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Toxicogenomics (TGx) is an important tool to gain an enhanced understanding of
toxicity at the molecular level. Previously, we developed a pair ranking (PRank) method
to assess in vitro to in vivo extrapolation (IVIVE) using toxicogenomic datasets from
the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-
GATEs) database. With this method, we investiagted three important questions that
were not addressed in our previous study: (1) is a 1-day in vivo short-term assay
able to replace the 28-day standard and expensive toxicological assay? (2) are some
biological processes more conservative across different preclinical testing systems than
others? and (3) do these preclinical testing systems have the similar resolution in
differentiating drugs by their therapeutic uses? For question 1, a high similarity was
noted (PRank score = 0.90), indicating the potential utility of shorter term in vivo
studies to predict outcome in longer term and more expensive in vivo model systems.
There was a moderate similarity between rat primary hepatocytes and in vivo repeat-
dose studies (PRank score = 0.71) but a low similarity (PRank score = 0.56) between
rat primary hepatocytes and in vivo single dose studies. To address question 2, we
limited the analysis to gene sets relevant to specific toxicogenomic pathways and
we found that pathways such as lipid metabolism were consistently over-represented
in all three assay systems. For question 3, all three preclinical assay systems could
distinguish compounds from different therapeutic categories. This suggests that any
noted differences in assay systems was biological process-dependent and furthermore
that all three systems have utility in assessing drug responses within a certain drug class.
In conclusion, this comparison of three commonly used rat TGx systems provides useful
information in utility and application of TGx assays.

Keywords: toxicogenomics, preclinical models, liver, gene expression, bioinformatics

INTRODUCTION

Toxicogenomics (TGx) combines toxicology with genomics or other high throughput molecular
profiling technologies, offering a powerful method to study the underlying molecular mechanisms
of toxicity (Nuwaysir et al., 1999; Aardema and MacGregor, 2002). Since, it was first described
some 18 years ago (Nuwaysir et al., 1999), TGx has played an important role in various aspects
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of toxicology including mechanistic studies, predictive toxicology
and the development of safety biomarkers (Chen et al., 2012).

Toxicogenomic approaches can be broadly categorized into
three purposes: predictive toxicology, risk assessment, and
mechanistic studies (Suter et al., 2004; Chen et al., 2012).
For example, Fielden et al. (2007) developed a short-term
(5 day) repeated dose TGx assay in rat to predict non-genotoxic
hepatocarcinogenicity with a sensitivity and specificity of 86
and 81%, respectively. Other studies have addressed various
questions of applying TGx including optimal treatment duration
and sample size for a better predictive performance (Liu et al.,
2011; Gusenleitner et al., 2014; Matsumoto et al., 2015; Liu
S. et al., 2017). TGx has also been used in semi-quantitative
risk assessment such as defining points of departure and
benchmark dosing (Yang et al., 2007; AbdulHameed et al.,
2016; Chauhan et al., 2016; Dean et al., 2017; Farmahin
et al., 2017; Kawamoto et al., 2017). Most widely used
application of TGx approaches is to understand the molecular
mechanisms of different toxicological endpoints (Ellinger-
Ziegelbauer et al., 2008; Blomme et al., 2009; Rodrigues et al.,
2016; Hendrickx et al., 2017; Rueda-Zárate et al., 2017). More
recently, in addition to gene expression profiling, the study
of microRNAs (Wang et al., 2009; Yang et al., 2012; Ward
et al., 2014; Liu et al., 2016) and long non-coding RNAs
(lncRNAs) (Aigner et al., 2016; Dempsey and Cui, 2017) are
emerging as new technologies to be integrated into this field
powered by next-generation sequencing technologies (Yu et al.,
2014).

