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Late diagnosis and systemic dissemination essentially contribute to the invariably poor
prognosis of pancreatic ductal adenocarcinoma (PDAC). Therefore, the development of
diagnostic biomarkers for PDAC are urgently needed to improve patient stratification
and outcome in the clinic. By studying the transcriptomes of independent PDAC
patient cohorts of tumor and non-tumor tissues, we identified 81 robustly regulated
genes, through a novel, generally applicable meta-analysis. Using consensus clustering
on co-expression values revealed four distinct clusters with genes originating from
exocrine/endocrine pancreas, stromal and tumor cells. Three clusters were strongly
associated with survival of PDAC patients based on TCGA database underlining the
prognostic potential of the identified genes. With the added information of impact of
survival and the robustness within the meta-analysis, we extracted a 17-gene subset for
further validation. We show that it did not only discriminate PDAC from non-tumor tissue
and stroma in fresh-frozen as well as formalin-fixed paraffin embedded samples, but also
detected pancreatic precursor lesions and singled out pancreatitis samples. Moreover,
the classifier discriminated PDAC from other cancers in the TCGA database. In addition,
we experimentally validated the classifier in PDAC patients on transcript level using
qPCR and exemplify the usage on protein level for three proteins (AHNAK2, LAMC2,
TFF1) using immunohistochemistry and for two secreted proteins (TFF1, SERPINB5)
using ELISA-based protein detection in blood-plasma. In conclusion, we present a
novel robust diagnostic and prognostic gene signature for PDAC with future potential
applicability in the clinic.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) remains one of the
most difficult-to-treat malignancies with a dismal 5-year survival
rate of only 5–7% (Siegel et al., 2015). Despite some progress
over the last decade, systemic chemotherapy for disseminated
PDAC has overall limited efficacy and significant toxicity, while
PDACs have been notoriously resistant to molecularly targeted
agents and immunotherapy. At the same time, PDAC is projected
to become the second leading cause of cancer related deaths
in the United States and Europe by 2030 (Rahib et al., 2014),
underscoring the pressing need to develop more successful
strategies tackling pancreatic cancer (Misek et al., 2007; Siegel
et al., 2015).

Given the bleak prospects of clinically manifest PDAC, early
detection at the pre-metastatic stage remains a major goal of
translational research efforts (Chari et al., 2015). PDACs develop
from precursor lesions including pancreatic intraepithelial
neoplasia (PanIN) (Guo et al., 2016; Ying et al., 2016), intraductal
papillary mucinous neoplasms (IPMNs), and mucinous cystic
neoplasms (MCNs) (Hruban et al., 2004). Detecting precursor
lesions is still challenging but would improve the chance for
curative treatment drastically (Distler et al., 2014) and highlights
the need of biomarkers for PDAC. Given the rare detection of
non-invasive pancreatic precursor lesions, the amount of such
data is very limited and complicates the biomarker discovery.
Studying late stage PDAC samples, however, might also give
insights at the onset of the disease and therefore make them useful
in biomarker research.

To date, carbohydrate antigen 19-9 (CA19-9) is the clinically
best established blood-based biomarker for PDAC (Goggins,
2005; Goonetilleke and Siriwardena, 2007). However, the
marker’s low sensitivity and specificity disallows its application
for early detection. Molecular imaging techniques are being
developed for detection of PDAC, but their applicability will
probably remain limited to high-risk-situations and radiographic
signs are similar to the ones of pancreatitis (Munigala et al., 2014).

In the search for PDAC biomarkers, multiple studies have
analyzed the transcriptome and proteome of pancreatic cancer
patient tissues (Goonesekere et al., 2014; Bhasin et al., 2016),
urine (Radon et al., 2015), and most recently blood samples
(Capello et al., 2017). Particularly, the transcriptome displays
major differences between PDAC and pancreatic non-tumor
tissues, which is an ideal prerequisite to construct a robust PDAC
biomarker. PDAC has previously been found to display different
tumor subtypes in the transcriptome (Collisson et al., 2011;
Moffitt et al., 2015; Bailey et al., 2016). Most recently, Bailey et al.
identified four tumor subtypes denominated squamous, ADEX
(abnormally differentiated endocrine exocrine), pancreatic
progenitor and immunogenic. This underlines the importance
of transcriptomics to capture the wide range of responses and
corroborates the complexity and variability of the disease as well
as the difficulty in developing a comprehensive PDAC biomarker.
Transcriptional sensitivity to tumor-normal differences is due to
thousands of differentially regulated genes per data set (Badea
et al., 2008; Zhang et al., 2012; Haider et al., 2014), however, the
small overlap of genes between studies impedes the choice of

promising targets and their experimental validation in clinical
trials (Harsha et al., 2009). This cohort variability is probably
due to varying study designs, different responses of tumor
subtypes and/or the transcriptional heterogeneity of PDAC
between patients. Therefore, a multi-gene signature resulting
from many different studies is required – large enough to
capture the multiple facets of the disease and small enough to be
applied on individual patient material. Through meta-analysis of
multiple data sets a consent of as many as 827 genes have been
found to be significantly up-regulated in PDAC (Goonesekere
et al., 2014) and as low as five have been previously used for
prediction analysis (Bhasin et al., 2016), suggesting meta-analysis
as promising tool to identify a gene signature that fulfills the
demanded needs.

Here, we present a novel meta-analysis-based approach to
identify a robust tissue-based gene signature for classification
of PDAC through the incorporation of several independent
transcriptome studies. Identified genes were clustered based on
gene co-expression and annotated with tissue compartment.
A survival analysis of the gene clusters in data from The Cancer
Genome Atlas (TCGA) revealed their prognostic behavior for
PDAC and allowed the reduction to a clinically feasible signature
of 17 genes. These genes were then validated in independent
cohorts to assess the applicability of the biomarker not only
to pancreatic cancer tissues but also its capability to identify
pancreatic precursor lesions and discriminate pancreatitis in
fresh-frozen (FF) as well as formalin-fixed paraffin embedded
tissues (FFPE). Finally, validation in patient-derived material
on transcript and protein level, using qPCR and ELISA-based
protein detection in blood plasma indicated the translational
potential of the described biomarker panel.

