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Reproduction is an important trait in sheep breeding as well as in other livestock.
However, despite its importance the genetic mechanisms of litter size in domestic sheep
(Ovis aries) are still poorly understood. To explore genetic mechanisms underlying the
variation in litter size, we conducted multiple independent genome-wide association
studies in five sheep breeds of high prolificacy (Wadi, Hu, Icelandic, Finnsheep, and
Romanov) and one low prolificacy (Texel) using the Ovine Infinium HD BeadChip,
respectively. We identified different sets of candidate genes associated with litter size in
different breeds: BMPR1B, FBN1, and MMP2 in Wadi; GRIA2, SMAD1, and CTNNB1 in
Hu; NCOA1 in Icelandic; INHBB, NF1, FLT1, PTGS2, and PLCB3 in Finnsheep; ESR2 in
Romanov and ESR1, GHR, ETS1, MMP15, FLI1, and SPP1 in Texel. Further annotation
of genes and bioinformatics analyses revealed that different biological pathways could
be involved in the variation in litter size of females: hormone secretion (FSH and LH)
in Wadi and Hu, placenta and embryonic lethality in Icelandic, folliculogenesis and
LH signaling in Finnsheep, ovulation and preovulatory follicle maturation in Romanov,
and estrogen and follicular growth in Texel. Taken together, our results provide new
insights into the genetic mechanisms underlying the prolificacy trait in sheep and other
mammals, suggesting targets for selection where the aim is to increase prolificacy in
breeding projects.

Keywords: sheep, prolificacy, genome-wide association study, biological pathways, regulation

INTRODUCTION

Reproduction is one of the most important traits in livestock production particularly for females.
Selection for higher prolificacy in domestic sheep (Ovis aries) has led to variable litter size (LS)
within and among breeds. For example, individual litter size of 1 to 8 has been recorded in the Hu
sheep and Finnsheep (Yue, 1996; Davis et al., 2006a).
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Previous studies reported that the exceptional prolificacy of
the Booroola Merino was attributed to a single major gene, while
a number of mutations of a major effect on litter size have been
identified in other sheep breeds (Table 1; see also Xu and Li,
2017). Vage et al. (2013) detected a mutation FecGF in gene GDF9
strongly associated with litter size in Norwegian White Sheep and
Finnish Landrace (Finnsheep) using a genome-wide association
analysis. Demars et al. (2013) reported the mutations FecXGr in
Grivette sheep and FecXO in Olkuska sheep associated with the
highly prolific phenotype by a genome-wide association analysis.
Cao et al. (2016) found that nine candidate genes including the
well-known FecB mutation played important roles in the variable
litter size in Hu and Small-tailed Han sheep through methylated
DNA-immunoprecipitation sequencing data. Miao et al. (2016)
identified a set of differentially expressed genes (e.g., FecB)
between low- and high-prolificacy breeds (Dorset vs. Small-tailed
Han sheep) through implementing integrated analysis of miRNAs
and lncRNAs. Lassoued et al. (2017) found the mutation FecXBar

associated with the prolificacy in Tunisian Barbarine. Despite its
great importance the genetic mechanisms of the high prolificacy

trait in domestic sheep are still poorly understood, partly due
to shortage of studies conducted across multiple prolific sheep
breeds. To date, numerous fecundity-associated mutations have
been identified in different sheep breeds, but very few mutations
have been consistently detected across the breeds. Despite the
reproduction of ewes can be affected by the complex interactions
of environmental conditions (i.e., climate, density, and food
abundance) (Wilson et al., 2009), previous studies suggested that
genetic factor could play important roles in the variable litter size
of ewes.

In this study, we conducted multiple independent genome-
wide association studies (GWAS) on litter size in the sheep
breeds of high (Wadi, Hu, Icelandic, Finnsheep, and Romanov)
and low (Texel) prolificacy with a litter size ranging from 1 to
6 from different geographic regions (Figure 1A) and genetic
origins (Figure 1B) of the world, respectively. Wadi sheep is
a high-prolificacy native breed from the Shandong Province
of China (Peng et al., 2017). Hu sheep is famous for early
sexual maturity and high fecundity, and are distributed in the
Taihu Lake area of Eastern China (Yue, 1996). Icelandic and

TABLE 1 | Genetics variants associated with the fecundity in sheep.