In drug development, TGx has been added as an endpoint to
existing preclinical study designs to gain more information from
these studies. For example, in studies of liver toxicity, preclinical
assessment in rodents may use primary rat hepatocytes or may
use single dose in vivo studies (24 h) or repeat dosing up to
28-days. Each of these test systems may serve a different purpose;
in vitro studies using primary rat hepatocytes may be used for
mechanistic and/or cytotoxicity assessments whereas single and
repeat dose toxicity studies are used to determine tolerability
and target organ toxicity. The addition of TGx to each of these
study types has generated additional data of use in assessment
of toxicological risk and mechanisms. Other researchers have
compared different testing systems for analysis of such endpoints
as identification of biomarkers (Kondo et al., 2009) and gene
expression-induced by genotoxic carcinogens (Watanabe et al.,
2007). However, a systematic comparison of the value of TGx data
generated in the different test systems has not been fully assessed.

Unlike decades ago, there are now several large
publicly available toxicogenomic datasets such as the Open
Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
System (TG-GATEs) database (Uehara et al., 2010; Igarashi et al.,
2015), DrugMatrix (Ganter et al., 2005) and PredTox (Suter
et al., 2011), providing tremendous opportunities for comparing
preclinical testing systems. For example, open TG-GATEs used
four standard preclinical study designs to generate TGx data
(Ippolito et al., 2015; Bell et al., 2016; Liu et al., 2016; Sutherland
et al., 2016). Using TG-GATEs data, we developed a ‘topic
modeling’ approach to explore the underlying relationships
between different TGx assay systems (Lee et al., 2014, 2016)

and other toxicological assessments such as high throughput
screening assay data from the Tox21 project (Lee et al., 2016).

In our previous study, we developed a Pair Ranking (PRank)
method to assess the potential of in vitro to in vivo extrapolation
(IVIVE) among three TGx assay systems (two in vitro assays
using rat or human hepatocytes and a 28-day repeat-dose rat
model) (Liu Z. et al., 2017). The study had an emphasis on
assessing the IVIVE potential for different endpoints of drug-
induced liver injury (DILI). It was concluded that the in vitro
assay using primary rat hepatocytes and rat in vivo 28-day
repeated dose models had high IVIVE potential for most DILI
endpoints. However, several important questions remain for
prediction of liver responses. Firstly, will a short-term in vivo
assay (1-day experiment to detect acute response) correlate
with a standard long-term in vivo repeated dose study (28-day
study)? Secondly, are differences and similarities dependent upon
biolgocial processes? Finally, can the different TGx assay systems
distinguish compounds from different therapeutic categories?

In this study, we analyzed preclinical rat test system data
from TG-GATEs comprising 131 compounds in three assays –
(1) an in vitro study with rat primary hepatocytes (denoted
as InVitro hereafter), (2) a rat in vivo single-dose treatment
wih sample collection after 24 h (denoted as InVivo_S), and
(3) a rat 28 day repeat-dose study (denoted as InVivo_R
hereafter). Comparative analysis among these three assay systems
were analyzed using PRank. Additonal useful comparisons
were genererated by limiting the analyses firstly to compounds
from certain therapeutic categories and secondly to gene sets
representing specific toxicogenomic pathways.

MATERIALS AND METHODS

Toxicogenomics Datasets
The open TG-GATEs1 was employed to investigate preclinical
TGx assay systems in rats (Igarashi et al., 2015). Three rat
toxicogenomic data sets from the TG-GATEs Phase I study were
included covering 131 compounds from different therapeutic
categories. The rat in vitro data had three concentrations (low,
medium, and high) and three treatment durations (2, 4, and 24 h).
The rat in vivo single dose also used three doses (low, medium,
and high) and the samples were collected at four different
timepoints after treatment (3, 6, 9, and 24 h). The in vivo
repeated dose data was generated under the standard in vivo
experiment design with three doses (low, medium, and high) and
four treatment durations (3, 7, 14, and 28 days), where the rat
liver tissue was isolated 24 h after treatment. In this study, we
focused on the highest concentration/dose and longest treatment
duration of 120 common compounds among the three assay
systems for each assay system (the data used are available from
Supplementary Table S1). Specifically, (1) “InVitro” is the data
from in vitro assay with rat primary hepatocytes treated with the
highest dose and the sample is collected 24 h after treatment, (2)
“InVivo_S” is the data from rat in vivo single high dose and the
sample is collected 24 h after treatment, and (3) “InVivo_R” is

1http://toxico.nibiohn.go.jp/english/
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repeated dose daily with highest dose for 28 days. More details on
concentration and dose definition are listed in our previous study
(Liu Z. et al., 2017) and elsewhere (Igarashi et al., 2015).

