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Down syndrome (DS) is due to the presence of an extra full or partial chromosome
21 (Hsa21). The identification of genes contributing to DS pathogenesis could be
the key to any rational therapy of the associated intellectual disability. We aim at
generating quantitative transcriptome maps in DS integrating all gene expression profile
datasets available for any cell type or tissue, to obtain a complete model of the
transcriptome in terms of both expression values for each gene and segmental trend of
gene expression along each chromosome. We used the TRAM (Transcriptome Mapper)
software for this meta-analysis, comparing transcript expression levels and profiles
between DS and normal brain, lymphoblastoid cell lines, blood cells, fibroblasts, thymus
and induced pluripotent stem cells, respectively. TRAM combined, normalized, and
integrated datasets from different sources and across diverse experimental platforms.
The main output was a linear expression value that may be used as a reference for
each of up to 37,181 mapped transcripts analyzed, related to both known genes and
expression sequence tag (EST) clusters. An independent example in vitro validation
of fibroblast transcriptome map data was performed through “Real-Time” reverse
transcription polymerase chain reaction showing an excellent correlation coefficient
(r = 0.93, p < 0.0001) with data obtained in silico. The availability of linear expression
values for each gene allowed the testing of the gene dosage hypothesis of the expected
3:2 DS/normal ratio for Hsa21 as well as other human genes in DS, in addition to listing
genes differentially expressed with statistical significance. Although a fraction of Hsa21
genes escapes dosage effects, Hsa21 genes are selectively over-expressed in DS
samples compared to genes from other chromosomes, reflecting a decisive role in the
pathogenesis of the syndrome. Finally, the analysis of chromosomal segments reveals a
high prevalence of Hsa21 over-expressed segments over the other genomic regions,
suggesting, in particular, a specific region on Hsa21 that appears to be frequently
over-expressed (21q22). Our complete datasets are released as a new framework to
investigate transcription in DS for individual genes as well as chromosomal segments in
different cell types and tissues.
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INTRODUCTION

Down syndrome (DS) is the first genetic alteration to have been
described in humans (Lejeune et al., 1959), is the most frequent
human chromosomal disorder and it causes mainly intellectual
disability (ID). DS or trisomy 21 (T21) is characterized by the
presence of an extra full or partial chromosome 21 (Hsa21), but
the molecular mechanisms at the basis of the pathogenesis are still
unclear. The identification of genes contributing to DS phenotype
and its phenotypic variability is necessary to understand the DS
pathogenesis and could be the key to any targeted therapeutic
treatment (Gardiner et al., 2010).

Trisomy 21 results in the duplication of over 400 genes
(Sturgeon et al., 2012). According to the simplest model of
gene expression in DS, a 3:2 ratio for Hsa21 genes should be
expected, but there is evidence of under-expressed Hsa21 genes
and dysregulation of genes located on other chromosomes than
Hsa21 (Letourneau et al., 2014).

Two different hypotheses have been proposed to explain DS
phenotype: “developmental instability” and “gene-dosage effect”
(Ait Yahya-Graison et al., 2007). According to the first hypothesis,
the presence of an extra Hsa21 globally disturbs the correct
balance of gene expression in DS cells during development
(Saran et al., 2003) and determines a non-specific disturbance
of genomic regulation and expression (Vilardell et al., 2011)
resulting in a disruption of homeostasis throughout the genome.
The second theory of the “gene dosage effect” states that the over-
expression of duplicated genes on Hsa21 directly contributes
to different aspects of DS phenotype (Korenberg, 1990). To
determine which hypothesis applies to the etiology of DS, a
number of investigators have conducted gene-expression studies
in mouse models and human tissues or cell lines. Several methods
have been used, including microarrays, serial analysis of gene
expression (SAGE), Real-Time RT-PCR, RNA-seq or proteomic
approaches (Lockstone et al., 2007; Prandini et al., 2007; Volk
et al., 2013; Kong et al., 2014; Zhao et al., 2016; Liu et al., 2017).

However, the different studies show contrasting results,
probably deriving from differences due to tissue specificity,
developmental stages, as well as the applied experimental
platforms and statistical techniques (Letourneau et al., 2014;
Do et al., 2015; Sullivan et al., 2016), suggesting that the two
hypotheses are not mutually exclusive and that the DS phenotype
is probably caused by both mechanisms (Antonarakis, 2001).

