are indicated with red arrows.

samples. Close genomic relationship between individual animals
sampled from the same herd is evident in the SNP genotype
IBS values between samples. In addition, the relatively low
genomic relationship between the KY12_06 and KY12_58 outlier
samples (Figures 4–7) and the rest of the Kerry cattle sampled
is also evident in Supplementary Table 1. These data emphasise
the value of intrapopulation genomic relationship values for
identifying animals (in this case, KY12_06 and KY12_58) that
should not be used in breeding programmes. They also highlight
the potential of genome-wide SNP data for providing a systematic
approach to prioritising males and females with minimum
genomic relationship for breeding to minimize loss of genetic
diversity and maintain or increase Ne (Gandini et al., 2004;
Meuwissen, 2009; de Cara et al., 2011, 2013).

Genome-wide autozygosity estimated from SNP data using
FROH and the FROH statistic are visualised in Figure 9 for
individual animals from the KY92 and KY12 population
samples and a range of European comparator breeds. Additional
summary ROH data is provided in Supplementary Table 3
and also Supplementary Figure 6, which reveals marked

inter-population differences in ROH length and demonstrates
that the SNP density of the Illumina R© Bovine SNP50 BeadChip
is too low to reliably capture ROH below 5Mb in length, an
observation previously reported by Purfield et al. (2012).

There is significant variation in FROH values among individual
animals and between breeds and populations. The non-
parametric Wilcoxon rank sum test was performed on FROH
distributions for all pairwise population/breed comparisons with
application of the Bonferroni correction P-value adjustment for
multiple statistical tests (Supplementary Table 4). This analysis
demonstrated that the KY12 population sample exhibited a
significantly higher mean FROH value than the KY92 population
sample (0.098 vs. 0.079; Padjust = 0.0081). This is important
from a conservation genetics perspective, indicating that
genome-wide autozygosity, which is highly correlated with
conventional pedigree-based estimates of inbreeding (FPED) for
cattle (Purfield et al., 2012; Ferencaković et al., 2013; Martikainen
et al., 2017), has increased for the Kerry cattle population
in the 20 years between sampling of the KY92 and KY12
populations.
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FIGURE 8 | Genetic effective population size (Ne) trends modelled using genome-wide SNP data. Results for the KY92 and KY12 populations are shown with seven

comparator heritage and production cattle breeds.

The importance of understanding and quantifying genome-
wide autozygosity for genetic conservation purposes has recently
been highlighted through correlation of FROH with inbreeding
depression for a range of production traits in domestic cattle
(Bjelland et al., 2013; Pryce et al., 2014; Kim et al., 2015).
Importantly, FROH has also been shown to correlate with
inbreeding depression for bovine fertility traits in both males
(Ferencaković et al., 2017) and females (Kim et al., 2015;
Martikainen et al., 2017). Finally, according to basic population
genetic principles, recent inbreeding captured by FROH will
lead to recessive deleterious genomic variants emerging at a
population level—a phenomenon that has been studied in both
humans and cattle (Szpiech et al., 2013; Zhang et al., 2015).

Genome-Wide Signatures of Selection in
the Kerry Cattle Breed
The results of the genome-wide scan for signatures of selection
using the CSS method in the Kerry cattle breed are shown
in Figure 10. Six distinct selection signatures were detected on
BTA9, BTA12, BTA16, BTA17, BTA19, and BTA28. A total of
178 genes were located within the genomic ranges ± 1.0Mb of
selection peaks and 32 of these genes were located within the
boundaries of a selection peak. Supplementary Table 5 provides
detailed information for these 178 genes.

A single gene was located within the BTA9 selection peak—the
phosphodiesterase 7B gene (PDE7B), which has been associated
with neurobiological processes (de Gortari and Mengod, 2010)
and has been previously linked to genetic changes associated
with dog (Canis lupus familiaris) domestication and behaviour
(Freedman et al., 2016). A single gene was also located

within the BTA16 selection peak—the dorsal inhibitory axon
guidance protein gene (DRAXIN), which encodes a protein
that regulates axon guidance, neural circuit formation and
vertebrate brain development (Islam et al., 2009; Shinmyo
et al., 2015). Twenty-four genes were located within the BTA17
selection peak, including BICDL1, RAB35, and RNF10, which
have been associated with neurobiology and brain development
(Hoshikawa et al., 2008; Schlager et al., 2010; Villarroel-Campos
et al., 2016) and SIRT4 and COQ5 that function in cellular
metabolism (Kawamukai, 2015; Elkhwanky and Hakkola, 2017).
Six genes were located within the BTA28 selection peak,
including, most notably, the Rho GTPase activating protein 22
gene (ARHGAP22), which has recently been associated with
bovine fertility as an mRNA expression biomarker for oocyte
competence in cumulus cells (Melo et al., 2017).