Gene Mutation Name, allele symbol Founder breeds Reference

BMP15 V299D Inverdale, FecXI Romney, Inverdale Galloway et al., 2000

Q291Ter Hanna, FecXH Romney Galloway et al., 2000

S367I Belclare, FecXB Belclare Hanrahan et al., 2004

Q239R Galway, FecXG Belclare, Cambridge,
Small-tailed Han

Hanrahan et al., 2004

C321Y Lacaune, FecXL Lacaune Bodin et al., 2007

1P154S159 Rasa Aragonesa, FecXR Rasa Aragonesa Martinez-Royo et al.,
2008; Monteagudo
et al., 2009

T317I Grivette, FecXGr Grivette (France) Demars et al., 2013

N337H Olkuska, FecXO Olkuska (Poland) Demars et al., 2013

c.301G > T,
c.310insC,
c.302_304delCTA

Barbarine, FecXBar Tunisian Barbarine Lassoued et al., 2017

Unknown Woodlands, FecXW Woodlands Feary et al., 2007

BMPR1B Q249R Booroola, FecBB Booroola Merino,
Garole, Javanese,
Small-tailed Han,
Wadi, Hu

Mulsant et al., 2001;
Souza et al., 2001;
Wilson et al., 2001;
Chu et al., 2011; Zhang
et al., 2011; Cao et al.,
2016

GDF9 S395F High Fertility, FecGH Belclare, Cambridge Hanrahan et al., 2004

S427R Thoka, FecGT Icelandic Nicol et al., 2009

F345C Embrapa, FecGE Santa Ines Silva et al., 2011

V371M FecGF Norwegian White
Sheep, Finnsheep
Landrace, Belclare

Vage et al., 2013;
Mullen and Hanrahan,
2014

R315C Vacaria, FecGV Brazilian sheep de Souza et al., 2012

R87H FecGI Baluchi Moradband et al., 2011

B4GALNT2 Lacaune, FecLL Lacaune Drouilhet et al., 2013

Woodlands Wood-land, FecX2W Coopworth Davis, 2005

OLKUSKA Olkuska Davis, 2004

BELLE-ILE Belle-Ile Davis, 2005

Unknown FecW Davis et al., 2006b
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FIGURE 1 | (A) Geographic locations for five sheep breeds of high (WAD, Wadi sheep; HUS, Hu sheep; ICE, Icelandic sheep; FIN, Finnsheep; and ROM, Romanov
sheep) and one low (TEX, Texel sheep) prolificacy. (B) Neighbor-joining tree of the six sheep breeds with 1000 bootstrap replicates.

Finnsheep (Finnish Landrace) sheep are northern European
high-fecundity breeds (Mullen and Hanrahan, 2014; Eiriksson
and Sigurdsson, 2017). Romanov sheep from the Volga Valley
shows outstanding reproduction qualities: early sexual maturity,
out-of-season breeding and extraordinary prolificacy (Deniskova
et al., 2017). The Texel sheep is a relatively low-prolificacy breed
originally from the island of Texel in the Netherlands and excels
in muscle growth and lean carcasses (Casas et al., 2004). Our
results will be important for further genetic improvement of
the trait and for better understanding the molecular basis of
reproduction in sheep as well as other mammals.

MATERIALS AND METHODS

Sample Collection and Phenotyping
A total of 522 ewes from five sheep breeds of high (Wadi,
n = 160; Hu, n = 117; Icelandic, n = 54; Finnsheep, n = 54;
and Romanov, n = 78) and one low (Texel, n = 59) prolificacy
were collected from farms in China, Iceland, Finland, and Russia
(Figure 1A). Animals included were as unrelated as possible
based on analysis of pedigree records and farmers’ knowledge.
Data for the phenotype of litter size and the total number of
litters collected from farm records are shown in Figure 2. The
litter size ranged from 1 to 6 based on parity from 1 to 11
in six sheep breeds. Genomic DNA was extracted from the ear
marginal tissues following a standard phenol/chloroform method
and was diluted to 50 ng/µl for the SNP BeadChip genotyping
(Köchl et al., 2005), except for the Icelandic samples which were
isolated from whole-blood using MasterPureTM Complete DNA
Purification Kit (Epicentre Biotech) following the manufacturers
protocol.

Genotyping and Quality Control
All the samples were genotyped using the Ovine Infinium HD
BeadChip according to the manufacturer’s protocol. Genotypes of

FIGURE 2 | Phenotypic distribution of litter size in the six sheep breeds (WAD,
Wadi sheep; HUS, Hu sheep; ICE, Icelandic sheep; FIN, Finnsheep; ROM,
Romanov sheep; and TEX, Texel sheep).

a total of 606,006 SNPs were obtained (genotype and phenotype
datasets1). We implemented quality control of these SNPs using
PLINK v1.07 software (Purcell et al., 2007). The SNPs or
individuals were excluded if they met any of the criteria: (1) no
chromosomal or physical location, (2) call rate < 0.95, (3) missing
genotype frequency > 0.05, and/or (4) minor allele frequency
(MAF) < 0.05. SNPs were excluded from the analysis if a p-value
of Fisher’s exact test for Hardy–Weinberg equilibrium less than
0.001.