Recently, another suggested mechanism which may affect
global gene expression in trisomic cells is based on differences
in chromatin topology that might generate gene expression
dysregulation domains (GEDDs), i.e., genes clustered into large
chromosomal domains of activation or repression (Letourneau
et al., 2014). However, independent re-analysis of this RNA-seq
dataset has questioned the validity of GEDDs in DS (Do et al.,
2015). Therefore, an open issue is the identification of relevant
gene expression changes caused by T21 and the characterization
of variability across cell types, tissue types, genetic backgrounds,
and developmental stages (Olmos-Serrano et al., 2016; Sullivan
et al., 2016).

Several tools have been developed to perform analysis
of gene expression profile datasets. We aim at generating

quantitative transcriptome maps in DS, integrating all gene
expression profile datasets available for each cell type or
tissue, to obtain a complete model of the transcriptome in
terms of both expression values for each gene and segmental
trend of gene expression along each chromosome. TRAM
(Transcriptome Mapper) (Lenzi et al., 2011) is a software able
to integrate gene expression data from different sources and
to provide quantitative transcriptome maps of specific cells or
tissues. TRAM has been used in recent years to carry out
analyses of gene expression (Caracausi et al., 2014, 2016, 2017b;
Pelleri et al., 2014; Mariani et al., 2016; Rodia et al., 2016;
Vitale et al., 2017b) since transcriptome maps can be easily
generated, also showing differential expression between two
biological conditions (e.g., pathological vs. normal). In particular,
two key points of the original TRAM approach need to be
underlined.

First, the data are “integrated”, thus generating a normalized,
consensus linear value for the expression level of every gene
represented in at least one of the platforms used in any study
related to a given biological condition (e.g., a specific tissue).
None of the original papers offers this type of numerical analysis
of their raw data, each report being exclusively focused on its own
data. We have previously repeatedly and consistently shown that
the TRAM algorithm is able to effectively produce biologically
meaningful results, based on a pipeline including uniformation
and verification of different gene identifiers, followed by intra-
as well as inter-sample normalization based on both parametric
and non-parametric summarization of the data, plus a unique
original method (“scaled quantiles”) able to circumvent the
problem of integration of the data from microarray platforms
representing gene sets of highly diverse numerosity (Lenzi
et al., 2011; Piovesan et al., 2013; Caracausi et al., 2017a).
Moreover, statistically highly significant correlation between
in silico and in vitro data has repeatedly been obtained by
Real-Time RT-PCR whenever human RNA from analogous
biological conditions was available, proving the reliability and
efficiency of TRAM software [(Caracausi et al., 2014): whole
brain, cerebellum, cerebral cortex; (Caracausi et al., 2016):
hippocampus; (Caracausi et al., 2017b): whole heart; (Vitale
et al., 2017b): whole thyroid]. We also have shown (Lenzi
et al., 2011; Vitale et al., 2017b) that increasing the sample
size thanks to effective cross-platform data integration from
different sources leads to a reduction of systematic bias associated
with each different platform, thus generating a final consensus
value for the mean expression level of that gene in a given
tissue much more similar to the actual mean value, with results
that outperform similar elaborations conducted in absence of
the integration and normalization pipeline offered by TRAM
at the cost of an initial manual curation of the datasets to be
included in the meta-analysis (comparison reported in Vitale
et al., 2017b).

In addition, while comparison of gene expression profiles
typically generates lists of over-/under-expressed genes, there
is actually no simple means to extract a consensus, reference
gene expression numerical value for thousands of transcripts
present in a homogeneous biological condition (e.g., a given
normal tissue or a given trisomic tissue). For instance, it would
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be impossible to query these lists to readily identify both the
quantitative expression value as well as the aneuploid/euploid
ratio for any given gene (provided that it is represented in at
least one experimental platform from which original data were
derived).

The aim of this study is to build a systematic, quantitative
framework of gene expression in DS, comparing different types of
trisomy 21 and normal tissues. In the present work, we performed
gene expression analyses, focusing on relationships between gene
expression and map location as well as functional analysis of
genes with an altered expression due to trisomy 21. In addition,
the released database of gene expression in DS will allow to
test hypotheses regarding specific mechanisms involved in DS
pathogenesis.

MATERIALS AND METHODS

Database Search and Selection
A systematic biomedical literature search was performed up
to May 2016 in order to identify articles related to global
gene expression profile experiments in DS patients. A general
search using the expression “Down syndrome”[MeSH] AND
(“Gene Expression Profiling”[MeSH] OR “Oligonucleotide Array
Sequence Analysis”[MeSH] OR “Microarray Analysis”[MeSH]
OR microarray∗ OR “Expression profile” OR SAGE) was
performed in PubMed1.

