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The domestic pigs have been undergone intense selection pressures for these
development of interested traits following domestication and modern breeding. This has
altered many traits in most of pig breeds, such as growth rate, body weight, fertility, and
immunity. Thus, the objectives of this study were to (1) detect these selection signatures
and identify the candidate genes that show evidences of recent artificial selection at
the level of whole genome, (2) be beneficial to understand the relationship between
genomic structure and phenotypic diversity, and (3) highlight the key roles of these
candidate genes in growth and development in the two breeds. The data consisted of
total raw number of 345570 single nucleotide polymorphisms (SNPs) in 1200 individuals
from the Chinese Landrace pigs (L, n = 600) and Yorkshire pigs (Y, n = 600). Based
on these SNPs data, two complementary methods, population differentiation (Fst) and
composite likelihood ratio test (CLR), were carried out to detect the selection signatures
in this study. A total of 540 potential selection regions (50 kb) which contained 111
candidate genes were detected for Landrace-Yorkshire pair (L-Y) by Fst. In addition,
73 and 125 candidate genes were found for Landrace pigs and Yorkshire pigs by CLR
test based on 321 and 628 potential selection regions, respectively. Some candidate
genes are associated with important traits and signaling pathways including the ACACA,
MECR, COL11A1, GHR, IGF1R, IGF2R, IFNG, and MTOR gene. The ACACA and
MECR gene are related to fatty acid biosynthesis. The COL11A1 gene is essential for
the development of the normal differentiation. The GHR, IGF1R, and IGF2R gene are
significant candidate genes which play major roles in the growth and development in
animals. The IFNG gene is associated with some aspects of immune response. The
MTOR gene regulates many signaling pathways and signaling transduction pathway.
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INTRODUCTION

As a major protein source of humans, the swine is one of the most
important livestock (Amaral et al., 2011; Wilkinson et al., 2013).
The domestic pig originated from the wild boar (Sus scrofa)
that were mainly distributed in Europe and Asia (Larson et al.,
2005, 2007). Artificial selection altered the phenotypic traits of
these pigs. Many pig breeds were objectively selected for desirable
performance traits such as rapid growth, increased lean meat
and enhanced prolificacy. A number of trait differentiations,
therefore, occurred in a short time, resulting in the development
of distinct pig breeds phenotypes. It is possible to investigate
the effects of selective pressure on various livestock at the
genome-wide level due to the development of high-throughput
genotyping technologies. Studies have been concentrated on the
specific traits relevant to the growth and development processes
with the object of identifying and characterizing selection
signatures, and then identifying the potential causal mutations
in order to understand the genetic basis structure for phenotypic
variation in the swine (Andersson, 2001; Andersson and Georges,
2004). Mutations conferring new favorable genotypes will be
subject to a selective sweep, which is an increase rapidly in
allele frequency under artificial selection. Moreover, the artificial
selection led to the traits changes mainly related to growth and
development. For example, a single nucleotide mutation in the
IGF2 gene lead to a major effect on muscle growth in some
commercial pig breeds (Laere et al., 2003). The MC4R gene is
related to growth and fatness both in pigs and humans (Kim et al.,
2000; Ovilo et al., 2006).

When a beneficial mutation emerges and subsequently spreads
in a population, this process, that is selective sweep (Smith and
Haigh, 1974), will generate higher population differentiations,
higher frequencies of segregating sites and linkage disequilibrium
(LD) patterns (Grossman et al., 2010). In this study, the Fst and
CLR test were carried out to assess population difference and
detect artificial selection. Population differentiation was accessed
by Fst based on the DNA polymorphism in populations (Wright,
1931; Hudson et al., 1992; Nielsen, 2005; Weir et al., 2005). While
CLR test has a high power to detect selective sweeps using site
frequency spectrum (SFS) patterns of SNP (Williamson et al.,
2007).

