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INTRODUCTION

The Pacific white shrimp Litopenaeus vannamei represents one of the main marine shrimp species
commercialized worldwide (Gucic et al., 2013; FAO, 2014; Senapati et al., 2017). Despite its
importance on aquaculture and fishery activities, the exposure of wild and captive stocks to
pathogens, such as fungi, bacteria and mainly virus, has commonly leading to concerns on healthy
and population viability, causing damages related to quality of the shrimp used for local and
international trading and human feeding (Wang andWang, 2013; Liu et al., 2014; Rao et al., 2015).
The White Spot Syndrome Virus (WSSV), for instance, may spread very quickly in the open sea,
with even more severe harms for the aquaculture stocks, sometimes leading to 100% mortality
(FAO, 2017). In addition to the animal health, growth is also an important value for the shrimp
aquaculture (Liu et al., 2005; Jung et al., 2013; Lv et al., 2014). This scenario causes large economic
losses on the global shrimp farming (Chen et al., 2015) and also on the annual fishing catches (Xue
et al., 2013).

Despite the remarkable importance of penaeid shrimp, few data about determinant genes related
to growth and immunity are already described for crustacean (Jindra et al., 2013; Jung et al., 2013;
Lv et al., 2014), added to the fact that molecular mechanisms involved in growth and immunity are
not yet known in detail. In this manner, it becomes evident the need of expanding the knowledge
about genes and transcripts involved in cellular responses and physiology of this group. The lack
of a shrimp reference genome highlights the importance of studies addressing next generation
sequencing (NGS) as a relevant source of information (Guo et al., 2013; Santos et al., 2014; Powell
et al., 2015).

In this study, we used the RNA-seq approach for assembling a robust L. vannamei transcriptome
obtained from muscle tissue of captive individuals evaluated for growth and high survival
performances, and also from hepatopancreas and muscle of animals exposed to White Spot
Virus. Sequencing was carried out using Illumina technology (San Diego, California, USA), and
the transcripts blastX annotation against Swissprot database returned more than 20 thousand
unigenes with known gene products, identifying a higher amount than those previously reported
for other marine shrimp transcriptomes (Nguyen et al., 2016; Rao et al., 2016). These findings

Abbreviations: PLs, post-larvae; SPF, Specific Pathogen Free; WSSV, White Spot Syndrome Virus.
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certainly constitute an important source of genetic information
for further studies, considering gene differential expression
analysis and single nucleotide polymorphism (SNPs)
identification in crustacean species.

VALUE OF THE DATA

- L. vannamei has enormous commercial value among penaeid
shrimp, which account for one-third of the annual global
crustacean fisheries.

- The transcriptome reported herein was produced from
hepatopancreas and muscle tissue samples of specific pathogen
free (SPF) shrimp submitted to selective breeding programs for
high rates of survival and fast growth; and to exposure toWhite
Spot Virus.

- The percentage of unigenes presenting SwissProt hits described
in this study is higher than those observed for other shrimp
Illumina transcriptomes (e.g., Nguyen et al., 2016; Rao et al.,
2016).

- These data certainly constitute an important source of genomic
information for L. vannamei and other penaeid species in
addition to provide resources for the aquaculture studies
aiming higher growth gains and WSSV-resistant shrimp.

MATERIALS AND METHODS

Experimental Design and Sampling
The L. vannamei samples which were used in this work are
SPF shrimp submitted to selective breeding programs for high
rates of survival and fast growth in two shrimp commercial
companies (Genearch and Aquatec), both located in Rio Grande
do Norte (RN) state, Brazil. All samples were kept in a sanitary
environment monitored for the presence of many pathogens,
including WSSV and were collected in the first semester of 2015.
The genetic improvement programs have been conducted based
on performance of closed familiar lines, according to quantitative
analyses and genetic gain parameters evaluated by the companies
(data not available). For the sampling of individuals evaluated for
growth and survival performance, 20 closed families in triplicates
were assessed, and four families with the higher and four
with the lower growth rates were selected. We sampled muscle
tissue (pleopods) of one animal from each family, totalizing
eight animals evaluated for growth performance. The individuals
were about 2 months aged and weighed around 1.5 g. For the
WSSV exposed shrimp sampling, we used SPF individuals of
a hybrid line from Aquatec, which was originated from the
crossing of two different SPF lines, one from Aquatec and
another from Genearch. These hybrid shrimps were exposed to
WSSV in a farm pound with a high incidence of the disease.
Before and after the exposure to the virus, shrimp hemolymph
samples were submitted to quantitative real-time PCR (qPCR)
analyzes in order to confirm the presence or absence of the
WSSV, following a procedure proposed by Silva et al. (2011).
The efficiency of qPCR amplification was determined by the
method described by Pfaffl et al. (2002) and the specificity of the
amplification was confirmed by the analysis of the dissociation
curve (Ririe et al., 1997). After the contact with the WSSV and

qPCR tests, we selected one positive animal showing WSSV
symptoms, and a negative one with no symptoms, both weighting
about 6 g. Later, hepatopancreas and muscle tissues from each
individual were sampled, totalizing four samples from these
two shrimps evaluated to WSSV. Hepatopancreas and muscle
tissues were chosen given their relevance to immune response
in crustacean (Fan et al., 2016), and as a target for pathogen
infections, including WSSV (Yu et al., 2017), respectively. The
tissue samples were conditioned in RNA later (Thermo Fisher
Scientific, Waltham, MA, USA) and kept in biofreezer (−80◦C)
for the isolation of total RNA.