Moreover, The NCBI GEO (National Center for
Biotechnology Information-Gene Expression Omnibus) (Barrett
and Edgar, 2006) functional genomic repository was searched for:
“Down syndrome”[MeSH] AND “Homo sapiens”[Organism].
The EBI (European Bioinformatics Institute) ArrayExpress
(Brooksbank et al., 2014) database of functional genomic
experiments was searched at the website2 for the terms “Down
syndrome”, “Trisomy 21”, choosing “Homo sapiens” as organism.

Search results were then filtered using inclusion and exclusion
criteria. The inclusion criteria were availability of raw or pre-
processed data and experiments performed on human DS vs.
normal biosamples. The exclusion criteria were data derived from
treated cells or tissues or arising from fetuses and embryonic
annexes; experiments conducted on exon arrays (the processing
of data by TRAM is impeded because of an extremely high
number of data points); experiments on platforms whose
probes are divided across multiple slides (hindering intra-sample
normalization); lack of gene identifiers corresponding to those
found in the records of GEO (GSM standards) or ArrayExpress;
platforms that analyze an atypical number of genes (i.e., <5,000
or >60,000).

In order to obtain linear quantitative transcriptome maps,
values from each dataset were linearized when provided
as logarithms. When only raw files (e.g., File CEL) were
available, they were pre-processed using the Alt Analyze software
(Emig et al., 2010).

1https://www.ncbi.nlm.nih.gov/pubmed
2http://www.ebi.ac.uk/arrayexpress/

TRAM (Transcriptome Mapper) Analysis
TRAM software is able to import gene expression data from GEO,
ArrayExpress databases or in a custom source in tab-delimited
text format whether the data are referred to microarray or
RNA-seq platforms, for the creation and analysis of quantitative
transcriptome maps (Lenzi et al., 2011).

We used an updated version of TRAM (TRAM 1.33, set
up with human gene data downloaded from NCBI up to
November 11, 2017) including enhanced resolution of gene
identifiers through updated NCBI Gene database, updated
platform annotation files and UniGene data parsing (Lenzi et al.,
2006).

Firstly, TRAM performs an intra-sample normalization by
transforming each raw intensity value as percentage of the
mean value in that sample, equivalent to the classic “global
normalization” in the microarray data analysis (Quackenbush,
2002). Following this first round of normalization, inter-sample
normalization (scaled quantile normalization) of gene expression
values from multiple platforms is performed allowing robust
comparison across experimental platforms even with a highly
diverse numerosity of analyzed features (Lenzi et al., 2011). The
value for each locus, in each biological condition, is represented
by the mean value of all the values available for that locus. The
mean value of gene expression of the whole genome is used
to determine the percentile of expression for each gene. The
comparison of two different biological conditions (Pool A and
Pool B) allows the analysis of differential maps using the ratio of
the mean expression values for each locus (A/B), in addition to
the maps related to each single pool.

For the creation of the maps, TRAM software does not
include the probes for which an expression value is not
available, assuming that the level of expression was not measured;
furthermore, raw expression values lower or equal to zero are
thresholded by TRAM to 95% of the minimum positive value
present in that sample. Choosing “0” as the expression value
would create difficulty to adequately assess differential expression
since the value “x/0” has no meaning, so TRAM sets values
(≤0) to 95% of the minimum detected value to obtain defined
numbers when it is necessary to calculate a ratio between the
values of the Pool A and the Pool B and to capture very high over-
expression which would be lost if choosing “0”. Assuming that
in these cases the expression level is too low to be detected with
the experimental conditions used, this transformation is useful to
highlight a difference in gene expression.

Finally, a graphical representation of the gene expression
profile is created in two different modes, “Map” or “Cluster”,
identifying critical genomic regions or genes (genomic regions
including one gene) with significant differential expression
comparing two different biological conditions. We focused
mainly on the “Map” mode, analyzing over-/under-expressed
segments of the genome, with a window size of 500,000 bp
and a shift of 250,000 bp (default parameters). The expression
value for each genomic segment is calculated by the mean of
the expression values of the loci included in that segment. We
did not consider loci for which mean value was derived from

3http://apollo11.isto.unibo.it/software

Frontiers in Genetics | www.frontiersin.org 3 April 2018 | Volume 9 | Article 125

https://www.ncbi.nlm.nih.gov/pubmed
http://www.ebi.ac.uk/arrayexpress/
http://apollo11.isto.unibo.it/software
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00125 April 21, 2018 Time: 11:37 # 4