Microarray Data Normalization and
Differentially Expressed Genes (DEGs)
Calculation
The microarray data from three rat TGx systems was processing
using Factor Analysis for Robust Microarray Summarization
(FARMS) (Hochreiter et al., 2006) with a custom CDF file
from BRIANARRAY2. The details were as described previously
(Hochreiter et al., 2006; Liu Z. et al., 2017). Replicate
measurements were collapsed to one measurement per gene.
The collapsed data can be downloaded from http://dokuwiki.
bioinf.jku.at/doku.php/tgp_prepro. The downloaded data were
transformed as MAT File Format as an input for further analysis.
For each compound in each assay system, the fold change values
were generated by comparing the treatment group vs. matched
control group for each time and concentration/dose condition.

Therapeutic Categories
The Anatomical Therapeutic Chemical (ATC) classification
system was used to group the compounds into different
therapeutic classes. The ATC classification system has five
levels of code to characterize a chemical/drug based on (1)
the system/organ it acts on, (2) its therapeutic use, (3) its
pharmacological functions, (4) its chemical properties, and
(5) the chemical itself. In this study, the second-level of
ATC codes indicating the main therapeutic group were used
(see Supplementary Table S1).

Toxicity Pathways Related Gene Sets
The gene sets related to different toxicity pathways were extracted
from the Comparative Toxicogenomics Database (CTD) (Davis
et al., 2017), which aims to illustrate how environmental
chemicals affect human health. Specifically, the gene and pathway
relationship data were downloaded from http://ctdbase.org/
downloads/. There are a total of 135,815 gene and pathway
relationships. Due to the gene symbols (Entrez Gene IDs) in CTD
database was based on homo sapiens, we mapped Entrez gene
IDs from homo sapiens to Rattus norvegicus based on NCBI
HomoloGene build 683. We clustered the genes based on their
related pathways and kept the pathways containing more than
200 genes for further analysis (see Supplementary Table S2).

Pair Ranking Method (PRank)
The Pair Ranking (PRank) method was used to compare the
three rat TGx assay systems (Liu Z. et al., 2017). First, the
pairwise compound similarity of any two compounds within an
assay system was calculated using their biologically significant
genes which were the top and down 200 ranked genes by
their fold change values. The total number of 400 genes as

2http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/
CDF_download.asp
3ftp://ftp.ncbi.nih.gov/pub/HomoloGene/

the compound signatures were used for similarity calculation.
The Dice’s coefficient was employed to measure the similarity
between the transcriptional profiles of compounds, which were
suggested by SEQC I study (Wang et al., 2014). In this study,
the overlapped genes were counted by taking into consideration
of their regulation direction and the Dice’s coefficient were
calculated by using the following equation,

Dice′s coefficient =
2(Ni,j,up + Ni,j,down)

400+ 400
=

Ni,j,up + Ni,j,down

400
(1)

where, Ni,j,up and Ni,j,down denote the number of overlapped the
up/down regulated genes between compound i and compound
j, respectively. Then, each pair was ranked from high to low by
the pairwise similarity. Lastly, the PRank score was calculated
between any two assay systems by using receiver operating
characteristic (ROC) curve and the area under the curve (AUC).
For ROC-AUC analysis, we need to transform the ranked Dice’s
coefficient to binary values (positive and negative: 0/1). In this
study, the Dice’s coefficient value more than 0.4 was selected as
cut-off, which is close to 95% quantile. The ROC-AUC analysis
was conducted by using function perfcurve.m from MATLAB
R2016a.