Genetic Relationships and Population
Structure
To investigate the genetic relationships and population structure
among the six domestic sheep, we performed global FST,

1https://www.animalgenome.org/repository/pub/CAAS2018.0302/
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neighbor-joining (NJ) tree and principle component analysis
(PCA). The global FST value was calculated using GENEPOP
v4.2 (Raymond and Rousset, 1995). The genetic distances
between populations were calculated using an identity by state
(IBS) similarity matrix (Kang et al., 2010). Then, the distances
were used to construct a NJ tree with 1000 bootstraps using
the package PHYLIP v.3.695 (Felsenstein, 1989). In addition,
PCA was conducted using the SmartPCA program from the
EIGENSOFT package version 4.2 (Patterson et al., 2006) based
on the genotypes data.

Genome-Wide Association Analysis
To explore genetic structure within the breeds, multidimensional
scaling (MDS) analysis was performed based on the independent
SNPs using PLINK v1.07. Firstly, we implemented the option
of ‘indep-pairwise 50 5 0.05’ in PLINK v1.07, which calculated
pairwise linkage disequilibrium (LD) in a 50-SNP-window shifted
at a pace of five SNPs. If the LD estimate was r2 > 0.05, one of the
pairs of SNPs was removed (Purcell et al., 2007). The independent
SNPs retained by the LD criteria were then used in the MDS
analysis, and the results were plotted using the GenABEL package
in R v3.2.2 (Aulchenko et al., 2007).

We performed genome-wide association studies within five
sheep breeds of high prolificacy (Wadi, Hu, Icelandic, Finnsheep,
and Romanov) and one low prolificacy (Texel) using the
case/control design. We ranked all individuals within the breeds
according to their litter size from the highest to lowest. Then, we
selected individuals from two tails for each breed as ‘case’ and
‘control,’ respectively. Based on the distribution of phenotypes,
114 samples (LS ≥ 2) in Wadi, 66 samples (LS ≥ 2) in Hu,
20 samples (LS > 2) in Icelandic, 37 samples (LS ≥ 2.5) in
Finnsheep, 40 samples (LS ≥ 2.5) in Romanov and 28 samples
(LS≥ 1.6) in Texel sheep were selected as ‘cases,’ while 28 samples
(LS = 1) in Wadi, 15 samples (LS = 1) in Hu, 15 samples
(LS ≤ 1.75) in Icelandic, 9 samples (LS ≤ 2) in Finnsheep, 26
samples (LS ≤ 2) in Romanov and 14 samples (LS ≤ 1.33) in
Texel sheep were selected as ‘controls.’ In the GWAS, we used
the function of “qtscore” in the GenABEL package. Associated
SNPs were identified at both the genome-wide and chromosome-
wise significance levels (p < 0.05) after the Bonferroni correction
(Bonferroni, 1936). To account for systematic biases caused by
within-population substructure, the first and second dimensions
from the MDS analyses were used as the covariates (Price et al.,
2006). The correlation analysis between litter size and parity
within breeds showed that there were significant effects between
litter size and parity in four breeds (Wadi, Hu, Icelandic, and
Texel), and the effect of parity 1 on litter size was less than
that of parities 2 through 10 (Supplementary Table S1 and
Supplementary Figure S1). However, the parity of individuals
within breeds was different, and we mainly focused on the mean
of litter size of individual (total litter size/parity) in per breed.
Therefore, we excluded the effect of parity from the model.
The Quantile–Quantile (Q–Q) plots were visualized by plotting
the distribution of obtained vs. expected genome-wide p-values.
For genotype effect of potential SNPs on litter size in each
breed, differences between means were analyzed by the Student’s
t-test. The p < 0.05 was considered statistically significant. All

the results were presented as mean ± standard error (SE).
We implemented pairwise tests of linkage disequilibrium (LD)
between the most significant SNPs and their flanking SNPs within
approximately 1 Mb upstream and downstream using PLINK
v1.07. Regional association plots were generated using the R
package v3.2.2.

Bioinformatics Analysis
We annotated the genes associated with litter size in each breed
using the O. aries assembly Oar_v.4.02. Further, we submitted
the genes to the DAVID (database for annotation, visualization
and integrated discovery) database3 for gene ontology (GO)
enrichment and pathways analyses (Huang et al., 2009a,b). The
p-value of 0.1 and at least two genes from the input gene list in the
enriched category were considered for the enriched GO terms.
Also, we investigated the protein–protein interaction network
for the candidate genes using the STRING database version 10.5
(Szklarczyk et al., 2017). In addition, differential expressions of
the candidate genes in various tissues were examined using the
EMBL-EBI Expression Atlas database4 (Petryszak et al., 2016).

RESULTS

Population Relationship and
Differentiation
Pairwise FST value varied from 0.023 to 0.104 among the
populations with the least genetic differentiation observed
between Wadi and Hu sheep breeds (Supplementary Table S2).
The NJ tree showed that these breeds were clustered into two
major groups according to their Chinese and European origins
(Figure 1B). A similar geographic pattern was seen in the PCA
analyses with the grouping of Wadi and Hu sheep separated from
the other four European breeds (Supplementary Figure S2).