Pelleri et al. Transcriptome Maps of Human Trisomy 21

less than three biological samples. A segment is first tagged as
over-/under-expressed using descriptive statistics if, considering
the distribution of size and density of human genes (Piovesan
et al., 2015, 2016), that segment contains at least three genes
having an expression value within the highest and the lowest
2.5th percentile determined by the mean value of gene expression
of the whole genome (default parameters) and if that segment
has also a value of expression within the highest and the lowest
2.5th percentile among all genomic segments (default parameter).
The statistical significance is then assessed by statistical tests
based on hypergeometric distribution, a recognized algorithm
able to test the probability ‘p’ that colocalization of three over-
/under-expressed genes within the same chromosomal segment
may be due to chance (Lenzi et al., 2011; Caracausi et al.,
2016). The p-value is finally corrected for multiple comparisons
possible causing False Discovery Rate (FDR) due to the high
number of segments or genes in a genome. A segment or a gene
was considered to be statistically significantly over- or under-
expressed for q < 0.05. A graphical representation of the overall
TRAM software workflow is provided in Figure 1.

Significance of the over-/under-expression for single genes
can be determined by running TRAM in “Map” mode and
lowering the segment window to 25,000 bp with a minimum
number of over-/under-expressed genes in that window equal
to 1. Since this window size is lower than 40% of the mean
size of a human protein-coding gene which was determined to
be 67 kb by searching the recent GeneBase database (Piovesan
et al., 2016) (mean gene length calculated in 17,958 “reviewed”
or “validated” entries available in the NCBI Gene April 2015
annotation release), the significant over-/under-expression of a
segment almost always corresponds to that of the gene located
in it. When the segment window contains more than one gene,
the significance is maintained if the expression value of the
over-/under-expressed gene prevails over the others.

In order to obtain quantitative framework of gene expression
in DS and normal cells, we selected datasets related to
several tissues and cell types from different origins: brain;
lymphoblastoid cell lines (LCLs); blood cells; fibroblasts; thymus
and induced pluripotent stem cells (iPSCs). For each one we
created a directory (folder) for DS (Pool A) and normal (Pool B)

FIGURE 1 | Graphic representation of the TRAM software workflow. The software allows the import and analysis of gene expression profile datasets in tab-delimited
text format. Gene expression values are assigned to individual loci following conversion of all types of gene identifiers (IDs) into official gene symbols, and submitted
to an intra- and inter-sample normalization. The value for each locus is the mean value of all available normalized values for that locus. The expression ratio obtained
from the comparison of two different conditions is graphically displayed for each chromosomal segment, expressed as ratio of the mean of the expression values of
the loci included in that segment. Over- and under-expressed regions are then determined following statistical analysis.
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condition. In addition, Pool A containing all DS samples for any
tissue and Pool B containing all normal samples were created to
generate a global view of DS transcriptome (“Total transcriptome
map”). Experimental design scheme is shown in Table 1.

Functional Enrichment Analysis
We have considered the biological significance of the DS/normal
ratios near to 3:2 (1.5) or 2:3 (0.67) between DS and normal gene
expression values due to the stimulatory or inhibitory effects,
respectively, of the extra copy of Hsa21. Moreover, in order
to account for natural variation in gene expression, threshold
values have been arbitrarily and proportionally extended to ≥1.3
or ≤0.76, respectively. Consequently, we arbitrarily considered
three intervals of ratio of the mean expression values: (1)
expression ratios close to 1 (1.29–0.77), implying that the genes
are not differentially expressed in DS samples; (2) expression
ratios ≥1.30 and (3) expression ratios ≤0.76.

A functional enrichment analysis of over-expressed genes in
the “Total transcriptome map” was performed using ‘ToppFun’
from the ‘ToppGene Suite’ Gene Ontology tool (Chen et al.,
2009). We submitted a list of human genes with expression
ratio ≥1.30 and a list of genes of all the chromosomes with
expression ratio ≤0.76, excluding EST clusters. The selected
genes were categorized according to GO classification based on
their hypothetical molecular functions and biological processes.
A second functional enrichment analysis of over-expressed Hsa21
genes in the “Total transcriptome map” was performed. We
submitted a list of Hsa21 genes with expression ratio ≥1.30 and
a list of Hsa21 genes with expression ratio ≤0.76. The analysis
was assessed for Molecular Function and Biological Process
categories.

In Vitro Validation of the Fibroblast
Transcriptome Map
In order to obtain a sample experimental confirmation of the
transcriptome maps derived from the meta-analysis, we selected

TABLE 1 | Experimental design.