To investigate whether the compounds within a therapeutic
category were more similar than across therapeutic categories, we
used the following formula,

stability ratio =
mean (

∑n
i=1 Dice_inter)

mean (
∑n

i=1 Dice_across)
(2)

where, n is the number of compound pairs. For inter therapeutic
category, the compound pairwise similarity was generated by
calculating the Dice’s coefficients between any two compounds
from the same category. For across therapeutic categories, the
pairwise similarity was generated between compounds from the
different therapeutic categories. Finally, we calculated the stability
ratio between inter therapeutic and across therapeutic categories
to investigate whether the assay system could distinguish one
therapeutic category to another. If the stability is more than 1, it
means that the similarity among compounds for inter therapeutic
category is more than across therapeutic category, indicating
the similarity based on toxicogenomic profiles is capable of
distinguishing the compounds from one therapeutic category to
another.

For compound pairwise similarity calculations using the gene
sets from different toxicogenomic pathways, we followed the
following procedures. First, we mapped each gene set derived
from toxicogenomic pathways to rat genes represented by the
microarrays used in open TG-GATEs. Then, we retained the
overlapped genes with fold change more than 1.5 for each
compound as individual signatures. Finally, we calculated Dice
coefficients between any two compounds based on the generated
signatures in each system.

Percentage of Overlapping Pathways
(POP)
The concordance among the three assay systems were also
assessed in the different KEGG pathways. Specifically, the 400
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genes for each compound in each assay system was input to the
Database for Annotation, Visualization and Integrated Discovery
(DAVID) software to carry out KEGG pathway analysis (Huang
et al., 2008). The pathways with a Benjamini–Hochberg adjusted
p-value less than 0.05 were considered as statistically significant
pathways. Then, the enriched KEGG pathways in each assay
systems were ranked based on frequency of pathways perturbed
by the compounds (p ≤ 0.05). Finally, the POP represented
the number of common pathways between any two assay
systems divided by L, the number of pathways in each of
subset of ranked pathway list. In this study, L was set from
5 to 60.

Chemical Structure Similarity
The chemical structure of 120 common compounds could be
found from our previous study (Liu Z. et al., 2017). The Pipeline
Pilot 8.0 (Accelrys, Biovia, and Dassault Systems) was used
to calculate the compound pairwise similarity based on their
functional class fingerprints (FCFPs) with a radius of FCFP-
4. The compound pairwise chemical similarities were listed in
Supplementary Table S1.

Code availability
The scripts and processed data in this study were available in
https://github.com/iguana128/Frontier-source-codes.

RESULTS

Detection Power of Three TGx Assay
Systems
We first examined each assay’s ability to differentiate
drug pairs. Figure 1 illustrates the pairwise similarity
distribution for the three TGx assay systems. The average
Dice’s coefficients in the three assay systems were ranked
as InVivo_R (Dice’s coefficient = 0.200) > InVivo_S (Dice’s
coefficient = 0.187) > InVitro (Dice’s coefficient = 0.166)
(see Supplementary Table S3). The low Dice’s coefficients
indicated that all three TGx assay systems could differentiate one
compound pair to another, where the InVivo_R assay seems to
be less sensitive compared to other two assays.

Read-across have been widely applied to risk assessment
based on chemical structure similarity (Vink et al., 2010; Rand-
Weaver et al., 2013). Recently, the read-across concept has
been expanded to integrate biological data profiles such as
TGx and cell-based in vitro assays (Zhu et al., 2016). Here,
the drug pairs in each assay system were compared with the
compound pairwise chemical similarity (Dice coefficients > 0.2).
It was illustrated that the correlation between assay systems and
chemical space was low with the Pearson’s correlation coefficients
of 0.30, 0.20, and 0.21 for chemical space vs. InVitro, InVivo_S,
and InVivo_R, respectively (Supplementary Figure S1). The
difference between the chemical space and toxicogenomic space
suggested that the read-cross can be improved by combining
the information from both chemistry and toxicogenomics
spaces.