Genome-Wide Association Analysis
After the quality control, 508,444 SNPs and 114 individuals (91
cases vs. 23 controls) in Wadi, 506,031 SNPs and 80 individuals
(66 cases vs. 14 controls) in Hu, 443,125 SNPs and 23 individuals
(8 cases vs. 15 controls) in Icelandic, 492,165 SNPs and 37
individuals (28 cases vs. 9 controls) in Finnsheep, 465,794 SNPs
and 38 individuals (29 cases vs. 9 controls) in Romanov, 475,955
SNPs and 39 individuals (28 cases vs. 11 controls) in Texel
sheep were retained in the working dataset for the GWAS. We
did find several animals outlying the clusters of cases, which
might cause biases in the association analyses (Supplementary
Figure S3). We have repeated the association analyses without
these animals, and found the results are very similar. Thus, we
did not exclude these animals in the association analyses due
to the small sample size for the breeds. The resulting genomic
inflation factors were equal to 1.07 in Wadi, 1.14 in Hu, 1.12
in Icelandic, 1.14 in Finnsheep, 1.10 in Romanov, and 1.05 in

2http://www.ncbi.nlm.nih.gov/genome?term=ovis%20aries
3https://david.ncifcrf.gov/
4https://www.ebi.ac.uk/gxa/home/

Frontiers in Genetics | www.frontiersin.org 4 April 2018 | Volume 9 | Article 118

http://www.ncbi.nlm.nih.gov/genome?term=ovis%20aries
https://david.ncifcrf.gov/
https://www.ebi.ac.uk/gxa/home/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00118 April 9, 2018 Time: 17:46 # 5

Xu et al. Genetic Basis of Sheep Reproduction

FIGURE 3 | Manhattan plots of GWAS are shown on (A) Wadi, (B) Hu, (C) Icelandic, (D) Finnsheep, (E) Romanov and (F) Texel sheep. The 5% genome-wide
significant threshold value is indicated by a dotted line. The significant SNPs surrounding the genes previously reported to be associated with reproduction are
annotated at the chromosome-wise and genome-wide 5% significance after the Bonferroni correction.

Texel sheep, suggesting well-controlled population stratifications
(Supplementary Figure S4).

In Wadi sheep, we detected 59 and 8 SNPs at the chromosome-
wise and genome-wide (p < 1.92 × 10−6) 5% significance
after the Bonferroni correction, respectively (Figure 3A and
Supplementary Tables S3, S4). We observed a high level of LD

between the top significant SNP rs416717560 and rs421635584
located in gene BMPR1B (Figure 4A). For the SNP rs416717560,
average litter size of individuals with the G/G genotype (n = 115,
LS = 2.05 ± 0.06) was significantly (p < 0.01) higher than
that of the ewes with the A/G (n = 15, LS = 1.47 ± 0.16)
genotype (Figure 5A). Also, we found three additional significant
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FIGURE 4 | Plots of regional association results for the top significant SNP (red square) and their near SNPs in (A) Wadi, (B) Hu, (C) Icelandic, (D) Finnsheep,
(E) Romanov, and (F) Texel sheep. Different colors represent the r2 values of pair-wise LD estimates.

SNPs (rs429416173, rs402803857, and rs160917020) neighboring
genes BMPR1B, FBN1, and MMP2 (Table 2 and Supplementary
Table S3).

In Hu sheep, we identified 98 and 9 SNPs at the chromosome-
wise and genome-wide (p < 2.18 × 10−6) 5% significance
after Bonferroni correction (Figure 3B and Supplementary
Tables S3, S4). The regional plot showed that the top significant
SNPs rs429755189 and rs420460180 on chromosome 17 were in
an LD block that contained gene GRIA2 (Figure 4B). For the
rs429755189, average litter size of individuals with the genotypes
G/G (n = 38, LS = 1.99± 0.07) and A/G (n = 52, LS = 1.94± 0.06)

were significantly (p < 0.001) higher than that of ewes with the
genotype A/A (n = 20, LS = 1.40± 0.09) in the present population
(Figure 5B). Among these significant SNPs, 3 (rs406357666,
rs427436644 and rs412185353) are located within the genes
SMAD1 and CTNNB1 (Table 2 and Supplementary Table S3).

In Icelandic sheep, we found 22 SNPs at the chromosome-
wise 5% significance after the Bonferroni correction (Figure 3C
and Supplementary Tables S3, S4). The top significant SNP
rs429836421 on chromosome 3 was located within gene NCOA1
(Figure 4C). For rs429836421, average litter size of individuals
with the A/G genotype (n = 19, LS = 2.03 ± 0.05) is significantly
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FIGURE 5 | Genotypic distributions of the top significant SNPs for the litter size (LS) phenotype in (A) Wadi, (B) Hu, (C) Icelandic, (D) Finnsheep, (E) Romanov, and
(F) Texel sheep, respectively. The means LS were calculated for various breeds. Number of ewes per group of genotype is mentioned. Pairwise statistical
comparisons between means of genotype’s clades were performed using Student’s t-test. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

(p < 0.05) higher than that of the ewes with the genotype A/A
(n = 33, LS = 1.81± 0.04) (Figure 5C).