TRAM analysis DS samples Normal samples

A TRAM DS brain vs. normal brain 13 11

B TRAM DS LCLs vs. normal LCLs 17 18

C TRAM DS blood vs. normal blood 6 5

D TRAM DS fibroblasts vs. normal
fibroblasts

11 14

E TRAM DS thymus vs. normal
thymus

4 4

F TRAM DS iPSCs vs. normal iPSCs 32 22

G Whole pool DS vs. whole pool
normal (“Total transcriptome map”)

83 74

We performed analysis for each cell/tissue type (A–F). In addition, we
performed a comparison between pool of DS samples obtained from all
the cells/tissues analyzed and pool of normal samples obtained from all
the cells/tissues analyzed (“Total transcriptome map”, G). Detailed list of
selected samples for the meta-analysis of gene expression profiles in the
DS vs. normal samples for each transcriptome map has been provided in
Supplementary Table S1.

a group of known and characterized genes. Four groups of
genes were created, according to their expression ratio A/B
calculated by TRAM. The groups are the following: expression
ratio A/B ≥ 2 (BACE2, ADAMTS1, DHFR, DONSON, MX1);
expression ratio A/B between 1.4 and 1.8 (RCAN1, SOD1, ATP5J,
DYRK1A); expression ratio A/B close to 1 (ACTB); expression
ratio A/B ≤ 0.6 (SDC2, SERPINF1, POSTN). We also verified
that selected genes were not included among the genes with a
known incomplete determination of their 5′ coding sequence
(Vitale et al., 2017a). We chose GAPDH and B2M as reference
genes.

Primary fibroblast cell lines were collected by Galliera
Genetic Bank (GGB), member of the Network Telethon of
Genetic Biobanks (Baldo et al., 2016). All the cell lines were
tested for mycoplasma, to exclude a possible contamination.
Furthermore, a karyotype analysis was carried out by GGB to
confirm the cytogenetic diagnosis. The cell lines used in this
project were obtained from two non-DS donors and two DS
patients. Specifically, the DS cell lines arose from a 54-year-
old woman and 21-year-old man, while non-trisomic cell lines
from a 50-year-old man and a 31-year-old woman. The primary
cell lines, sent from GGB, had been split between 7 and 10
times.

The cells contained in the flasks were treated with the method
of Chomczynski and Sacchi (1987) for total RNA extraction. The
RNA quantity and quality have been verified through Nanodrop
spectrophotometer (ND-1000 spectrophotometer). The reverse
transcription (RT) was performed according to Caracausi et al.
(2017b).

Primer pairs were designed with ‘Amplify 3’ software (Engels,
1993) following standard criteria (Sharrocks, 1994). Each primer
is designed on a different exon and each primer pair binds
to regions common to all splicing isoforms of the same gene
since microarray probe sequences are often complementary to
sequences common of the known gene isoforms and TRAM
provides a unique reference value for each locus gathering all
isoforms. These criteria caused a variation in the amplicon
lengths between 99 and 214 bp.

Real-Time RT-PCR assays were performed in triplicate, using
the CFX96 instrument (Bio-Rad Laboratories, Hercules, CA,
United States). The gene expression analysis was performed using
two pools of cDNA, one derived from RNA extracted from the
two trisomy 21 fibroblast cell lines and the other from RNA
extracted from the two non-trisomic fibroblast cell lines.

The reactions were performed in a total volume of 20 µL
using Sybr Select Master Mix 2× for CFX (Applied Biosystems,
by Life Technologies) according to manufacturer instructions
providing the following cycling parameters: 2 min at 50◦C (UDG
activation), 2 min at 95◦C (AmpliTaq Fast DNA Polymerase UP
activation), 40 cycles of 15 s at 95◦C (denature) and of 1 min
at 61◦C (anneal and extend). In order to assess amplification
specificity, a melting step consisting of an increase in temperature
of 0.5◦C/s from 65◦C to 95◦C was performed.

For each gene we used the primer pair that gave between
90 and 110% efficiency. For the gene expression study we used
the 2−11Ct (delta delta threshold cycle) method (Livak and
Schmittgen, 2001) that calculates the expression ratio, between
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the trisomy 21 (test) and the euploid (control) condition of each
target gene compared to one or more reference genes:

2−11Ct
= 2−1Ct(test)−1Ct(control) =

− (Ct target− Ct reference)test− (Ct target−Ct reference)control

Finally, we performed the bivariate statistical analysis using
JMP 5.1 software (SA Institute, Campus Drive, Cary, NC,
United States) between the expected ratios, generated by
TRAM and the observed ratios obtained by Real-Time RT-PCR,
examining their statistical correlation.