RNA Isolation and cDNA Library
Preparation
In total, 12 cDNA libraries were established. Eight libraries
were constructed using muscle tissue of individuals evaluated
for growth performance; the four remaining ones were
constructed using muscle and also hepatopancreas from the two
individuals exposed and evaluated to WSSV by qPCR. Total
RNA isolation was performed using the Trizol R©/chloroform
protocol (Chomczynski and Mackey, 1995), modified for the
centrifugation time in ethanol washing (12min) and added a
purification stage using lithium chloride (7.5M) for elimination
of phenol traces. The quality was assessed in a Qµbit
fluorometer (Thermo Fisher Scientific), quantity was evaluated in
a NanoDrop spectrophotometer (Thermo Fisher Scientific) and
samples with ratios between 1.8 and 2.2 were considered pure.
The integrity of the samples was confirmed in a BioAnalyser
equipment (Agilent Technologies Inc., Santa Clara, CA, USA)
and those with RNA Integrity Number (RIN) ≥ 6 were stored at
−80◦C. A cDNA library was produced from each sample using
a TruSeq RNA Library Preparation V2 kit (Illumina Inc., San
Diego, California, USA).

Sequencing, de Novo Assembly and BlastX
Annotation
Sample quantification was carried out in qPCR with the
Universal Library Quantification Kit (KAPA Biosystems,
Wilmington, MA, USA), prior to loading into the sequencer.
The libraries were grouped and ran on the Illumina HiSeq
2500 platform with 2 × 100 bp paired-end, using a TruSeq
SBS V3 kit (Illumina Inc., Thermo Fisher Scientific), at the
Laboratório de Biotecnologia Animal, Escola Superior de
Agricultura “Luiz de Queiroz”—Universidade de São Paulo
(ESALQ-USP). The quality of the raw data generated after
sequencing was visualized in the FastQC software (version
0.10.1) (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). All reads were filtered for Phred quality (QS) 23
(sequence inside) and 30 (sequence edges) and minimum
length of 65 bp using the SeqyClean software (v.1.9.9) (https://
github.com/ibest/seqyclean). The same package was also used
to remove contaminant sequences (primers and vectors)
using the Univec database (https://www.ncbi.nlm.nih.gov/
tools/vecscreen/univec/). After filtering, the reference de novo
assembly was performed in the Trinity software (Grabherr
et al., 2011). The sequences were normalized using Trinity’s
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insilico_read_normalization.pl script, with 50X adopted as the
minimum coverage value. For the assembly, 300 bp was defined
as the minimum size of the assembled contigs. The CD-Hit
package (Li and Godzik, 2006) and DustMasker (Morgulis et al.,
2006) were used to remove redundant contigs with more than
95% similarity and low complexity sequences, respectively.
The TransDecoder package (http://transdecoder.sourceforge.
net/) was used to identify the contigs candidate coding regions.
Meanwhile, Trinotate pipeline (https://trinotate.github.io/)
was employed for annotation of the sequences through the
following databases: Uniprot (uniref90+ SwissProt) with cut-off
value of 1e10−5, Gene Ontology (GO) (Ashburner et al., 2000)
for the GO terms Biological Process, Molecular Function and
Cellular Component and KEGG (Kyoto Encyclopedia of Genes
and Genomes) (Kanehisa et al., 2012), with the identification
of the main metabolic pathways found. The paired reads
fastq files from all the samples used in transcriptome analysis
(BioProject: Litopenaeus vannamei hepatopancreas and muscle
Transcriptome) are available in the NCBI Sequence Read
Archive (SRA) under the accession number SRP128934. This
Transcriptome Shotgun Assembly project has been deposited
at DDBJ/EMBL/GenBank under the accession GGKO00000000.
The version described in this paper is the first version,
GGKO01000000.