RESULTS

Multiple Genes Are Required to Classify
PDAC in Independent Data Sets
We collected 18 fresh-frozen PDAC (tumor content 15–80%)
and 13 pancreatic non-tumor (normal pancreatic tissue distant
to tumor side) tissues and analyzed their transcriptomes using
Illumina humanRef-12 bead arrays. After preprocessing and
filtering, 21168 genes were further analyzed. Gene set enrichment
analysis (Luo et al., 2009) using ConsensusPathDB (Kamburov
et al., 2009) identified multiple pathways altered in PDAC
samples associated with the development and progression of
epithelial malignancies including pancreatic, breast, and lung
cancer, confirming the expected pathways of a PDAC cohort
and making it suitable for down-stream analysis. Up-regulated
pathways included for example the transforming growth factor
beta receptor (TGFβR), tumor necrosis factor alpha (TNFα),
T-cell antigen receptor (TCR), mitogen-activated protein kinase
(MAPK), wingless-related integration site (Wnt) and integrin
signaling. In addition, pathways involved in pancreatic secretion
were significantly down-regulated (Supplementary Figure S1 and
Supplementary Table S1).

A schematic flow chart of the performed analysis for
biomarker identification is presented in Figure 1. First, we sought
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FIGURE 1 | Schematic workflow of analyses.

to identify a minimum predictive gene signature to classify PDAC
from non-tumor tissues. Prediction performance was evaluated
by 10-fold cross-validation (CV) using a support vector machine
(SVM) and features were selected according to log2-fold change
(log2FC) differences in an inner CV on the training samples to
reduce bias through overfitting and to assure independence in
the testing set (see Single Set biomarker Identification for M1in
Materials and Methods).

We found two genes, syncoilin (SYNC) and
chymotrypsinogen B2 (CTRB2), to discriminate between
tumor and non-tumor tissue in data set M1 (Figure 2A, blue
line). To validate these genes on independent data sets, we
selected five publicly available cohorts (Badea et al., 2008; Pei
et al., 2009; Donahue et al., 2012; Zhang et al., 2012; Haider
et al., 2014) with microarray gene expression data that included a
minimum of five samples of both human PDAC and pancreatic
non-tumor fresh-frozen tissues (M2–M6, shown in Table 1).
Cross-validation classification performances with these two
genes on M2-M5 (SYNC and CTRB2 were missing in data set
M6) revealed poor and highly varying AUCs between 0.50 and
0.84 (Figure 2A), clearly indicating overfitting toward our data

set, that might arise from sample collection, data preparation,
and/or microarray analysis. Therefore, derivation of a small
number of classifier genes from a single data set are context-
dependent and a more robust gene signature based on multiple
data sets is required.

To derive a cross-study biomarker, we first rendered data
sets M1–M6 comparable through application of a meta-analysis
algorithm (Figure 3). Meta-analysis avoids batch effects arising
from different study designs and/or microarray platforms by
performing analyses within each data set and not comparing
samples across different studies. Briefly, data sets (M1–M6) were
split in a leave-one-out-cross-validation (LOOCV) into testing
(hold out data set) and training sets, with the latter being used
for feature selection. Within the feature selection, the algorithm
ranked the genes according to their absolute log2FC within each
training set, aggregated the rankings and optimized the number
of genes n that were selected from the combined ranking in an
inner LOOCV (see Meta-Analysis Biomarker Identification for
M1–M6 in Materials and Methods). The classification results
for data sets M1–M6, being held out as testing sets, revealed
performances with AUCs between 0.91 and 1.0 and resulted
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FIGURE 2 | ROC curves to visualize classification performance between PDAC and non-tumor samples. (A) Classification performance with two genes (SYNC and
CTRB2) selected in inner cross validation of data set M1 (blue line) and validation of these genes in independent data sets M2–M5. (B) Classification performances
for testing data sets M1–M6 from the meta-analysis. 95% confidence interval of AUC is presented in brackets.

in an average prediction performance of AUCaverage = 0.97
(Figure 2B). The optimal number of classifier genes per data
set ranged between 35 and 50, depending on which data sets
were used for feature selection. The union of all classifier
genes comprised a total of 81 unique genes (Supplementary
Table S2). Additionally, we tested other feature rankings, such
as p-value or SVM weights, but both resulted in larger final
gene lists (96 and 134) at equal or worse prediction performance
(Supplementary Figures S2A,B). A control run with rearranged
class labels led to random prediction performances with an
AUC = 0.5 within a 95% confidence interval, which indicated
the absence of any bias by the meta-analysis (Supplementary
Figure S2C). Taken together, the average prediction performance
improved by 1AUC = 0.21 compared to a single-study analysis
(AUCaverage = 0.76) emphasizing the robustness of the selected
classifier genes and the need of considering multiple data sets in
biomarker identification.

Classifier Genes Originate From Distinct
Tissue Compartments and
Tumor-Specific Subtypes
Consensus clustering of the expression values of the 81 classifier
genes across the data sets M1–M6 resulted in four distinct clusters
(Figure 4A). We then functionally annotated the classifier
genes according to the gene labels from Moffitt et al. (2015),
where available (76 out of 81; Supplementary Table S2). In
this study, the authors used non-negative matrix factorization
on cancerous and normal pancreatic samples to assign 19749
genes to one of 14 distinct gene labels according to function
or tissue origin. Gene labels included normal compartments
(distant organs, normal pancreas) and tumor compartments
(stroma, tumor subtypes). Interestingly, six gene labels from
Moffitt et al. (2015) overlapped significantly with the four
clusters identified from consensus clustering (χ2 test; p < 2e-16;
Figure 4A).