RESULTS

Database Search and Database Building
The search of data related to global gene expression profile
experiments in DS patients has been performed on the databases
as described in “Materials and Methods” section (PubMed, GEO,
and ArrayExpress) and retrieved 83 samples (for a total of
3,315,050 analyzed data points) from 10 microarray experiments
on DS cells (Pool A) and 74 samples (for a total of 2,779,729
analyzed data points) from 10 microarray experiments on normal
cells (Pool B). All these experiments fulfill the inclusion and
exclusion criteria (see Materials and Methods section) and
allow to obtain six differential transcriptome maps from brain,
LCLs, blood cells, fibroblasts, thymus, and iPSCs. Moreover
one “Total transcriptome map” was obtained by merging all
the DS samples from any tissue as Pool A and all normal
samples as Pool B. Experimental design scheme is shown in
Table 1. Detailed list of selected samples for the meta-analysis
of gene expression profiles in the Pool A (DS) and Pool B
(normal) for each transcriptome map has been provided in
Supplementary Table S1.

Transcriptome Map Comparison of DS
vs. Normal Samples
A first result of our analysis is a quantitative reference gene
expression value for each human mapped locus after intra- and
inter-sample normalization (Lenzi et al., 2011). The number of
loci (from 13,167 for thymus to 37,181 for “Total transcriptome
maps”) for which the comparison between the two conditions
(DS vs. normal) was possible due to the presence of expression
values for those loci in both sample pools considered is also
provided by TRAM software.

We provide regional differential expression datasets related
to all the available DS samples compared to normal samples,
fulfilling inclusion and exclusion criteria, performing analyses
for each cell type and a comparison between whole pool DS
and whole pool normal samples (Table 1). Detailed results
are available as Supplementary Tables S2–S8, showing a
reference gene expression value for each human mapped
locus in each condition analyzed. Moreover, Supplementary
Tables S2–S8 showed a mean gene expression ratio between
Sample A (DS) and Sample B (normal) for each locus in
each comparison performed covering the whole range of

the expression magnitude order as calculated by TRAM.
DS/normal mean gene expression ratio ranges are 23.63–
0.07 (brain, 24,699 loci analyzed); 4.31–0.03 (LCLs, 35,527
loci analyzed); 17.56–0.15 (blood, 24,699 loci analyzed);
111.51–0.02 (fibroblasts, 29,216 loci analyzed); 256.13–
0.11 (thymus, 13,167 loci analyzed); 11.05–0.29 (iPSCs,
29,541 loci analyzed); 33.47–0.06 (whole pool, 37,181 loci
analyzed).

From the transcriptome maps comparing gene expression
between DS and normal samples from different sources, we have
obtained transcriptional frameworks useful for the identification
of changes caused by the extra copy of Hsa21. Interestingly,
the general pattern of gene expression across chromosomes in
all the comparisons performed is very similar, always showing
a prevalence of over-expressed Hsa21 genes (Figure 2). In
particular, most of the dysregulated genes on Hsa21 reflect the 3:2
expected ratio (Supplementary Table S9). Moreover, data show
that most of the DS/normal mean gene expression ratios were
very close to 1, escaping gene-dosage effects whereas among
the dysregulated genes the expression ratios were very near
to 3:2 or 2:3 ratios, following the stimulatory or inhibitory
effects, respectively, of the extra copy of Hsa21 (Supplementary
Tables S2–S8).

A comparison with previous available studies is shown in
Supplementary Table S10.

Analysis of Segments in “Map” Mode
We provide the number (at least three over-/under-expressed
genes) and the gene content of each genomic segment found
to be statistically significantly over-/under-expressed in the
comparison between the two sample sources. Each genomic
segment was identified among the 12,342 segments generated
and following removal of overlapping segments with similar gene
content.

For each transcriptome map, we performed the analysis of
segments in “Map” mode, deriving a table containing all the
over-/under-expressed segments obtained from the comparison
between the two pools (Supplementary Table S11).

Briefly, over-expressed segment were 8 in brain transcriptome
map (6 on Hsa21), 12 in LCLs transcriptome map (9 on Hsa21),
21 in blood transcriptome map (6 on Hsa21), 8 in fibroblasts
transcriptome map (1 on Hsa21), 2 in thymus transcriptome
map (none on Hsa21), 5 in iPSCs transcriptome map (2 on
Hsa21), 13 in “Total transcriptome map” (9 on Hsa21). Among
under-expressed segments, 3 segments were found in brain, 15
in LCLs, 13 in blood, 4 in fibroblasts, 1 in thymus, 1 in iPSCs
and 6 in “Total transcriptome maps”, of which none is on
Hsa21.