RESULTS AND DISCUSSION

The 488,681,310 transcripts from the 12 libraries were
filtered on SeqyClean for contaminants, rRNA and low
quality sequences. From these, about 30 million paired reads
(29,376,967) remained after normalization in Trinity package,
resulting in 28,654,475 (97.5%) fragments used in the reference
transcriptome after filtering. We obtained 63,105 transcripts
with 2,511 bp mean length and N50 of 3,464 bp. From this
total, 20,865 (33%) showed blastX hits on SwissProt database
(Supplementary Material 1; Table 1). The contigs filtered
to <95% of similarity were considered unigenes after the
reference assembly. The contig average size found here was
greater than those previously reported in L. vannamei (Ghaffari
et al., 2014), Penaeus monodon (Nguyen et al., 2016) and
Macrobrachium rosenberguii (Rao et al., 2015, 2016) Illumina
transcriptomes. The longest contig size observed in our
study was equal to 20,061 bp, being superior to the value of
13,578 bp reported for P. monodon transcriptome (Nguyen
et al., 2016). After elimination of the redundant contigs, low
complexity sequences and isoforms, candidate-coding regions
were identified, remaining 14,124 unigenes. The de novo
assembly and the automatic annotation results are shown in
Table 1.

TABLE 1 | Statistics of the reference assembly after normalization and an overview of the functional annotation of transcripts.

Transcripts used in the construction of the reference after filtering on SeqyClean

Growth WSSV-exposure

Tissue Muscle

(8 libraries)

Muscle

(2 libraries)

Hepatopancreas

(2 libraries)

Condition Higher growth Lower growth WSSV-negative WSSV-positive WSSV-negative WSSV-positive

Paired-end fragments 142,094,916 150,593,354 44,029,454 44,972,016 59,850,408 47,141,162

Total 292,688,270 89,001,470 106,991,570

195,993,040

488,681,310

Transcripts after normalization in Trinity

Reads number after normalization 29,376,967

Remaining reads number after low quality and adaptors filtering/

Reads number used in reference de novo assembly

28,654,475 (97.5%)*

Reference transcriptome analysis

Total number of contigs produced 63,105

SwissProt blastX hits unigenes 20,865 (33%)**

Average size 2,511 bp

N50 3,464 bp

Longest transcript (pb) 20,601

Transcripts number > 1,000 bp 27,887

Number of non-redundant unigenes with ORFs 14,124

(*) from total reads number after normalization and (**) from total number of contigs produced.

Frontiers in Genetics | www.frontiersin.org 3 April 2018 | Volume 9 | Article 120

http://transdecoder.sourceforge.net/
http://transdecoder.sourceforge.net/
https://trinotate.github.io/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Santos et al. RNA-Seq Data for L. vannamei

FIGURE 1 | SwissProt blastX hits found for the top 10 proteins related to growth and immunity in arthropod species. The protein name and blastX hit in arthropod

species are shown. Most of the blastX returned hits for myosin heavy chain (constituent of muscle) (41%) and crustacyanin (13%) (acting against virus in crustacean)

proteins.

Following the sequences alignment against SwissProt
database, the focus was given to genes that showed hits for
arthropod species and fitness-related functions, such as growth
and disease resistance. Among the most frequent proteins
exclusively identified in the animals evaluated for growth
performance are those related to myosin (MYSA) (41%),
tropomyosin and myosin heavy chain (9%), chitinase (6%) and
molt-inhibiting hormone-like (2%) genes (Figure 1). Myosin
acts on the formation of the muscular myofibrils and, along

with the paramyosin, is responsible for the stabilization of the

sarcomere (Liu et al., 2005). There is evidence that increased
myosin production and reorganization of myofibrils is associated
with growth during and after shrimp molt (Cesar and Yang,
2007; Li et al., 2014). Chitin constituent proteins are among those
responsible for the digestion of arthropod chitin exoskeleton,
enabling molt and animal growth (Li et al., 2015). Among the
most frequent genes in the WSSV-exposed shrimp samples
returning blastX hits were mainly those related to crustacyanin
1 (CRA1) and 2 (CRA2) (13%), lectins (8%) and hemocyanin
B (HCYB), and C (HCYC) heavy chain (6%) (Figure 1).
Hemocyanin and crustacyanin proteins have a wide range
of action against viruses, especially WSSV, acting on animal
stress and survival responses (Fan et al., 2016), agglutination
of the pathogen on hemolymph and cell lysis (Shockey et al.,
2009; Zheng et al., 2016). On the other hand, lectins act on the
pathogen specific recognition through molecular structures to a
given molecule (Song et al., 2010).

The de novo transcriptome assembly from muscle and
hepatopancreas of non-infected and infected shrimp, enabled
the identification of important genes with potential fitness-
related functions involved in growth and immunity. Such
assembly strategy, gathering two different tissues with diverse

functions, was performed in the effort to reach a wider
range and representativeness of transcripts, producing the most
robust transcriptome dataset for L. vannamei reported to date.
It becomes of particular interest for the species lacking a
reference genome, such as the majority of crustacean, including
L. vannamei. Considering the high accuracy and wide coverage of
RNA-seq produced here, this dataset can be useful for a gamma of
further approaches, such as differential gene expression studies,
analyses of isoforms originated from alternative splicing (Rao
et al., 2015; Sun et al., 2015), SNPs calling (Cui et al., 2014;
Santos et al., 2014; Yu et al., 2014), with potential to high-
density chip and linkage map (Baranski et al., 2014), apart
from genome wide association (GWAS) studies (Yu et al.,
2017).
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