In detail, 27 of 35 genes in cluster 1 were labeled as
exocrine pancreas, including, e.g., pancreatic lipase-related
proteins (PNLIPRP) 1 and 2 and serpine family 1 member 2
(SERPINI2). Two genes were labeled as endocrine pancreas:
islet amyloid polipeptide (IAPP) and aryl-hydrocarbon receptor
repressor (KIAA1234), one gene, carboxypeptidase B1 (CBP1),
was assigned to liver, and four genes had no annotation
(Figure 4A). Furthermore, all genes related to cluster 1
were down-regulated in PDAC compared to non-tumor
tissue.

In contrast, all genes in clusters 2–4 were up-regulated in
tumor versus non-tumor tissue (log2FC > 0). Genes (n = 10) in
cluster 2 were entirely labeled as activated stroma (Figure 4A),
containing periostin (POSTN), fibronectin 1 (FN1) and collagens
(COL10A1, COL11A1), which have already been identified as
deregulated in precursor lesions of pancreatic cancer (Erkan et al.,
2012).

Hierarchical clustering indicated the closest similarity in
expression of genes in clusters 3 and 4, probably because
cluster members were mainly identified as classical and basal-
like tumor genes (Figure 4A). 11 out of 12 genes in cluster
3 and 10 out of 26 genes in cluster 4 were labeled as
classical tumor genes with the remaining being primarily basal-
like genes. The latter include, e.g., laminins and keratins,
whereas the former contains adhesion-associated and epithelial
genes.

Taken together, consensus clustering and functional
annotation of the classifier genes suggest the presence of
different biological processes in PDAC progression and their
importance for PDAC prediction.

Classifier Genes Correlate With Patient
Survival
Despite an overall poor prognosis, the clinical course of PDAC
patients shows remarkable heterogeneity. To examine how gene
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TABLE 1 | Summary of data sets used in this study for meta- and validation analysis, including data identifiers, tumor and non-tumor samples and tissue type
[fresh-frozen (FF) or formalin fixed paraffin-embedded (FFPE)], feature size after pre-processing, microarray chip, original reference and public repository.

ID Pancreatic tumor
samples

Pancreatic
non-tumor samples

Size Platform Reference Source

Meta-analysis M1 18 FF PDAC tissues 13 FF tissues 21168 Illumina − In house:
GSE101448

M2 36 FF PDAC tissues 36 FF paired tissues 20156 Affymetrix
U133plus2.0

Badea et al., 2008 GSE15471

M3 45 FF PDAC tissues 45 FF paired tissues 18232 Affymetrix
HumanGene1.0ST

Zhang et al., 2012 GSE28735

M4 25 FF PDAC tissues 7 FF tissues 20156 Affymetrix
U133plus2.0

Donahue et al., 2012 GSE32676

M5 36 FF tumor tissues 16 FF tissues 20155 Affymetrix
U133plus2.0

Pei et al., 2009 GSE16515

M6 28 FF PDAC tissues 7 FF tissues 13625 Affymetrix
HumanExon1.0STv2

Haider et al., 2014 GSE56560

Validation-analysis
PDAC

V1 6 FFPE PDAC tissues 6 FFPE tissues 21168 Illumina − In house:
GSE101448

V2 3 FF PDAC and 3 FFPE
PDAC tissues

3 FF tissues, 1 FFPE
tissue and 10 FFPE
pancreatitis tissues

21163 Illumina − In house:
GSE101462

V3 Microdissected: 14 FF
PDAC

11 FF tissues 17936 Affymetrix U133a
and U133b

Grützmann et al., 2004 E-MEXP-950

Microdissected: 6 FF
PDAC and 11 FF
adjacent stroma tissues

6 FF tissues and 9 FF
pancreatitis tissues

17936 Affymetrix U133a
and U133b

Pilarsky et al., 2008 E-MEXP-1121

V4 178 FF pancreatic
cancer tissues

405 bladder, 1080
breast, 280 colon, 369
liver, and 496 thyroid
cancer FF tissues

19722 RNA-seq
IlluminaHiSeq2000

− TCGA

Validation-analysis
precursor lesions

V5 4 FF PDAC and 13 FF
PanIN-2/3 lesions
tissues

3 FF pancreatic healthy
donor tissues

17936 Affymetrix U133a
and U133b

Crnogorac-Jurcevic
et al., 2013

GSE43288

V6 3 IPMNs, 6 IPMAs and
6 IPMCs FF tissues

7 normal pancreatic
duct FF tissues

20546 Affymetrix
U133plus2.0

Hiraoka et al., 2011 GSE19650

V7 3 PDAC and 3 PanIN
FF tissues from
Pdx1-cre; KrasLSLG12D

mice

3 FF tissues from
Pdx1-cre; KrasLSLG12D

mice

20917 Affymetrix
mogene10sttran
scriptcluster

Ling et al., 2012 GSE33322

expression from the four consensus clusters correlates with
patient survival, we analyzed survival and gene expression data
of 178 pancreatic cancer patients from the cancer genome
atlas (TCGA). Hierarchical clustering divided patients into low,
intermediate, and high gene expression groups for the individual
consensus gene clusters of our biomarker (Supplementary
Figure S3).

Indeed, genes in clusters 2–4 were highly associated with
survival. Low gene expression groups displayed a 5-year
survival rate of 79, 92, and 100%, respectively (Figure 4B),
while intermediate and high gene expression groups showed
significantly worse survival (log-ranks p = [0.00014, 0.000034,
0.0000026] in clusters 2–4). Thus, genes in clusters 2–4
have a prognostic significance for pancreatic cancer patients.
Contrary to this, there was no survival association among
the expression groups in cluster 1 (log-rank p = 0.85,
Figure 4B).