FIGURE 1 | Distribution of compound pairwise similarity in the gene level
across the three rat toxicogenomics assay systems: Dice’s coefficient was
calculated based on top and down 200 genes ranked by fold changes for any
two compounds in each system.

Therapeutic Class Analysis
We further investigated whether the three TGx assay system
could be utilized to discriminate different therapeutic categories.
There was a total of 12 therapeutic categories with at least
five compounds (N02-Analgesics; M02-Topical products for
joint and muscular pain; A10-Drugs used in diabetes; C10-
Lipid modifying agents; N03-Antiepileptics; L01-Antineoplastic
agents; M01-Antiinflammatory and antirheumatic products;
C01-Cardiac therapy; N05-Psycholeptics; N06-Psychoanaleptics;
J01-Antibacterials for systemic use; S01-Ophthalmologicals)
(Supplementary Figure S2). For each therapeutic category
and each assay system, the stability ratios were calculated by
comparing the mean value between and across categories. Almost
all the therapeutic categories in each assay system had a stability
ratio of more than 1 (Figure 2), suggested that the assay
systems could distinguish the different therapeutic categories
from each other. Among 12 therapeutic categories, the high
stability ratios of C10-Lipid modifying agents was observed in
all three assay systems, indicating the lipid modifying agents
including clofibrate, fenofibrate, gemfibrozil, nicotinic acid,
simvastatin could be distinguished from compounds in other
therapeutic categories in TGx assay systems. Furthermore, J01-
Antibacterials for systemic use and S01-Ophthalmologicals with
stability ratios less than 1 in all three assay systems, showing the
lower discrimination power of TGx assay systems for compounds
from these two therapeutic categories. It could be seen that the
high proportion of compounds were overlapped between the
some therapeutic categories (J01-Antibacterials for systemic use
and S01-Ophthalmologicals, and M01-Antiinflammatory and
antirheumatic products and M02-Topical products for joint and
muscular pain) due to the multiple therapeutic uses of these
compounds, indicating the complexity of off-target space of
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FIGURE 2 | Stability ratios for the 12 therapeutic categories in each assay system: for each assay system, the stability ratio was calculated based on the average of
Dice’s coefficient of inter and across therapeutic categories.

these compounds, which may partially explain the unsatisfactory
discrimination power.

Concordance Among Three TGx Assay
Systems
Figure 3A shows the concordance among three assay systems
(InVitro, InVivo_S, and InVivo_R) based on the PRank scores.
The highest concordance was noted for the InVivo_S (24 h)
and InVivo_R (28-day) with a PRank score 0.90, suggesting
the potential to replace long-term treatments with a 1-day
experiment using a single dose treatment without loss of
prediction. As reported in our previous study, the InVitro
and InVivo_R also had a relatively high PRank score (0.71),
suggesting a good IVIVE potential (Liu Z. et al., 2017).
However, the concordance between InVitro and InVivo_S
(PRank score = 0.56) was lower despite the same treatment
duration in these two assay systems.

The concordance among the three assay systems was
compared at the pathway level. Specifically, the percentage of
overlapped pathways (POP) was calculated based on shared over-
represented KEGG pathways (Fisher’s exact test with adjusted
p-value < 0.05) between any two assay systems. As illustrated

in Figure 3B, the highest concordance was for the two in vivo
systems (POP value = 0.875), followed by InVitro-InVivo_R
(POP value = 0.750) and InVitro-InVivo_S (POP value = 0.563).
Therefore, a similar pattern was found at both the gene and
pathway level. Furthermore, pathways related to lipid metabolism
such as steroid hormone biosynthesis and fatty acid metabolism
were consistently over-represented in the three assay systems
(Table 1).