Although many studies have been detected a lot of
selection signatures in the pig, those findings are not entirely
consistent. Andersson and Plastow (2011) and Rubin et al.
(2012) detected selection signatures in European domestic pig
and wild boar using whole-genome resequencing. Selective
sweep analyses revealed strong selection signatures at three
loci which were related to morphological changes in the
domestic pig (Rubin et al., 2012). Fu et al. (2016) Identified
417 protein-coding genes which were mainly associated with
developmental and metabolic processes by combining Enshi
black pigs and Chinese wild boars. The reasons are not
only the differences of the statistical methods, but also the
varieties of SNP panels density and sample size. In addition,
domestic pigs under different evolution conditions (different
breeding objectives) show different selection signatures even
in the same breed. Therefore, it is important to explore

selection signatures in more pig breeds and these findings
will provide a foundation to investigate the artificial selection
process and domestication history of the two commercial pig
breeds.

MATERIALS AND METHODS

Genotype by Sequencing Data
In the study, we adopted a surfactant and the protease pyrolysis
method to extract genomic DNA from ear tissue. A total of
600 Landrace and 600 Yorkshire pigs were genotyped using
GBS technology (Elshire et al., 2011). The data were sequenced
by using Illumina HiSeq PE150. In the raw reads, N contents
with < 10% of sequence length or with high quality bases (>5)
and a number < 50% of the sequence length were retained.
The clean data were aligned against the Sscrofa 10.2 using
Burrows Wheeler Aligner (BWA) with the parameters ‘mem –
t 4 –k 32 –M’ (Li and Durbin, 2009). Then we found a total
of 10,445,924 SNPs by using the Genome Analysis Toolkit
(GATK) with default parameters (Depristo et al., 2011). And
a total of 345,570 SNP markers met the quality requirements
using VCFtools with the parameters ‘–min-meanDP 3 –maf
0.01 –max-missing 0.2′ (Danecek et al., 2011). The data that
support the findings is publically available at figshare1 under
doi: 10.6084/m9.figshare.5960914.

Populations and the Data Quality Control
A total of 1200 individuals from two commercial pig breeds, 600
Chinese Landrace pigs and 600 Chinese Yorkshire pigs, were
genotyped by sequencing. Genotyping contains raw data with
a total of 345570 SNPs. And after quality control we obtained
92114 SNPs. The quality control was determined using the
PLINK program (Purcell et al., 2007). A quality control was
adopted to access the high data quality by (1) removing SNPs
loci with call rate less than 0.95 and unknown position, (2)
removing SNPs loci with minor allele frequency (MAF) less than
0.05, (3) discarding the individuals with call rate less than 0.95,
(4) removing SNPs loci with Hardy Weinberg balance test less
than 10-6 and (5) removing SNPs loci in sex chromosomes.
Following the quality control, the missing genotypes was imputed
using the BEAGLE (Browning and Browning, 2007). After
imputation, the average estimated squared correlation (R2)
between the allele dosage with highest posterior probability
and the true allele dosage fore the marker is 0.9982. And
then the principal component analysis (PCA) for population
structure based on SNPs information was performed using the
EIGENSOFT (Patterson et al., 2006).

Methods for Detection of Selection
Signatures
Two methods, Fst and CLR test, were implemented to detect
the selection signatures. The two approaches are all directly
handling the SNP genotype. Hudson’s Fst (Hudson et al., 1992), a
classical measure of population differentiation, was used to detect

1https://figshare.com/
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selection signatures between Landrace pigs and Yorkshire pigs at
each SNP in this study. For each SNP in a pairwise comparison,
the expected Fst was calculated with the PopGenome v2.2.4 in R
(Pfeifer et al., 2015).

A recent selective sweep changes patterns of allele frequency
at linked sites, excluding variation at closely linked loci and
generating a relative excess of allele at very low and very
high frequencies at more aloof loci (Williamson et al., 2007).
A statistical method, CLR test (Nielsen et al., 2005), was
implemented to search for the particular pattern of allele
frequencies along a chromosome following a selective sweep. The
CLR value was computed using the SweeD program (Pavlidis
et al., 2013) at each SNP for the two breeds respectively.