For better clinical applicability, we then sought to reduce
the number of genes in the classifier by making use of both

the cluster and survival information. Thus, we considered only
those genes impacting survival (clusters 2–4) and those that
were selected in every hold out data set of the meta-analysis
(Figure 3), i.e., the most robust genes across the cohorts
M1–M6. In total, 17 prognostic classifier genes, selected from
the 81 classifier genes, remained for PDAC detection and
validation experiments (Supplementary Table S2, marked in
yellow).

Diagnostic Potential of the 17-Gene
Classifier in PDAC
Next, we tested the diagnostic potential of the reduced 17-
gene classifier for the following four aspects. For clinical
application, it is important for (i) the classifier genes to be
detectable in formalin-fixed paraffin-embedded (FFPE) samples.
Additionally, clinical signs and radiographic findings of PDAC
and pancreatitis are often indistinguishable, highlighting
the need of a (ii) PDAC biomarker to be insensitive to
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FIGURE 3 | Meta-analysis workflow of N gene expression data sets with two conditions (gray and black). One data set is held out for testing (e.g., M1), while the
others (e.g., M2–M6) are used for feature selection. First, for each training data set gene rankings are calculated and subsequently combined. Secondly, the number
of selected genes n ∈ {5,10, . . ., 50} is optimized by evaluating their overall prediction performance in an inner LOOCV of the training data sets. Then n with the best
prediction performance is chosen and the top n genes are selected from the combined ranking. Finally, the prediction performance for the selected genes of the
testing data set is evaluated in a CV with SVM classification (see Figure 2B). This is repeated until every data set (M1–M6) was left out for testing once. The selected
genes in each round combine to a total of 81 unique classifier genes (Supplementary Table S2). A detailed description of the meta-analysis can be found in the
“Meta-Analysis Biomarker Identification for M1–M6” in Materials and Methods.

pancreatitis (Munigala et al., 2014). Another scope of
application is (iii) the specificity to PDAC compared to
other cancers and last but not least it is beneficial for the
classifier genes to be (iv) detectable in pancreatic precursor
lesions, which would allow diagnosis at a potentially treatable
stage.

To this end, we analyzed the putative clinical prediction
performance of the reduced set of classifier genes on seven
independent validation transcriptome data sets (V1–V7, Table 1).
These sets contain gene expression data of fresh-frozen (FF)
and FFPE PDAC as well as non-tumor tissues (V1, V2),
microdissected PDAC together with its comprised tumor-
adjacent stroma (V3), pancreatitis (V2, V3), other cancer entities
(V4), and lastly pancreatic precursor lesions of human and mouse
(V5–V7).

Prediction of the FFPE sample validation cohort
resulted in an optimal separation of PDAC and non-
tumor tissues (AUC = 1.00; Figure 5A, V1). Data set V2

was comprised of a mix between FF and FFPE samples,
including PDAC, non-tumor, and pancreatitis tissues. The
17-gene classifier separated tumor from non-tumor tissues
and pancreatitis with an AUC of 0.98, thus confirming
its specificity to PDAC and insensitivity to pancreatitis
(Figure 5A, V2).

Next, we applied the 17-gene classifier on V3, which
consists of microdissected epithelial PDAC cells, tumor-adjacent
stroma, non-tumor tissue, and pancreatitis, all obtained from
FF tissues (Grützmann et al., 2004; Pilarsky et al., 2008).
Discriminating tumor (PDAC and adjacent stroma) from non-
tumor (normal and pancreatitis) resulted in an AUC of 0.83
(Figure 5A, V3).

The tumor-type specificity of the classifier genes was
examined by testing the discriminating capability of 178
FF pancreatic cancer tissues compared to >2500 non-
pancreatic FF cancer samples (bladder, breast, colon,
liver, thyroid) from TCGA. Applying a cross-validation
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FIGURE 4 | (A) Heatmap of consensus matrix from consensus clustering of 81 classifier genes. Cluster membership, gene set labels according to Moffitt et al.
(2015) as well as the average log2FC between tumor and normal tissues (M1–M6) are depicted in the annotation bars on the top. (B) Kaplan–Meier plots for TCGA
data with patient grouping based on low, intermediate and high gene expression of genes in clusters 1–4 (Supplementary Figure S3).

(CV) approach with SVM classification resulted in
an AUC of 0.99 (Figure 5A, V4), which confirmed
the specificity of the classifier genes to pancreatic
cancer.

Lastly, we determined the diagnostic potential in early
disease stages (Figure 5B), whereby we could find only one
publicly available study (data set V5). The latter contained
FF tissues of three healthy donors, 13 dysplastic PanIN-2 and
focal PanIN-3 lesions and four PDAC samples (Crnogorac-
Jurcevic et al., 2013). Using CV with SVM classification
for our classifier genes, we perfectly discriminated PDAC
and PanINs from healthy donors (Figure 5B, V5). Because
IPMNs are the second major origin of PDAC after PanIN
(Hiraoka et al., 2011), we applied the 17-gene classifier to
distinguish 15 IPMNs from 7 normal pancreatic duct FF tissues.
Again, we used CV with SVM classification and obtained
a classification performance of AUC = 0.96 (Figure 5B,
V6). Because of the vicious cycle of no symptoms at the
beginning of the disease and the resulting late diagnosis, early
disease stages of human PDAC are very rare. Therefore, we
tested the 17-genes in a mouse model to monitor PDAC
progression (Ling et al., 2012) for further validation of
the detectability of PanIN samples. First, human identifiers
were matched to mouse and then normal FF tissues were
classified against PanIN and PDAC FF tissues based on the 16
successfully matched genes (excluding S100P), which resulted
in optimal separation (AUC = 1.00, Figure 5B, V7) using CV
analysis.

In conclusion, we could correctly classify PDAC, tumor-
adjacent stroma, and pancreatic precursor lesions while classifier
genes were not significantly altered in pancreatitis or cancers of
distinct origin in FF and FFPE tissues.