For instance, LCLs transcriptome map shows the significant
under-expression of immunoglobulin lambda variable cluster
(IGLV on 22q11). Blood transcriptome map shows the significant
over-expression of segments containing genes for hemoglobin
(11p15.4 and 16p13.3). These are examples of biologically sound
results consistent with known facts and obtained without any a
priori assumption.

Overall, the analysis of segments reveals a high prevalence of
Hsa21 over-expressed segments over the other genomic regions
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FIGURE 2 | DS/normal expression ratio for each chromosome in terms of mean expression level derived from all the genes on that chromosome in each
transcriptome map.

in all the transcriptome maps except thymus, suggesting, in
particular, a specific region on Hsa21 that appears to be frequently
over-expressed (21q22). The most frequent genes of this specific
region on Hsa21 are TMEM50B (transmembrane protein 50B),
SON (SON DNA binding protein) and DONSON (downstream
neighbor of son).

Functional Enrichment Analysis Results
The results of functional enrichment analysis, performed by
‘ToppFun’ from the ‘ToppGene Suite’ Gene Ontology tool,
of over- and under-expressed genes (with expression ratios
≥1.30 and ≤0.76, respectively) in the “Total transcriptome
map” (comparing all DS samples for any tissue with
all normal samples), are shown in Table 2. Input gene
lists included 1,196 and 1,228 over- and under-expressed
genes resulted following exclusion of all the EST clusters
(Supplementary Table S12).

Among over-expressed genes, the prevailing and significant
processes concern embryogenesis, cell growth and neurogenesis.
Among under-expressed genes, immune system processes
prevail.

The results of functional enrichment analysis of the subset
of the over- and under-expressed genes (with expression
ratios ≥1.30 and ≤0.76, respectively) located on Hsa21 are
shown in Table 3. Input gene lists included 95 and 9 over-
and under-expressed genes resulted following exclusion of
all the EST clusters (Supplementary Table S13). Regarding
genes with expression ratio ≥1.30, nitrite reductase activity,
cystathionine beta-synthase activity, hydroxymethyl-, formyl-
and related transferase activity, oxidoreductase activity are
among the significant molecular functions (involving the
following genes: CBSL, CBS, SLC19A1, GART, and FTCD).
The most significant biological processes concern cysteine and
homoserine metabolisms.

TRAM Result Validation by Real-Time
RT-PCR
To validate the results of the meta-analysis performed by
TRAM software, experiments of Real-Time RT-PCR were
conducted, following criteria described in the “Materials
and Methods” section. The primer pairs used are listed in
Supplementary Table S14.
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TABLE 2 | Results of functional enrichment analysis, performed by ‘ToppFun’ from the ‘ToppGene Suite’ Gene Ontology tool, of over- and under-expressed genes (with
expression ratios ≥1.30 and ≤0.76, respectively) in the “Total transcriptome map”.

Over-expressed genes p-value

Molecular function (1/1)

1 GO:0019838 Growth factor binding 2.55E-05

Biological processes (20/606)

1 GO:0006928 Movement of cell or subcellular component 3.03E-11

2 GO:0009790 Embryo development 1.08E-10

3 GO:0048598 Embryonic morphogenesis 1.12E-10

4 GO:0007369 Gastrulation 7.33E-10

5 GO:0060795 Cell fate commitment involved in formation of primary germ layer 1.25E-09

6 GO:0040011 Locomotion 2.32E-09

7 GO:0045165 Cell fate commitment 2.66E-09

8 GO:0071363 Cellular response to growth factor stimulus 2.70E-09

9 GO:0000904 Cell morphogenesis involved in differentiation 2.75E-09

10 GO:0009719 Response to endogenous stimulus 2.82E-09

11 GO:0016477 Cell migration 2.87E-09

12 GO:0070848 Response to growth factor 3.14E-09

13 GO:0007498 Mesoderm development 5.22E-09

14 GO:0060322 Head development 6.76E-09

15 GO:0022008 Neurogenesis 6.83E-09

16 GO:0048699 Generation of neurons 7.99E-09

17 GO:0040007 Growth 1.35E-08

18 GO:0071495 Cellular response to endogenous stimulus 1.41E-08

19 GO:0009887 Animal organ morphogenesis 1.46E-08

20 GO:0030182 Neuron differentiation 1.63E-08

Under-expressed genes p-value

Molecular function (20/47)