Identification of Candidate Genes Under
Selection and Gene Annotation
An outlier-approach to obtain the candidate genes under
selection was taken (Yang et al., 2014). For all loci, a SNP
which corresponded to the upper 1% of the empirical genome-
wide distribution of Fst was considered to be a high-Fst outlier.
Accordingly, candidate selected regions were deemed as the 99th
percentile of the empirical genome-wide distribution of CLR.
And then, the distance cutoff was limited to be 500 bp in order
to obtain a high-quality gene for gene annotations. Thus, a
SNP was judged to belong with a gene if it is located within
the region defined by 500 bp upstream of gene start site and
500 bp downstream of the gene end site. Genes found within
the intervals spanning the candidate regions were searched from
the Ensembl genome browser2 using the Sscrofa 11.1 reference
genome and these were considered as candidate genes. Function
annotation and enrichment of the candidate genes were displayed
using the DAVID browser3 and the KEGG4. Phenotype that are
known to be affected by the identified candidate genes were
inferred from the literature.

RESULTS

Information of Filtered Data and
Population Structure
A genome-wide scan for selection signatures in two commercial
pig breeds was carried out by estimating Fst and CLR at
each marker. In the process of quality control, 171121 SNPs
and 100 individuals were discards due to missing genotype
data, 45600 SNPs and 31825SNPs were removed due to minor
allele thresholds and Hardy Weinberg balance thresholds, and
4910 SNPs in sex chromosomes were discarded. After the
quality control, 1100 individuals (546 Landrace pigs and 554
Yorkshire pigs) with 92114 SNPs were retained for this analysis
(Tables 1, 2). Table 3 summaries the whole genome potential
regions (50 kb) at 18 autonomies by Fst and CLR.

Population structure was investigated using PCA analysis. The
PCA was carried out based on all available SNPs to examine the

2http://www.ensembl.org/
3http://david.ncifcrf.gov/
4http://www.genome.jp/kegg/pathway.html

population genetic structure in this study. As shown in Figure 1,
most of Landrace pigs and Yorkshire pigs formed a separate
cluster severally. Based on the population structure information
by PCA, we founded that the raw determination data from
the farm had some mistakes about genealogy so we adjusted
genealogy for specific individuals in the two breeds.

Selection Signatures Shared in Two
Breeds – Fst Approach
According to the empirical distribution of Fst (Figure 2),
candidate regions under selection were defined as outliers falling
with the upper 1% of the distribution of Fst (Fst > 0.243179).
Supporting information shows graphically the Fst of each SNP
for all 18 autonomies (Supplementary Figure S1).

TABLE 1 | Information of filtered data and candidate genes detected by Fst.

Method Items L-Y

Fst SNPs 92114

Outliers 921

Potential selection regions 540

Candidate genes 111

TABLE 2 | Information of filtered data and candidate genes detected by CLR.

Method Items L Y

CLR SNPs 92114 92114

Outliers 921 921

Potential selection regions 321 628

Candidate genes 73 125

TABLE 3 | Summaries of the numbers of potential selection regions.

Chr L-Y (Fst) L (CLR) Y (CLR)

1 50 49 66

2 36 25 35

3 30 15 42

4 37 16 41

5 23 17 39

6 37 17 39

7 29 21 43

8 43 24 39

9 27 8 51

10 19 16 26

11 19 22 35

12 11 10 10

13 52 19 42

14 42 22 30

15 16 17 27

16 41 9 30

17 16 6 19

18 12 8 14

Total 540 321 628
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FIGURE 1 | Principal component analysis results based on whole genome
SNP data. The red represents the Landrace pigs and the blue represents the
Yorkshire pigs.

FIGURE 2 | Genome-wide distributions of selection signatures detected by
Fst cross all autonomies. The blue line corresponds to the 99% threshold on
the corresponding empirical distributions.