Validation of Classifier Genes on Protein
and Transcript Level in Patient-Derived
Material
To confirm the gene expression obtained from microarrays, we
tested the 17-gene classifier by RT-qPCR technology in biopsies
from 8 PDACs and one liver metastasis. mRNA was extracted
from fresh-frozen cancerous (n = 9) and non-tumor (n = 2)
pancreas tissues. On average, all biomarker transcripts were
significantly up-regulated in tumor compared to non-tumor
tissues (one-sided t-test: p-value < 0.005; Figure 5C). When
looking at every patient/sample not all of the 17 genes were found
up-regulated, however, the set of all classifier genes was always
significantly up-regulated in cancerous versus healthy biopsies
(one-sided t-test: p-value < 0.005; Figure 5D), corroborating the
need for a multi-gene instead of a single gene biomarker for
detecting PDAC in individual patients.

Next, we tested the translation of the classifier genes on protein
level using tissue microarrays (TMAs) from 138 pancreatic
cancers for immunohistochemical staining. Figure 6A shows a
representative staining for 3 classifier genes: AHNAK2, LAMC2
(cluster 4), and trefoil factor 1 (TFF1, Cluster 3), which were
chosen due to their robustness for each cluster. We omitted
the analysis of POSTN, the most robust gene in cluster 2, as it
has been confirmed recently by immunohistochemical staining
to be increased in PDAC compared to non-tumor tissues and
correlating with disease progression and poor survival (Liu et al.,
2017). We observed a strong positive staining for TFF1 in the
PanIN state (score 3) and a strong staining for all markers in the
PDAC samples (score 3). An overview of the TMA scores shows
that TFF1, LAMC2 and AHNAK2 can be detected in pancreatic
cancer samples with a score > 0 in 92, 93, and 53% of all samples,
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FIGURE 5 | ROC curves of prediction performances of the 17-gene classifier in seven independent data sets (see Table 1) for (A) validation in PDAC and (B)
validation in pancreatic precursor lesions. Values in brackets indicate the 95% confidence interval of the AUCs. (C,D) qPCR validation of the 17-gene classifier in 8
pancreatic tumors and one liver metastasis. Log2-fold differences between tumor samples and healthy donors are shown sorted by individual genes (C) or tumor
patients (D).

respectively, whereas at least one of the markers was detectable
with a score > 0 in 99% of the samples (Figure 6B).

Based on the discriminative potential of the above proteins,
we investigated the possibility of detecting secreted protein
candidates also in plasma samples. We selected exemplary
TFF1 and serpin family B member 5 (SERPINB5), which
are both secreted, and quantified their abundance using
commercially available ELISA assays in plasma samples of
PDAC patients. We found significantly elevated levels of
these proteins (Figure 6C) in PDAC blood plasma samples
(n = 21) compared to healthy donors (n = 19), although
some healthy donors displayed elevated levels of both
proteins.

Taken into account the to date small sample sizes, we
demonstrated the possibility of a promising work-flow (Figure 1)
for the establishment of a transcriptome and potential proteome
biomarker based on tissue and blood plasma samples from PDAC
patients. A challenge for further studies would be the applicability

of biomarker genes as early detection markers, in particular
reaching sufficient number of patients with pancreatic precursor
lesions or non-invasive stage PDAC, which again is hindered by
the late diagnosis.

DISCUSSION

The development of robust diagnostic, prognostic and
predictive biomarkers for the clinical management of pancreatic
adenocarcinoma has been a longstanding objective (Borrebaeck,
2017). We present here a robust gene expression classifier
derived through integration of gene expression data from several
independent studies. Data integration was achieved via the
development of a novel meta-analysis using cross-validation on
the level of individual patient cohorts that identified 81 genes
for PDAC classification. Our workflow clearly demonstrated
the need for a combination of several genes to best stratify
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FIGURE 6 | (A) Immunohistochemical staining for AHNAK2, TFF1 and LAMC2 in normal pancreas, PanIN and PDAC patients. (B) Summary of
immunohistochemistry scores for AHNAK2, LAMC2, TFF1 and a combined marker of all of them from 138 patients with pancreatic cancer. (C) ELISA-based protein
detection in the blood plasma of healthy donors (n = 19) and PDAC patients (n = 21) for exemplary selected two classifier genes (TFF1, SERPINB5).

PDAC cancer tissue, probably due to the large transcriptional
heterogeneity among PDAC patients.

Consensus clustering identified four clusters among the 81
genes that were functionally associated to gene labels assigned
by Moffitt et al. (2015) exocrine/endocrine pancreas, classical
and basal-like tumor and particularly activated stroma. The
latter is in line with the fact that PDAC is heavily interspersed
with stromal tissue (Erkan et al., 2012). Additionally, PDAC
samples if not microdissected, contain stromal compartments,
which are included in the transcriptome analysis and therefore
add to the PDAC signature. The PDAC samples used in
our data (M1) contained 15–80% of tumor cells, explaining
the importance of cluster 2. The exocrine/endocrine pancreas
related genes (cluster 1) were all down-regulated in tumor
tissues, indicating the functional decline in tumor-associated
pancreas tissue. Furthermore, cluster 1 did not correlate with
survival and thus turns out to be unusable to monitor the
disease. Contrary to this, high and intermediate expression of
genes related to stroma (cluster 2), classical (cluster 3) and
basal-like (cluster 4) tumor correlated significantly with bad
prognosis, making them not only diagnostic, but also prognostic
biomarkers. Interestingly, patients with low expression of genes
in clusters 2–4 show a highly improved 5-year survival rate
(>79%) compared to the expected rate of 5–7% (Siegel et al.,
2015), indicating a possibly curable stage of PDAC. This
makes these genes not only a diagnostic, but also a prognostic
biomarker. However, further research is needed to evaluate,
at which expression level the chance of treatment response is
promising.