Toxicity Pathway Analysis
We further investigated the concordance among the three assay
systems when limiting the genes to specific toxicity pathways. The
>135K gene-pathway relationships in CTD were employed, and
a total of 106 toxicity pathways related genes sets with at least
200 genes for each were extracted (see Supplementary Table S2).
Figure 4A depicts the concordance among the three assay
systems in different toxicity pathway. The concordance among
the three assay systems in the gene sets level was consistent with
the finding in the whole gene/pathway level with a concordance
ranking as InVivo_S-InVivo_R > InVitro-InVivo_R > InVitro-
InVivo_S. We furthermore compared the top 15 common gene
sets related pathways in the three comparisons based on the
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FIGURE 3 | The concordance among the three rat toxicogenomics assay
systems: (A) PRank methodology based on the top and down 200 genes
based on fold change values. (B) The percentage of overlapping KEGG
pathways based on over-represented KEGG pathways using Fisher’s exact
test with adjusted p-value less than 0.05.

PRank scores (Figure 4B). We found that two lipid related
pathways, i.e., Metabolism of lipids and lipoproteins and Fatty
acid, triacylglycerol, and ketone body metabolism were common
in all three comparisons, which is also consistent with the
finding in the whole gene/pathway level. Furthermore, the similar
conclusion was also drawn based on the stability analysis,
which suggested the lipid modifying agents (C10) were highly
discriminated in all three TGx testing systems.

Confirmation Based on Multiple Time and Dose
Points
The multiple time and dose combination design of TG-
GATEs data sets provides a great opportunity to fully evaluate
the pharmacokinetic and pharmacodynamic characteristics of
chemical-induced toxicity and further facilitate early predictive
biomarkers development for toxicity prediction and prevention.
In the main part of this study, we comprehensively investigated
the concordance among the three rat TGx assay systems at high

TABLE 1 | The overlapping KEGG pathways among the three assay systems.

KEGG entry Pathways names Categories

rno00140 Steroid hormone biosynthesis Lipid metabolism

rno00071 Fatty acid metabolism Lipid metabolism

rno00330 Arginine and proline
metabolism

Amino acid metabolism

rno00280 Valine, leucine, and isoleucine
degradation

Amino acid metabolism

rno00480 Glutathione metabolism Metabolism of other amino
acids

rno00982 Drug metabolism Xenobiotics biodegradation
and metabolism

rno00980 Metabolism of xenobiotics by
cytochrome P450

Xenobiotics biodegradation
and metabolism

rno00830 Retinol metabolism Metabolism of cofactors
and vitamins

rno03320 PPAR signaling pathway Endocrine system

FIGURE 4 | The concordance among the three rat toxicogenomics assay
systems for gene sets related to different toxicogenomic pathways: (A) the
stacked plots of PRank scores for different gene sets in the three assay
systems; (B) a Venn diagram of the top 15 gene set-related toxicogenomic
pathways based on the PRank score ranking in each rat assay systems.

dose and longest duration condition. Moreover, we expanded
the comparisons to the different time and dose combinations.
Figure 5 shows the concordance among three assay systems
at different time and dose conditions based on proposed
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FIGURE 5 | Circle bar plot for the concordance among three rat toxicogenomics systems at different time and dose combinations: the concordance between assay
systems were conducted under a total of 12 time/dose combination by using Prank strategy.

PRank method. The circle bar plot represented the PRank
scores. The similar trends of PRank scores changes (InVivo_S-
InVivo_R > InVitro-InVivo_R > InVitro-InVivo_S) could be
observed in high and medium dose with long and middle
treatment duration. However, the low dose and short treatment
durations were not able to provide enough discrimination power
to assess the concordance among three TGx testing systems.
Furthermore, the N-way ANOVA analysis were used to estimate
the resource of variances contributing to the concordance among
the TGx testing assays by using MATLAB function anovan.m. It
was indicated that dose was more dominated influential factor
of the concordance between testing systems than treatment
duration (see Supplementary Table S4).