In Finnsheep, we detected 102 and 6 SNPs at the chromosome-
wise and genome-wide (p < 3.64 × 10−6) 5% significance
after the Bonferroni correction, respectively (Figure 3D and
Supplementary Tables S3, S4). The regional plot revealed
strong LD between the top significant SNP rs412280524 and
its neighboring SNPs rs401960737 and rs407751830 harbored
gene INHBB (Figure 4D). For the SNP rs412280524, litter size
of ewes with the genotype A/A (n = 40, LS = 2.84 ± 0.09)
is significantly (p < 0.001) higher than that of the ewes with
the genotype A/G (n = 13, LS = 2.08 ± 0.16) (Figure 5D).
Also, five additional significant SNPs (rs160509574, rs417444297,
rs404890873, rs401746929, and rs402764237) were found to be
located near to genes FLT1, NF1, PTGS2, and PLCB3 (Table 2 and
Supplementary Table S3).

In Romanov sheep, we identified 77 and 2 SNPs at the
chromosome-wise and genome-wide (p < 4.56 × 10−6)
5% significance after the Bonferroni correction (Figure 3E
and Supplementary Tables S3, S4). The top significant SNP
rs423810437 on chromosome 7 was in the gene ESR2 (Figure 4E).
For rs423810437, litter size of ewes with the genotype A/A (n = 69,
LS = 2.50 ± 0.06) is significantly (p < 0.001) higher than that
of the ewes with the genotype A/G (n = 8, LS = 1.79 ± 0.18)
(Figure 5E).

In Texel sheep, we observed 133 SNPs at the chromosome-
wise 5% significance after the Bonferroni correction (Figure 3F
and Supplementary Tables S3, S4). The regional plot showed
that the top significant SNPs rs161146164 and rs413776054 on
chromosome 16 were in a strong LD region containing one
functional gene GHR (Figure 4F). For rs161146164, litter size
of ewes with the genotype A/A (n = 53, LS = 1.64 ± 0.05)
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TABLE 2 | Genome-wide and chromosome-wise significant SNPs and associated genes.