Considering only genes within clusters with a prognostic
signature on survival and those being robustly detected within

the meta-analysis resulted in a manageable subset of 17 genes.
We found multiple genes within the reduced 17-gene classifier
that point to a dysregulation of the extracellular matrix (ECM)
function in PDAC. The integrin receptors ITGA2 and ITGB6
transduce cell-cell and cell-ECM signaling, whereas POSTN,
COL10A1, LAMC2, SERPINB5 and CEACAM5 bind to the
integrin receptors and promote cell survival, proliferation, cell
adhesion, and migration (Lu et al., 2012), processes which are also
important in tumorigenesis.

Further genes are TFF1, known to induce metastasis and
to regulate cancer-stroma interactions (Arumugam et al., 2011)
and S100P, which is associated with cell proliferation and
survival, and is expressed in about 50% of pancreatic lesions
(Hu et al., 2014). TMPRSS4 and AHNAK2 promote epithelial to
mesenchymal transition (Shankar et al., 2010; de Aberasturi and
Calvo, 2015), while GABRP has been linked to PDAC progression
and development (Takehara et al., 2007). Lastly, KRT19 and
GPRC5A can act as tumor suppressors in other cancers, but have
pro-oncogenic functions in PDAC (Ju et al., 2013; Zhou et al.,
2016).

With respect to clinical relevance and applicability, we showed
that our 17-gene classifier successfully discriminated tumor
from non-tumor tissues both in FF and FFPE samples and
singled out pancreatitis samples. Most importantly, it correctly
classified pancreatic precursor lesions, such as PanINs and
IPMNs. Identification and molecular monitoring of preinvasive
precursor lesions of PDAC, is of critical importance toward
increasing cure rates (Distler et al., 2014). However, material for
biomarker development is sparse and often not well categorized
mainly because most patients are diagnosed at advanced PDAC
stages making extensive validation hard due to a lack of early
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detection samples. Despite our 17-gene classifier resulting from
PDAC patients, it correctly classified pancreatic precursor lesions,
such as PanINs and IPMNs, encouraging the transition to early
stages.

Recently, Bhasin et al. (2016) published a 5-gene classifier
where 4 genes overlapped with our reported 17 genes
(AHNAK2, SERPINB5, TMPRSS4 and POSTN), and epithelial
cell transforming 2 (ECT2) was unique to their analysis. They
selected genes that were differentially regulated in three out of
four data sets and tested gene combinations ranging from 2 to 40
genes for best prediction performance in four training sets, which
resulted in the 5 reported genes. In comparison, we arrived at a
larger gene list (81) after unifying all suggested classifier genes
from a LOOCV of six data sets. Two overlapping data sets, M3
(GSE28735) and M4 (GSE32676), in both studies allowed direct
comparison of prediction performances and showed that genes
obtained within our meta-analysis scored consistently better than
Bhasin et al.’s (2016) (AUCs of 0.95 and 0.91 vs. 0.90 and 0.88
for M3 and M4, cf. Figure 2B). Of note, we selected 45 and 40
genes within the feature selection of the meta-analysis in contrast
to Bhasin’s five genes, suggesting better performances for more
genes.

Additionally, Bhasin et al. (2016) used hierarchical clustering
to test their 5-gene classifier on human IPMN (V6) and
mouse PanIN samples (V7, Figure 4B). While their 5-
gene signature separated all but one normal pancreatic duct
samples, our 17-gene classifier achieved perfect separation
in data set V6 (Supplementary Figure S4A). Both their
5-gene and our 17-gene classifier perfectly discriminated
between normal, PanIN and PDAC cases in a genetically
engineered mouse model to study PDAC progression (Ling
et al., 2012) (Supplementary Figure S4B). However, prediction
performance of Bhasin et al.’s (2016) five genes in human
PanIN samples (V5) resulted in a significantly worse performance
(AUC = 0.82, Specificity = 0) compared to our 17-gene biomarker
(AUC = Sensitivity = Specificity = 1). Particularly, the genes TFF1
and S100P separated IPMNs and PanINs from healthy donors,
emphasizing their crucial role in detecting pancreatic precursor
lesions. While the 5-gene classifier is superior to a single gene
biomarker (Bhasin et al., 2016), the results presented here suggest
the need to include further genes to increase robustly PDAC
stratification. Interestingly, the 5-gene classifier contained only
genes labeled related to activated stroma (POSTN) and basal-like
tumor (AHNAK2, SERPINB5, TMPRSS4), and excluded classical
tumor-like genes, which might explain the inferior classification
performance.

In this context, we hypothesize that a widely applicable
biomarker should cover the different tumor subtypes as described
by the transcriptomic PDAC landscape (Collisson et al., 2011;
Moffitt et al., 2015; Bailey et al., 2016). Using Moffitt et al.’s
(2015) class labels, the 17-classifier included representatives of the
basal-like and classical like tumor subtype as well as the activated
stroma. In comparison to Collisson et al.’s (2011) subtypes,
we find eleven genes within the 17-gene classifier (AHNAK2,
CEACAM5, CTSE, GABRP, GPRC5A, ITGA2, ITGB6, LAMC2,
S100P, SLC6A14, TFF1) associated to the classical and one
(POSTN) to the quasimesenchymal subtype according to their