Using this strategy, the result of Fst revealed 111 candidate
genes of high levels of differentiation (Supplementary
Table S1). A gene on chromosome 12 (SSC 12), ACACA gene
(Fst = 0.373979048), plays a key role in fatty acid biosynthesis
(Stachowiak et al., 2013). The acetyl-CoA carboxylase alpha
that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA
is encoded by the ACACA gene. And malonyl-CoA regulates
mitochondrial fattyacid β-oxidation and has effects on the
expression of hypothalamic neuropeptides modulating energy
homeostasis and lipid metabolism (Bionaz and Loor, 2008;
Wakil and Abuelheiga, 2009). Some QTLs for average backfat
thickness and birth body weight, the percentage of vaccenic,
stearic, palmitic, and palmitoleic fatty acids and the total
percentage of saturated fatty acids in backfat and/or skeletal
muscles are corresponded with the precise localization of
ACACA gene (Liu et al., 2007, 2008; Quintanilla et al., 2011).

On SSC 6, the MTOR gene (Fst = 0.33406672) was identified
as an important selection signature. MTOR gene is related
to multiple signaling and signal transduction pathways in
various of cellular processes (Hay and Sonenberg, 2004).
The MTOR gene encodes mammalian target of rapamycin
(mTOR), which regulates multiple biological processes such
as cellular metabolism, growth and survival in response to
hormones, growth factors, nutrients, energy and stress signals
as a serine/threonine protein kinase. Moreover, the mTOR
signaling pathway regulates many major biological processes
and is related to many pathological conditions such as cancer,
obesity, type 2 diabetes, and neurodegeneration (Guertin and
Sabatini, 2007; Laplante and Sabatini, 2012). An important
gene, GHR gene (Fst = 0.268147326), which was implicated
in promoting the growth and development of animals was
deemed as a significant candidate gene on SSC 16 (Leung et al.,
1987; Schnoebelen-Combes et al., 1996). The significance of
growth hormone (GH) produced by the pituitary gland in
supporting growth and development has been known for a
long time (Dauncey et al., 1994). The major effect of GH is to
promote postnatal longitudinal growth. And GH regulates the
lipid, carbohydrate, nitrogen, and mineral metabolism within
a cell through interaction with the GH receptor on target cells
(Kopchick and Andry, 2000).

Selection Signatures Unique to Individual
Breeds– CLR Approach
Candidate regions were taken as outliers falling with the 99th
percentile of the distribution of CLR (Figures 3, 4). Supporting
information shows graphically the CLR of each SNP for all
18 autonomies of Landrace pigs (Supplementary Figure S1).
Supporting information shows graphically the CLR of each
SNP for all 18 autonomies of Yorkshire pigs (Supplementary
Figures S2, S3).

Add up to 73 candidate genes were found for the Landrace
pigs using this criterion (CLR > 4.928279, Supplementary
Table S2). On SSC 4, the COL11A1 gene (CLR = 11.18224)
encodes one of the two alpha chains of type XI collagen
which is a minor fibrillar collagen. The type XI collagen in

FIGURE 3 | Genome-wide distributions of selection signatures detected by
CLR in Landrace cross all autosomes. The blue line corresponds to the 99%
threshold on the corresponding empirical distributions.
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FIGURE 4 | Genome-wide distributions of selection signatures detected by
CLR in Yorkshire cross all autosomes. The blue line corresponds to the 99%
threshold on the corresponding empirical distributions.

cartilage extracellular matrix is essential for the development of
the normal differentiation and spatial organization structure of
growth plate chondrocytes (Li et al., 1995). Furthermore, the
COL11A1 gene also shows high evidence of selection in Tibetan
wild boar (Li et al., 2013). The MECR gene (CLR = 6.377755)
on SSC 6 encodes an oxidoreductase that catalyzes the last
step in mitochondrial fatty acid synthesis (mtFAS). The mtFAS
is a highly conserved metabolic process and is necessary for
mitochondrial respiration as a highly conserved metabolic
process. It was recently reported that mitochondrial 2-enoyl-
CoA/ACP reductase played an important role in placental
development in mice (Nair et al., 2017) and the mutations of
MECR resulted in childhood-onset dystonia and optic atrophy
(Heimer et al., 2016).