Population SNP Chr Position (bp) MAF p-unadjusted p-adjusted Genes Location

Wadi rs416717560∗ 6 29295803 0.07 3.65E-08 8.19E-09 BMPR1B1 3′UTR

rs421635584∗ 6 29361782 0.05 4.36E-06 9.78E-07 BMPR1B1 Intron

rs429416173 6 29302788 0.2 7.55E-05 2.75E-05 BMPR1B1 CDS

rs402803857 7 58598895 0.1 4.96E-05 2.93E-05 FBN11 Intron

rs160917020∗ 14 23133427 0.19 1.10E-06 3.71E-07 MMP2 Downstream

Hu rs429755189∗ 17 41621298 0.43 1.94E-06 3.21E-07 GRIA21 Intron

rs420460180 17 41621269 0.29 8.50E-06 2.43E-06 GRIA21 Intron

rs406357666 17 12487861 0.19 1.40E-05 2.66E-05 SMAD11 Intron

rs427436644 19 13639996 0.32 7.69E-05 2.14E-05 CTNNB1 Downstream

rs412185353 19 13641870 0.33 1.51E-04 4.49E-05 CTNNB1 Downstream

Icelandic rs429836421 3 32030054 0.16 4.55E-05 3.63E-05 NCOA11 Intron

Finnsheep rs412280524∗ 2 184578329 0.09 2.62E-05 5.32E-07 INHBB Downstream

rs401960737∗ 2 184579671 0.09 2.62E-05 5.32E-07 INHBB Downstream

rs160509574 10 31933001 0.27 1.50E-05 4.71E-05 FLT11 Intron

rs417444297 11 18552961 0.11 4.20E-05 5.65E-05 NF1 Downstream

rs404890873 12 65662842 0.05 1.87E-04 1.59E-05 PTGS2 Upstream

rs401746929 21 41915064 0.08 1.85E-03 1.75E-04 PLCB3 Upstream

rs402764237 21 41919836 0.08 1.85E-03 1.75E-04 PLCB3 Upstream

Romanov rs423810437∗ 7 73335157 0.07 1.65E-05 3.12E-06 ESR21 5′ flanking region

Texel rs409969387 8 75353388 0.08 1.11E-03 1.21E-04 ESR1 Intron

rs410595930 14 23645021 0.06 1.33E-04 1.46E-04 SPP11 Intron

rs401207152 14 25147418 0.06 1.33E-04 1.46E-04 MMP15 Downstream

rs161146164 16 31834495 0.06 1.33E-04 9.11E-06 GHR1 CDS

rs413776054 16 31834942 0.06 1.33E-04 9.11E-06 GHR CDS

rs426666828 16 31882869 0.18 1.88E-04 7.54E-05 GHR1 Intron

rs413148060 21 30950537 0.15 1.02E-04 4.17E-05 ETS1 Upstream

rs405994606 21 31001548 0.15 1.02E-04 4.17E-05 ETS11 Intron

rs161612044 21 31009743 0.14 5.41E-04 1.01E-04 ETS11 Intron

rs412251543 21 31178275 0.1 4.01E-03 1.46E-04 ETS1/FLI1 Upstream/Downstream

For genes the best SNP of which is located outside of upstream/downstream 150 kb region. Chr., chromosome; MAF, Minor Allele Frequency. The p-unadjusted
corresponds to exact p for the Fisher’s test. The p-adjusted corresponds to the corrected significance of GWAS after principle component adjustment. The SNPs with
symbol (∗) denote that bonferroni-corrected genome-wide significant SNPs. The genes with symbol (1) denote that the SNPs are intragenic, otherwise they are the nearest
genes upstream and downstream of the tested SNPs.

is significantly (p < 0.01) higher than that of the ewes with
the genotype A/C (n = 6, LS = 1.15 ± 0.14) (Figure 5F).
The two mutations (rs161146164, Asn > His; rs413776054,
Pro > Ser) cause the amino acid change in coding region of the
GHR gene. In addition, we found eight additional significant
SNPs (rs426666828, rs409969387, rs410595930, rs401207152,
rs413148060, rs405994606, rs161612044, and rs412251543)
surrounding genes ESR1, ETS1, FLI1, SPP1, and MMP15
(Table 2 and Supplementary Table S3).

In addition to the source breed where the target SNPs
have been detected, we further assessed genotype effect of
the most significant SNPs on litter size in the other five
sheep breeds. In general, genotypes of the target SNPs did
not show significant association with increased litter size
in the breeds other than the source breed (Supplementary
Table S7). Nevertheless, we observed some exceptions. For
example, the genotype A/G of rs429836421, which was identified
in Icelandic sheep, showed significant associations with increased
litter size in both Icelandic and Hu sheep breeds. However,
a lack of homozygotes for the SNPs such as the genotype

G/G for rs412280524 in Finnsheep, G/G for rs423810437 in
Romanov and C/C for rs161146164 in Texel sheep could be
because of low frequency of the mutations and small sample
size.

Bioinformatics Analysis
We found significantly (p < 0.1) enriched GO terms associated
with reproduction for the candidate genes. The GO clusters
were primarily enriched in the categories of ovarian and oocyte
development (PTGS2, BMPR1B, INHBB, CTNNB1, MMP2,
MMP15, FBN1, GHR, and SPP1), phospholipase C activity (FLT1
and ESR1), SMAD protein (INHBB and SMAD1) and BMP
signaling (SMAD1 and BMPR1B) and positive regulation of
transcription (NCOA1, FLI1, ESR1, ESR2, CTNNB1, ETS1, and
BMPR1B), all of which are involved in the folliculogenesis,
follicle growth and granulosa cell proliferation (Figure 6
and Supplementary Table S5). Another relevant GO category
was hindbrain development (SMAD1 and CTNNB1), which
participated in regulating ovulation (Baird et al., 2006). In
addition, we detected 11 genes (i.e., PLCB3, ESR1, ESR2,
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FIGURE 6 | Gene ontology (GO) enrichments based on the functional genes surrounding the significant SNPs at the chromosome-wise 5% level.

FIGURE 7 | Protein–protein interaction networks identified by using STRING
database. Each line indicated known signaling pathways and protein
complexes.

MMP2, NCOA1, CTNNB1, INHBB, SMAD1, BMPR1B, PTGS2,
and GRIA2) involved in estrogen, thyroid hormone, TGF-beta,
retrograde endocannabinoid and hippo signaling pathways, and
these pathways played important roles in regulating follicle
growth and ovulation in livestock (Supplementary Table S5).
However, we observed different GO terms for the candidate genes

in different sheep breeds. For example, I-SMAD binding were
enriched in Hu sheep, and chromatin binding were enriched
in Texel sheep (Supplementary Table S6). In the gene network
analysis, we observed that 16 genes (i.e., BMPR1B, FBN1, MMP2,
SMAD1, CTNNB1, GRIA2, NCOA1, FLT1, NF1, PTGS2, PLCB3,
ESR2, ESR1, ETS1, SPP1, and GHR) showed protein–protein
interactions in the network (Figure 7). Expression data further
showed that the genes BMPR1B, FBN1, MMP2, GRIA2, SMAD1,
CTNNB1, NCOA1, NF1, FLT1, PTGS2, PLCB3, ESR2, ESR1, GHR,
ETS1, MMP15, FLI1, and SPP1 were either highly or moderately
expressed in reproduction-related tissues such as ovary, uterine
cervix, placenta, corpus luteum, cerebellum, pituitary gland or
uterus in sheep (Figure 8). Also, gene INHBB showed a high
expression in ovary and uterus of Mus musculus5.