NMF scores. The exocrine-like subtype corresponded to our
cluster 1 (exocrine/endocrine), including eleven representatives
such as, PNLIP, PNLIPRP2, and CEL. Bailey et al. identified
four different subtypes, squamous, ADEX, pancreatic progenitor,
and immunogenic. There were no NMF scores of genes from
clustering available, but AHNAK2, POSTN, and LAMC2 were
significantly up-regulated (adj.p.val < 0.05) in the squamous
subtype, and TFF1 and CTSE in the progenitor subtype
with respect to the other subtypes, making these genes good
subtype representatives. The ADEX subtype was exclusively
associated to cluster 1 (exocrine/endocrine) with 26 genes being
significantly up-regulated. Interestingly, we did not find any
genes significantly up-regulated in the immunogenic subtype.
This can be explained by the fact that the immunogenic subtype
is mostly represented by immunoglobulin genes, however, they
were not included in the probe sets of the investigated microarray
chips. Nevertheless, the immunogenic subtype has characteristics
similar to the progenitor subtype and is part of Collisson’s
classical subtype, which were covered by the 17-gene classifier.
Therefore, we capture the entire pancreatic cancer spectrum, with
the exception of the exocrine-like (Collisson et al., 2011), the
ADEX (Bailey et al., 2016) and the exocrine/endocrine subtype
(Moffitt et al., 2015). Representatives of these subtypes were
identified in our meta-analysis approach (cluster 1) but neglected
in the 17-gene classifier because the genes showed no survival
association and were down-regulated in tumor compared to
normal pancreas tissue.

Despite the limited number of patients, the classifier yielded
significant up-regulation in gene expression of PDAC patients
versus healthy individuals, using microarray and RT-qPCR
technologies and was clearly present on the protein level by
TMA. Using a “liquid biopsy” approach on two exemplary
chosen proteins (TFF1, SERPINB5), we found significantly
elevated levels in PDAC patient blood samples compared to
healthy donors, which might open up new avenues for clinical
applicability and robust, minimal-invasive detection of PDAC.
For this, however, larger cohort sizes, specificity compared
to other cancer types and testing of further classifier-derived
proteins will be needed for successful clinical translation.

Taken together, we established a novel meta-analysis pipeline
for robust biomarker identification for PDAC versus non-
tumor tissues, which can also be applied to different two-group
experiments. Subsequent analysis revealed the diagnostic and
prognostic influence of the 17-gene signature in PDAC, including
pancreatic precursor lesions with application in patient tissues
and liquid biopsies presenting a work-flow with potential impact
in clinical transition.

MATERIALS AND METHODS

RNA Isolation and Quantitative Real
Time PCR (qRT-PCR)
Total RNA was isolated from FF and FFPE tissue samples
according to the manufacturer’s protocol and as described by
Offermann et al. (2016). For FF tissues the Universal RNA
Purification Kit from Roboklon (Germany) and for FFPE tissues
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the RNeasy FFPE Kit from Qiagen were used. qRT-PCR was
performed as described elsewhere (Offermann et al., 2016) and
relative gene expression levels were calculated with the 2−11CT

method, using HPRT1 and 18S ribosomal RNA as reference genes
(primers in Supplementary Table S3). Log2-fold changes were
calculated compared to healthy tissue and tested for significant
elevation by one-sided t-tests compared to log2-fold change = 0.

Microarray Preprocessing
Total RNA was isolated, labeled and hybridized using the Whole-
Genome protocol from DASL HT Assay (Illumina, San Diego,
CA, United States) and Ovation R© FFPE WTA-Systems (NuGEN,
San Carlos, CA, United States) to an Illumina humanRef-12
beadarray (Illumina, San Diego, CA, United States) according
to the manufacturer’s protocol. Raw bead count data was
analyzed using the R/Bioconductor package beadarray (Dunning
et al., 2007) followed by quantile normalization and log2
transformation. Data is accessible on Gene Expression Omnibus
(GEO) as GSE101448 and GSE101462. Public microarray data
from GEO were downloaded in pre-processed form, i.e.,
normalized, log2 transformed and filtered on probe level,
according to the original reference (see Table 1). Since E-MEXP-
1121 is a follow-up study of E-MEXP-950, we combined the
two data sets from ArrayExpress. HGU133a and HGU133b
chips from both studies were normalized by robust multiarray
averaging (RMA) and subsequently combined, neglecting the
lower inter-quartile range (IQR) if probes were present on both
chips. For all data sets platform probe IDs were matched to
unique EntrezIDs. In the case of multiple probes matched the
same EntrezID, we chose the probe with the largest IQR.

Gene Set Enrichment Analysis
Enrichment of signaling pathways were performed as
implemented in the R/Bioconductor package GAGE (Luo
et al., 2009) with ConsensusPathDB pathways (Kamburov et al.,
2009). Pathways were considered significant with an adjusted
p-value < 0.01 (Benjamini-Hochberg) and were connected by an
edge if they share 30% of their genes (Supplementary Figure S1).

Single Set Biomarker Identification
for M1
The data set (M1) consisting of tumor and non-tumor samples
was iteratively split into testing and training samples in a 10-
fold cross-validation (CV). For each testing set, we selected the
features in an inner CV of the training samples to reduce the
bias of overfitting. First, we obtained absolute log2FC differences
between tumor and non-tumor tissues (Ritchie et al., 2015) and
ranked them accordingly. Secondly, we optimized the number
of genes that were selected. This is done by calculating the
prediction performance when n ∈ {1,2, . . ., 10} genes were
selected by applying an inner CV on the training samples.
Thirdly, the top n genes were selected from the gene ranking,
where n corresponds to the best prediction performance of the
inner CV. These genes were then selected to train a support
vector machine (SVM) on the training samples. Finally, the SVM
model was used to predict tumor and non-tumor samples in the

independent testing set. For all testing sets no more than two
genes (SYNC and CTRB2) were sufficient for perfect prediction.

Meta-Analysis Biomarker Identification
for M1–M6
To construct a robust gene signature discriminating between
tumor and non-tumor tissues across data sets we applied
a leave-one-out-cross-validation (LOOCV) approach on the
independent PDAC cohorts (Figure 3). For every cross-
validation run, one data set was held out for testing while the
others (N-1) were used for feature selection.