A total of 125 candidate genes with high CLR score
(CLR > 4.272431) were identified for the Yorkshire pigs based
on the distribution of CLR (Supplementary Table S3). Some
genes play key role in growth, immune and fertility of animals.
Two genes on SSC 1, the IGF1R gene (CLR = 6.658113) and the
IGF2R gene (CLR = 4.433161), were important candidate genes
in growth and development of Yorkshire pigs. The insulin-like
growth factor (IGF)-system includes insulin-like growth factors
1 and 2 (IGF1 and IGF2) along with the type I (IGF1R) and
type II (IGF2R) cell-surface receptors, the insulin receptors (IR)
and circulating IGF-binding proteins (IGFBPs) (Wang et al.,
2003). IGF1R and IR regulate the biological processes and lead
to cell growth, differentiation and survival. In mammals, the
activity of IGF2 is mediated by IGF2R, which sequesters IGF2 for
internalization and degradation (Brown et al., 2008). The IFNG
gene (CLR = 6.903143) encodes a soluble cytokine that belongs
to the type II interferon (IFN) class. IFNs are cytokines that
play a significant role in the resistance of mammalian hosts to
pathogens (Boehm et al., 1997). IFN-γ is secreted by thymus-
derived (T) cells under specific activation conditions and by
natural killer (NK) cells. The biological effects of IFN-γ are
regulation of some ways of the immune response, including
stimulation of antigen presentation by class I and class II major
histocompatibility complex (MHC) molecules, stimulation of
bactericidal activity of phagocytes, effects on cell proliferation and

apoptosis, orchestration of leukocyte-endothelium interactions
(Schroder et al., 2004).

Functional Annotation of the Candidate
Genes
The 111 candidate genes that were identified at high Fst
values for Landrace-Yorkshire pair (L-Y), and the 73 and 125
candidate genes that were found by CLR for Landrace pigs
and Yorkshire pigs respectively, were accessed for functional
enrichment using the DAVID browser. Most of these genes
were implicated in multiple signaling and signal transduction
pathways in multifarious cellular and biochemical processes
(Supplementary Table S4). In the cAMP signaling pathway
seven candidate genes among them were identified (CNGB1,
GABBR1, GRIA2, HTR4, PPARA, RAC3, TIAM1). Cyclic
adenosine 3′,5′-monophosphate is a member of the most
common second messengers. The cAMP is a regulator of
pivotal physiologic processes including metabolism, secretion,
calcium homeostasis, muscle contraction, cell fate, and gene
transcription (Fimia and Sassone-Corsi, 2001). The Jak-STAT
signaling pathway contained five candidate genes under selection
(GHR, IFNG, IL20RB, IL23R, OSMR). In mammals, the Jak-
STAT pathway is the major signaling mechanism for a wide
variety of cytokines and growth factors. Jak-STAT signaling
is indispensable for lots of developmental and homeostatic
processes, including hematopoiesis, immune cell development,
stem cell maintenance, organismal growth, and mammary
gland development (Imada and Leonard, 2000; Harrison, 2012;
Kiu and Nicholson, 2012). In Wnt signaling pathway, three
candidate genes were found (BAMBI, FZD4, RAC3). The Wnt
signaling pathway is a regulator in the core biological processes
of proliferation, differentiation, stem cell renewal and in the
origin of cancer when deregulated (Huelsken and Behrens,
2002). And signaling molecules secreted by the Wnt family
have been found to come into play in controlling embryonic
development from hydra to human (Yang, 2010). A variety
of candidate genes were also identified in pathways upstream
and downstream of the mTOR signaling pathway including the
insulin signaling pathway (ACACA, FOXO1, MTOR, PPARA),
the AMPK signaling pathway (FOXO1, IGF1R), the MAPK
signaling pathway (PTPRR, RAC3), the PI3K-Akt signaling
pathway (COL11A1, GHR, IGF1R, MDM2, MTOR, OSMR,

TABLE 4 | Overlapped candidate genes between Fst and CLR.