To obtain a broader perspective on natural and artificial
selection acting at a population level on the Kerry cattle genome,
a functional gene set enrichment approach (GSEA) was taken
using IPA with the 178 genes located within ± 1.0Mb of each
selection peak (Supplementary Table 5). Of these 178 genes, 141
could be mapped to the IPA knowledgebase and the summary
results for the IPA Physiological System Development and
Function category are shown in Supplementary Table 6, revealing
an enrichment of biological processes associated with nervous
system development and behaviour. This functional enrichment
coupled with the neurobiologically relevant single-gene selection
peaks on BTA9 (PDE7B) and BTA16 (DRAXIN) suggests that
natural and/or artificial selection related to brain development
and behaviour has been important in the microevolution of the
Kerry cattle breed. In this regard, it is therefore noteworthy
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FIGURE 9 | Tukey box plots showing the distributions of FROH values estimated with genome-wide SNP data for the KY92 and KY12 populations and nine

comparator heritage and production cattle breeds.

that Kerry cattle, including bulls, are recognised as being
comparatively docile and easy to manage (Curran, 1990).

Genomics, Genetic Distinctiveness and
Microevolution of Kerry Cattle:
Implications for Breed Management and
Genetic Conservation
The genome-wide phylogenetic and population genetic analyses
detailed here demonstrate that Kerry cattle represent an
important farm animal genetic resource, befitting the breed’s
status as a livestock population with a unique history of
adaptation to the climate and physical geography of southwest
Ireland at the edge of Western Europe. Notably, from a
genetic conservation and breed management perspective, high-
resolution comparative PCA (Figures 4, 5) and genetic clustering
results (Figures 6, 7) demonstrate that Kerry cattle are markedly
distinct from other British and European cattle populations.
This observation may also be placed in the context of recent
paleogenomic studies that have detected ancient gene flow
from wild British aurochs (B. primigenius) into the ancestors
of present-day Kerry cattle (Orlando, 2015; Park et al., 2015;
Upadhyay et al., 2017).

The current genetic status of the Kerry cattle population
is underlined by analyses of genetic effective population size
(Ne) and inbreeding using genome-wide SNP data. As shown in
Table 2, genome-wide observed heterozygosity (Ho) is relatively
high in the KY92 and K12 population samples, particularly

for endangered heritage cattle breeds. However, it has been
long recognised that monitoring Ne is a more important tool
for rational breed management and long-term conservation
of endangered livestock populations (Notter, 1999; Gandini
et al., 2004; Biscarini et al., 2015). As shown in Figure 8

and Supplementary Table 2, the Kerry cattle population has a
recent demographic trend of Ne decline, to the point where the
most recent modelled Ne values are below the recommended
threshold for sustainable breed management and conservation
(Meuwissen, 2009). There is also cause for concern that genomic
inbreeding estimated using genome-wide autozygosity (FROH)
and visualised in Figure 9 has increased significantly in the 20-
year period between the sampling of the KY92 and KY12 Kerry
cattle populations.

In a more positive light, as shown in the present study,
detection of discrete signatures of selection using the relatively
low-density Illumina R© Bovine SNP50 BeadChip is encouraging
for wider studies of genome-wide microevolution in endangered
heritage livestock populations such as Kerry cattle. Future
surveys of heritage livestock populations that use higher-density
SNP array platforms and ultimately whole-genome sequence data
could provide exquisitely detailed information on the genomic
regions and associated polygenic production, health, fertility and
behavioural traits shaped, over many centuries, by the agro-
ecology and pre-industrial farming systems of southwest Ireland.

In conclusion, the results presented here for the Kerry cattle
population demonstrate that population genomics analyses of
large SNP data sets can provide useful information concerning
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FIGURE 10 | Manhattan plots of composite selection signal (CSS) results for Kerry cattle (n = 98) contrasted with EU cattle (n = 102). (A) Unsmoothed results.

(B) Smoothed results obtained by averaging CSS of SNPs within each 1Mb window. Red dotted line on each plot denotes the genome-wide 0.1% threshold for the

empirical CSS scores. Red vertical arrows indicate selection peaks detected on BTA09, BTA12, BTA16, BTA17, BTA19, and BTA28.

the microevolution and recent genetic history of heritage
livestock breeds. In particular, we would recommend that
comparable surveys in other populations consider the use of
genome-wide scans for signatures of selection, which can provide
a functional genomics perspective on evolutionary adaptations to
particular agricultural environments and production systems.
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