DISCUSSION

In this study, we conducted multiple independent GWAS in
different sheep breeds to investigate the genetic mechanisms
underlying the litter size in sheep. Coupled with population
relationship and bioinformatics analyses, the GWAS identified
different genes associated with the litter size in different breeds
and revealed their differentially genetic regulation mechanisms
associated with follicle growth and ovulation in the reproduction
of ewes.

The diverse biological pathways identified from the novel
genes annotation play an important role in follicle growth and
ovulation of females in different sheep breeds (Figure 9). The
three genes identified in Wadi sheep, BMPR1B, FBN1, and

5https://www.ebi.ac.uk/gxa/home/
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FIGURE 8 | Heatmap of the candidate genes identified from six sheep breeds (WAD, Wadi sheep; HUS, Hu sheep; ICE, Icelandic sheep, FIN, Finnsheep, ROM,
Romanov sheep, and TEX, Texel sheep) enriched for expression in different ewes tissues deposited in the EBI Gene Expression Atlas database. The FPKM
(fragments per kilobase of transcript per million mapped reads) value is used to measure the expression level.

FIGURE 9 | Follicle growth and ovulation process for the role of the candidate genes identified from six sheep breeds in litter size.

MMP2, all play a crucial role in regulating hormone secretion
(Mulsant et al., 2001; Basini et al., 2011; Zhang et al., 2011;
Zhai et al., 2013). For example, BMPR1B gene can lead to an
increased density of the follicle-stimulating hormone (FSH) and
luteinizing hormone (LH) receptors with a concurrent reduction
in apoptosis to increase the ovulation rate of ewes (Regan et al.,
2015; Hu et al., 2016). As the main component of microfibrils in
the extracellular matrix, the gene FBN1 regulates cumulus cell
apoptosis by reducing the expression level of BMP15 involved
in estrogen signaling in porcine ovaries (Zhai et al., 2013). The
MMP2 gene plays a key role in ovulation and follicle atresia

by regulating FSH and insulin like growth factor 1 (IGF1)
(Knapp and Sun, 2017). In Hu sheep, the three genes GRIA2,
SMAD1, and CTNNB1 are related to estrogen response element
(Chang et al., 2013; Kumar et al., 2016; Vastagh et al., 2016).
For example, the gene GRIA2 has been shown to participate in
the glutamatergic pathway that regulates gonadotropin-releasing
hormone (GnRH), a known prerequisite of the subsequent
hormonal cascade inducing the ovulation in mice (Vastagh et al.,
2016). The gene SMAD1 encodes an intracellular BMP signaling
molecule, which is involved in mediating ovulation rate of
ewes (Xu et al., 2010). The CTNNB1 gene enhances FSH and
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LH actions in follicles by stimulating WNT/CTNNB1 pathway
and G protein-coupled gonadotropin receptors in female (Fan
et al., 2010). In Icelandic sheep, the gene NCOA1 can alter
the expression of multiple key genes PBP, AIB3, and FGFR2,
which are important for aberrant labyrinth morphogenesis of
the placenta and embryonic lethality (Chen et al., 2010; Huang
et al., 2011). In Finnsheep, the five candidate genes INHBB,
NF1, FLT1, PTGS2, and PLCB3 played important roles in the
development of folliculogenesis and LH signaling (Ding et al.,
2006; Tal et al., 2014; De Cesaro et al., 2015; Ben Sassi et al., 2016;
Cadoret et al., 2017). For example, the INHBB gene encodes an
inhibitor of apoptosis, which regulates porcine ovarian follicular
atresia (Terenina et al., 2017). The coding region of gene NF1
presents non-CpG methylation in the murine oocyte, which plays
a critical role in mammalian development (Haines et al., 2001).
The FLT1 gene has an important role in the activity of vascular
endothelial growth factor that linked to folliculogenesis (Celik-
Ozenci et al., 2003). The PTGS2 gene plays a critical role in
the ovulation by stimulating LH signaling in zebrafish (Tang
et al., 2017). The PLCB3 gene is highly expressed in bovine
cells of the ovulatory-sized follicles, with the role of activating
LH/LHR signaling (Castilho et al., 2014). In Romanov sheep,
the gene ESR2 activates ovulation and regulates preovulatory
follicle maturation through regulating estrogen response element
(Laliotis et al., 2017; Rumi et al., 2017). In Texel sheep, the
six candidate genes ESR1, GHR, ETS1, MMP15, FLI1, and
SPP1 are relevant to estrogen and follicular growth (Putnova
et al., 2001; Bachelot et al., 2002; Munoz et al., 2007; Xiao
et al., 2009; Hatzirodos et al., 2015; Ogiwara and Takahashi,
2017). As a key gene affecting estrogen biosynthesis, ESR1
gene functions similarly to ESR2, and is critical for follicular
growth and successful ovulation in ewes (Foroughinia et al.,
2017). The GHR gene plays a role in follicular growth through
stimulating IGF1 in mice (Bachelot et al., 2002). The ETS1 gene
was linked to the regulator of protein signaling protein-2 (RGS2)
involved in the ovulation in bovine (Sayasith et al., 2014). As
a proteolytic enzyme gene, the MMP15 gene has been shown
to mediate LH and its receptor in the preovulatory follicles
of teleost medaka (Ogiwara and Takahashi, 2017). The FLI1
gene encodes a critical transcription factor, which regulates gene
ETS1 (Vo et al., 2017). The SPP1 gene accounts for establishing
and maintaining cellular interactions between steroidogenic
and non-steroidogenic cells during the development of corpus
luteum (Poole et al., 2013). In addition, the GO categories
as well as protein–protein network and expression analysis
showed that these genes played an essential role in follicle
growth and ovulation of ewes. However, further expression
analyses of these genes in each breed are necessary in future
study. Taken together, the apparent difference for the litter size
among the breeds might be explained by diverse regulation
mechanisms.