DISCUSSION

Animal models are indispensable in drug development and
risk assessment, although extrapolation from animal models to
human responses remains a challenge (Shanks et al., 2009).
A key focus of research into animal models is how they could
better recapitulate the human toxicological and physiological
environment and provide a more reliable and robust prediction of
human toxicity. Cell-based in vitro assays and in silico approaches

have been proposed that could refine, reduce or even replace
animal models (Hamburg, 2011; Goodman et al., 2015). In
support of this, it is key to gain a better understanding on the
similarities and differences between data generated in cell-based
assay (in vitro) systems and animal (in vivo) models. Previously,
we assessed similarities in TGx data between rat and human
primary hepatocyte cultures and rat liver after 28 days of repeated
dosing for a number of drugs and chemicals (Liu Z. et al.,
2017). Here, we carried out a comparative analysis among three
frequently-used rat TGx assay systems (InVitro, InVivo_S, and
InVivo_R) using our previously described Pair Ranking (PRank)
methodology.

The data indicated that there was a high concordance between
the two in vivo assay systems (24 h and 28 days), indicating a
potential to use a short-term in vivo assay for some endpoints
saving time and money. Furthermore, the in vitro TGx data set
had a relatively high similarity to the standard 28-day in vivo
repeated dose experiment data, suggesting a good correlation
of in vitro with longer term treatment in vivo. However, there
was a poor concordance between in vitro and the in vivo single
dose (24 h) treatment. This observation is at first surprising
but one explanation could be that extraction of hepatocytes into
cell culture followed by 24 h of treatment represents a level of
chemical/environmental stress more equivalent to 28 days of
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in vivo treatment compared with 24 h (single dose) in vivo where
the liver may only just be responding to a new chemical stress.
Specifically, gene activities associated with the survival cells of the
hepatocytes reflect a level of the adaptation that resemble to these
in the 28-day repeated dosing conditions.

All three TGx assay systems could distinguish compounds
by therapeutic category. Among the 12 investigated therapeutic
categories, the C10-Lipid modifying agents with highest stability
ratios in all the three assay systems, indicating the high
discrimination power. It is very interesting that, when the
analyses were focused on specific pathways, several pathways
such as lipid metabolism-related pathways were consistently
over-represented in all three assay systems, the finding is
consistent with the therapeutic categories, suggesting that
similarity between the systems is to some extent dependent
on different biological process and compounds under different
therapeutic categories.

It is worthwhile to consider some additional studies to
further our knowledge and confirm the findings from this study.
Firstly, the current comparisons among the three TGx assay
systems were based on the perturbation of gene expression
within each of these assay systems. Although this could be the
case, there is no certainty that these conclusions are applicable
to other assay systems where there may be differences in
intrinsic properties such as species or tissue type and extrinsic
properties such as time of exposure and culture conditions.
Therefore, we proposed more retrospective analyses of preclinical
TGx data sets should be undertaken to provide a boarder
and more comprehensive picture of how animal models and
cell-based in vitro assay systems can be translated to predict
human responses. Secondly, in this study we employed TG-
GATEs datasets, currently the largest dataset in the TGx research
arena. Despite this, there are still many classes of chemicals
and drugs missing. Therefore, more comprehensive and larger
scale TGx datasets could yield more robust conclusion. Thirdly,
in the current study, transcriptomic profiles (gene expression)
data were used. With the advance of technology, other data
such as microRNAs profiles should be investigated since these
may be considered more conserved in different species and
organ systems (Mack, 2007). Finally, in the current study we
focused on the top 400 differentially expressed genes (DEGs)
to reveal the relationship between testing systems. In our
previous study, we have discussed the influence of the number
of selected genes to the similarity measure and concluded
that the selected 400 genes could generate the stable similarity

ranking list in each assay system (Liu Z. et al., 2017). With that
said, other methods and/or different lengths of DEGs applied
should be consider to enhance the comprehensiveness of the
investigation.

Toxicogenomics has been used widely to supplement
risk assessment data, to elucidate underlying mechanisms of
toxicology and to support predictive toxicology. One of the
contentious questions in the toxicology field is whether animal
models can provide sufficient predictive power for human
toxicity. In this study, we investigated concordance among TGx
data from three rat assay systems using a Pairwise Ranking
strategy. The data generated provide an insight into the utility
of these assay systems for drug safety evaluation and risk
assessment.
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