Genes SSC Methods

CNIH3 10 Fst, CLR(Y)

COL14A1 4 Fst, CLR(Y)

DOCK9 11 CLR(L), CLR(Y)

GRM7 13 Fst, CLR(Y)

IL23R 5 Fst, CLR(L)

LRGUK 18 Fst, CLR(Y)

OAT 14 CLR(L), CLR(Y)

SPAG17 4 CLR(L), CLR(Y)

TBC1D5 13 Fst, CLR(Y)
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PKN2, RAC3), the glycerolipid metabolism (AGK, DGKH,
LCLAT1), the VEGF signaling pathway (RAC3), the regulation
of autophagy (ATG7, IFNG) and the regulation of actin
cytoskeleton (PAK5, RAC3, TIAM1) (Saltiel and Kahn, 2001;
Bevan, 2001; Chen et al., 2001; Cross et al., 2003; Meijer and
Codogno, 2004; Engelman et al., 2006; Prentki and Madiraju,
2008; Steinberg and Kemp, 2009; Lee and Dominguez, 2010).
Besides, the pathway neuroactive ligand-receptor interaction
contained 10 candidate genes (THRB, GRIA2, GRIK1, GRM7,
GLRA3, HTR4, GABBR1, NPFFR1, PLG, GHR); the metabolic
pathways contained 27 candidate genes (ME1, NDST3, KYNU,
HSD17B12, ASL, STT3B, TPK1, GALC, GALNT16, PAFAH1B1,
RPIA, AGK, CYP4A24, MOCS2, MAN1A2, BST1, ACACA,
DGKH, AK7, POLR3C, CD38, LCLAT1, INPP4B, GULO, OAT,
MECR, PCCB).

DISCUSSION

Over the past 300 years, intense artificial selection for production
traits has led to the progress of many pig breeds with
specialized phenotypic traits. In this study, two different
methods, Fst and CLR, were carried out for detecting selection
signatures. And then various genes could be deemed as
candidate genes based on function or previous study with
interesting traits in pig breeds. The same principle of data
filtering was adopted to ensure the accuracy of the two
methods.

The Effect of the Methods on the Results
The Fst method is a classical approach for detecting selection
signatures based on population differentiation. Under the
condition of neutral evolution, the degree of differentiation
between populations depends on the genetic drift intensity, as
well as the difference in mutation rate and recombination rate
in genome. However, when a locus was positively selected on
only one population and remained neutral on another, or if
the two populations are selected in different directions at same
site, the two populations will increase genetic differentiation
at that site. Thus, significant differences in allele frequencies
between populations can be used as a selective effect of
the left blot. On the other hand, if there is a very low
degree of differentiation between the two populations in

the locus, it may also be caused by a balance selection,
a purification selection, or a positive selection in the same
direction.

The CLR method uses the combined likelihood of multiple
markers to detect the genomic region selected. Besides, the
CLR method is an available method for detecting sweeps that
is not highly sensitive to assumptions about the underlying
recombination rate or recombination hotspots (Williamson et al.,
2007; Frantz et al., 2015). Thus, we used CLR test that compared
allele frequencies in genome regions to the background pattern
of variation so that we can obtain a relatively accurate result.
Many other studies indicate that the CLR test has power to
detect old selective sweep which occurred in wide time scale.
And as we know, domestic pigs originated from wild boar
about 9000 years ago so that some old selective sweeps may be
detected by CLR test. However, we can not rule out a probability
that the CLR test has not detected some old selective sweeps
if these genome regions had selected frequently. Even so, we
believe that these identified results are very useful to future
studies.

Pig Production Traits
Selection signatures were found that may be involved in some
desirable pig production traits. Table 5 lists the comparison of
data on growth traits between two populations.