Also, we calculated genetic differentiation among populations
using the global FST, PCA, and NJ tree methods to obtain
a refined picture of population genetic relationships. The
result showed that the genetic groups were consistent with
the geographic origins of the breeds. The different genetic
mechanisms associated with physiological processes for the

litter size among sheep breeds could be related to the various
environments in different geographic regions.

We noticed that previous studies had identified several genes
of major effect such as BMPR1B, BMP15, and GDF9 for the
prolificacy in ewes (Table 1). Different from early investigations,
we detected a set of novel genes for the litter size in ewes.
The main reason could be that most of early studies are
based on genome-wide selection tests between prolific and non-
prolific breeds using a lower density of SNPs. Instead, here
we implemented GWAS within specific sheep breeds of high
or low prolificacy using a high density SNP BeadChip array,
which should lead to more reliable associations. In addition,
the difference in threshold value used to define the ‘case’ and
‘control’ groups for each breed was also another potentially
influential factor. When we implemented the GWAS using a
two-step approach via the general linear model and genome-
wide efficient mixed-model analysis (GEMMA), we did not find
interesting candidate genes associated with reproduction across
the six breeds (see Supplementary Material for further details).
The fact that no candidate genes associated with reproduction
were detected could be due to that the power to detect such
associations will be weak when treating the trait of interest as
quantitative given the small sample size. Also, these populations
could have been subjected to selection on litter size through
environmental variables such as climate and diet. However, we
did not obtain data for local environmental variables in our data.
Thus, environmental variables as well as the age of reproduction
for the ewes were not taken into account in the model of the
GWAS, which would be essential for future study.

CONCLUSION

We revealed a set of novel functional genes for the litter size in
different sheep breeds across the world. Our results suggested
differentially genetic regulation mechanisms for the functional
genes in the reproduction of sheep. The significant SNPs and
genes identified here are useful for future molecular-based
breeding for a higher fertility. Also, our results provide important
insights into the regulation of reproduction in sheep and other
mammals.
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FIGURE S1 | Parity effect for litter size in the six breeds. X-axis is labeled as the
number of parity and Y-axis represents litter size. Pairwise statistical comparisons
between means of litter size in parity’s clades were performed using Student’s
t-test. ∗p < 0.05; ∗∗p < 0.01, and ∗∗∗p < 0.001.

FIGURE S2 | Principle component plots for 522 ewes from the six sheep breeds
(WAD: Wadi sheep, HUS: Hu sheep, ICE: Icelandic sheep, FIN: Finnish sheep,
ROM: Romanov sheep, and TEX: Texel sheep), respectively.

FIGURE S3 | Multidimensional scaling (MDS) plots in (a) Wadi, (b) Hu, (c)
Icelandic, (d) Finnish, (e) Romanov, and (f) Texel sheep. The red squares indicate

animals from the case group (highly prolific ewes), and the purple dots represent
animals in the control group (normally prolific ewes).

FIGURE S4 | Q–Q (quantile–quantile) plots of GWAS in (a) Wadi, (b) Hu, (c)
Icelandic, (d) Finnish, (e) Romanov, and (f) Texel sheep. Gray and black rings
represent association statistics before and after correction for population
stratification, respectively.

TABLE S1 | Parity effect for litter size and pairwise statistical comparisons
between means of litter size in parity’s clades in the six breeds.

TABLE S2 | Pairwise FST value among six breeds.

TABLE S3 | Bonferroni-corrected 5% chromosome-wise significance threshold in
the six sheep breeds, respectively.

TABLE S4 | Bonferroni-corrected genome-wide and chromosome-wise significant
SNPs and their nearest gene based on the GWAS.

TABLE S5 | GO enrichment analysis of the genes associated with the target SNPs
at the chromosome-wise level as identified by the GWAS.

TABLE S6 | GO enrichments of the novel genes identified by the GWAS at the
chromosome-wise level for the six sheep breeds, respectively.

TABLE S7 | Genotype effects of the most significant SNPs on litter size in six
sheep breeds, respectively.
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