Combine Gene Rankings
First, genes were ranked within each cohort (N-1) according
to their absolute differential log2FC between tumor and non-
tumor tissue (Ritchie et al., 2015). Let Rig be the rank of
gene g in data set i. To adjust for different total number of
features, we normalized gene ranks according to the maximum
rank of the data set normRig =

Rig−1
max(Ri)−1 . The normalized ranks

were then combined by calculating their mean across data sets
aveRg = 1

N−1
∑N−1

i=1 normRig to obtain an overall gene ranking.

Optimize the Number of Genes to Be Selected
Secondly, to reduce the bias of overfitting, we used an inner
LOOCV on training data sets to optimize the number of genes
that were selected from the combined gene ranking. Therefore,
we chose n ∈ {5,10, . . ., 50} with the best prediction performance
in an inner LOOCV across all training data sets (N-1). Then the
top n genes were selected from the combined gene ranking and
used to evaluate the prediction performance of the selected genes.

Evaluate Performance of Selected Genes
For a given set of genes we evaluated the prediction performance
for the testing data set (in both outer and inner LOOCV) by
using a SVM with a Gaussian kernel in a balanced 10-fold CV
on tissue samples. SVM parameters (C, γ) were optimized using
a grid search in an inner CV (Meyer et al., 2015). The area under
the curve (AUC) of the receiver-operating characteristic (ROC)
served as performance evaluation metric (Sing et al., 2005).

For every testing data set, between 35 and 50 genes were
chosen in the feature selection, which combined to a total of 81
unique classifier genes.

Consensus Clustering
We used the ConsensusClusterPlus package (Wilkerson and
Hayes, 2010) with Ward’s clustering and Spearman correlation
distance metric to cluster genes in M1–M6. The optimal number
of clusters k = 4 was obtained by investigating the empirical
cumulative distribution function (CDF) and its relative change
as proposed by Wilkerson and Hayes (2010) (Supplementary
Figures S5A,B).

Survival Analysis
RMSE normalized gene expression data of 178 PDAC samples
and their associated survival information were downloaded
from TCGA. Based on the consensus clusters, we applied
Ward’s hierarchical clustering on expression data using Euclidean

Frontiers in Genetics | www.frontiersin.org 11 April 2018 | Volume 9 | Article 108

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00108 April 2, 2018 Time: 16:23 # 12

Klett et al. Identification of a Multi-Gene Biomarker for PDAC

distances to divide patients into low, intermediate and high
expression groups (Supplementary Figure S3). Survival rates were
analyzed using Kaplan–Meier plots and log-rank tests.

Validation Analysis
Prediction performances were estimated by 10-fold CV
with SVM on validation data sets with classifier genes as
features as described “Evaluate Performance of Selected Genes”
in “Materials and Methods.” To compare PDAC to other
cancers, we obtained RMSE normalized gene expression data
from TCGA for bladder, breast, colon, liver, and thyroid
cancer.

An overview about the statistical methods used is given in
Supplementary Table S4 and the meta-analysis algorithm has
been uploaded to: https://github.com/hklett/meta-analysis.git.

Immunohistochemistry
All patients were treated at the Clinic for General and
Visceral Surgery and histopathological work-up was performed
at the Institute of Surgical Pathology, both University
Medical Center Freiburg, Germany. All tumor samples were
reviewed by experienced pathologists. In total, 138 patients
were included in tissue microarray (TMA) analysis. Before
core biopsy was withdrawn from the donator and inserted
into the acceptor paraffin block, tumor tissue was outlined
at the corresponding hematoxylin-eosin slide. Each TMA
comprised up to 24 patients. All patients were represented
by two core biopsies with a core diameter of 2 mm. Hereby,
each core biopsy was allocated at a separate TMA-block.
Serial 2 µm thick tissue slices were prepared for Estrogen
Inducible Protein ps2 (TFF1; ab92377, Abcam plc, Cambridge,
United Kingdom), anti-LAMC2 (HPA024638, Sigma-Aldrich,
Munich Germany) and anti-AHNAK2 (HPA002940, Sigma
Aldrich, Munich, Germany). Slides were dried at 56◦C
overnight to improve adherence to the objective plate
and then deparaffinized in xylene and decreasing ethanol
concentrations. For TFF1 and LAMC2, heat mediated epitope
retrieval was performed for 20 min at pH 6.1 and 95◦C.
For AHNAK2 epitope retrieval was not necessary. For all
antibodies immunohistochemistry (IHC) was performed
using the Autostainer plus and stained afterward with Dako
Real R© Detection System (Dako K5001) according to the
manufacturer’s guidelines. Negative control was performed
via omission of primary antibody. Two pathologists blinded
for patient data, reviewed Anti-TFF1, Anti-LAMC2 and Anti-
AHNAK2 according to the following protocol. Using 200-fold
magnification, antibody expression was analyzed in each core
biopsy using a semi-quantitative expression analyses for antibody
intensity (score 0 = none, 1 = low, 2 = intermediate, 3 = strong)
and percentage of positive (range 0–100%, intervals of 5%) tumor
cells.

Enzyme-Linked Immunosorbent Assays
Enzyme-linked immunosorbent assays (ELISA) of TFF1 and
SERPINB5 were performed following the manufacturer’s

instructions (SEB049Hu, Cloud-Clone Corp. Houston, TX,
United States; LS-F13455, LifeSpan BioSciences Inc., Seattle,
WA, United States). The antibodies for detection of TFF1
and SERPINB5 were provided with the respective kits.
The plasma samples were diluted by a factor of four.
Standard or blood plasma samples (100 µl) were pipetted
on a provided plate in duplicates and incubated at 37◦C
for 1 h. TFF1 and SERPINB5 proteins were detected
using the provided detection reagents and the plate was
read at 450 nm using a TECAN Infinite M200PRO plate
reader.

Ethical Approval and Patient Approval
All study participants have given their written consent and the
study was approved by institutional ethics regulations (#126/17;
Ethics Commission, Albert Ludwigs University of Freiburg,
Germany).
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