Traditional pig breeding program have concentrated on
growth rate and leanness (Hammond, 1998). However, in
order to satisfy the demands of consumers, meat quality
has become a an important objective in genetic selection
during the last few years (Vidal et al., 2005; Uimari et al.,
2013). Fat deposition is a significant trait that directly
affects the meat quality. According to the result of Fst,
the ACACA gene was regarded as a candidate gene that
plays an important role in fatty acid biosynthesis. Therefore,
genes related to fatty acid biosynthesis were selected by a
more intense artificial selection in two breeds. The result
of CLR has supported this point: the MECR gene detected
in Landrace breed was associated with mtFAS. However,
no more genes associated with fatty acid biosynthesis were
detected by Fst and CLR. The possible explanation is that
the two breeds had similar breeding objectives about growth
and development for a long time, however, meat quality
has not been selected systematically in the last decades.

TABLE 5 | Comparison of data on growth traits between two populations.

Breeds Terms Weight(kg) BF(mm) LMT(%) B100(mm) D100(d)

Landrace Mean 107.41 10.10 60.75 9.45 162.64

Max 136.00 20.30 81.00 20.48 204.20

Min 75.00 5.00 44.00 4.87 135.90

SD 14.95 2.51 5.94 2.06 11.49

Yorkshire Mean 107.30 10.18 60.70 9.58 161.08

Max 159.00 20.00 86.00 15.51 274.45

Min 75.00 5.00 40.00 4.42 120.59

SD 13.28 2.51 5.56 2.07 11.85

BF, backfat thickness; LMT, lean muscle thickness; B100, backfat thickness to 100 kg; D100, days to 100 kg; Max, maximum; Min, minimum; SD, standard deviation.
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Therefore, most candidate genes were associated with growth and
development, and yet a few candidate genes were involved in
meat quality.

According to the functional annotation of the candidate
genes, several pathways were directly associated with growth
and development of animals. For example, the insulin signaling
pathway that regulate individual development begin with the
binding of insulin to insulin receptors, and thus trigger a
series of intracellular signal transduction, ultimately playing a
role after reaching the organ (White and Kahn, 1994); the
PI3K-Akt signaling pathway is activated by many kinds of
cellular stimuli or toxic insults activate the PI3k-Akt signaling
pathway which is a regulator for fundamental cellular function
including transcription, translation, proliferation, growth and
survival (Song et al., 2005). The genes associated with growth
and development were identified by Fst and CLR. This
suggested that growth and development (growth rate and
feed ratio) had been the major breeding goal in the last few
decades.

Several genes were identified as candidate genes by both
Fst and CLR approaches (Table 4). The IL23R gene encodes
interleukin-23 (IL23) receptor. IL23 is a key factor in innate
and adaptive immunity and may participate in acute response
to infection in peripheral tissues. IL23 is responsible for
autoimmune inflammatory diseases and is important for
inflammatory bowel diseases in human (Duerr et al., 2006).
Three genes (DOCK9, OAT and SPAG17) were identified
by CLR in both Landrace pigs and Yorkshire pigs. The
DOCK9 gene encodes dedicator of cytokinesis protein 9. The
OAT gene encodes ornithine aminotransferase (OAT) which
plays crucial physiological roles in amino acid metabolism
(Levillain et al., 2007). The SPAG17 gene encodes a central
pair protein present in the axonemes of cells with a “9 + 2”
organization of microtubules. The SPAG17 gene plays a vital
role in the function and structure of motile cilia (Teves et al.,
2013).

Comparison With Previous Studies
Selection signatures detected in this study were compared with
previous studies. The KIT gene and the MC1R gene were
important candidate genes relevant to coat color (Andersson
and Plastow, 2011; Rubin et al., 2012). The two breeds are all
white color, so the two genes were not detected under selection
in this study. In addition, the IGFBP7 gene and the UNC13C
gene were overlapped with Yang’s report (Yang et al., 2014).
Furthermore, a total of 7 genes (COL11A1, COL14A1, IFNG,
IGF2R, MTOR, MYO10, PTPRR) were overlapped with Li’s study
(Li et al., 2013).
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