1 GO:0003823 Antigen binding 6.39E-15

2 GO:0005102 Receptor binding 2.31E-11

3 GO:0005201 Extracellular matrix structural constituent 1.21E-10

4 GO:0005539 Glycosaminoglycan binding 2.76E-10

5 GO:0005178 Integrin binding 8.40E-09

6 GO:0008201 Heparin binding 1.29E-07

7 GO:0050839 Cell adhesion molecule binding 1.33E-07

8 GO:0019838 Growth factor binding 2.30E-07

9 GO:0005518 Collagen binding 2.70E-07

10 GO:0030881 Beta-2-microglobulin binding 4.12E-07

11 GO:0005125 Cytokine activity 6.00E-07

12 GO:1901681 Sulfur compound binding 9.46E-07

13 GO:0034987 Immunoglobulin receptor binding 1.31E-06

14 GO:0046983 Protein dimerization activity 2.41E-06

15 GO:0004252 Serine-type endopeptidase activity 7.61E-06

16 GO:0005509 Calcium ion binding 1.08E-05

17 GO:0048407 Platelet-derived growth factor binding 1.92E-05

18 GO:0008236 Serine-type peptidase activity 2.83E-05

19 GO:0017171 Serine hydrolase activity 3.58E-05

20 GO:0030883 Endogenous lipid antigen binding 4.40E-05

Biological processes (20/822) p-value

1 GO:0002682 Regulation of immune system process 4.23E-26

2 GO:0006955 Immune response 1.55E-25

3 GO:0007155 Cell adhesion 8.55E-21

4 GO:0022610 Biological adhesion 1.96E-20

5 GO:0006952 Defense response 6.56E-20

(Continued)
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TABLE 2 | Continued

6 GO:0002250 Adaptive immune response 1.23E-19

7 GO:0050776 Regulation of immune response 2.59E-19

8 GO:0030198 Extracellular matrix organization 4.25E-19

9 GO:0043062 Extracellular structure organization 4.97E-19

10 GO:0002684 Positive regulation of immune system process 1.26E-18

11 GO:0001775 Cell activation 2.54E-17

12 GO:0045321 Leukocyte activation 1.12E-16

13 GO:0046649 Lymphocyte activation 6.67E-16

14 GO:0071345 Cellular response to cytokine stimulus 2.68E-15

15 GO:0002252 Immune effector process 5.26E-15

16 GO:0006959 Humoral immune response 5.98E-15

17 GO:0050778 Positive regulation of immune response 1.08E-14

18 GO:0002460 Adaptive immune response based on somatic recombination of immune
receptors built from immunoglobulin superfamily domains

1.85E-14

19 GO:0019221 Cytokine-mediated signaling pathway 1.95E-14

20 GO:0045087 Innate immune response 2.35E-14

TABLE 3 | Results of functional enrichment analysis, performed by ‘ToppFun’ from the ‘ToppGene Suite’ Gene Ontology tool, of over- and under-expressed genes (with
expression ratio ≥1.30 and ≤0.76, respectively) located on Hsa21 in the “Total transcriptome map”.

Over-expressed genes p-value

Molecular function (11/11)

1 GO:0050421 Nitrite reductase (NO-forming) activity 1.78E-05

2 GO:0004122 Cystathionine beta-synthase activity 1.78E-05

3 GO:1904047 S-Adenosyl-L-methionine binding 1.78E-05

4 GO:0004124 Cysteine synthase activity 1.78E-05

5 GO:0098809 Nitrite reductase activity 1.78E-05

6 GO:0070025 Carbon monoxide binding 1.78E-05

7 GO:0070026 Nitric oxide binding 5.29E-05

8 GO:0072341 Modified amino acid binding 2.73E-04

9 GO:0016742 Hydroxymethyl-, formyl- and related transferase activity 4.87E-04

10 GO:0016662 Oxidoreductase activity, acting on other nitrogenous compounds as donors, cytochrome as
acceptor

6.25E-04

11 GO:0016661 Oxidoreductase activity, acting on other nitrogenous compounds as donors 1.14E-03

Biological processes (6/6)

1 GO:0006535 Cysteine biosynthetic process from serine 1.44E-05

2 GO:0019343 Cysteine biosynthetic process via cystathionine 4.29E-05

3 GO:0019344 Cysteine biosynthetic process 8.56E-05

4 GO:0009092 Homoserine metabolic process 1.42E-04

5 GO:0070814 Hydrogen sulfide biosynthetic process 1.42E-04

6 GO:0019346 Transsulfuration 1.42E-04

Under-expressed genes p-value

Molecular function (2/2)

1 GO:0005212 Structural constituent of eye lens 3.69E-03

2 GO:0051082 Unfolded protein binding 1.65E-02

The gene expression ratios observed by Real-Time RT-
PCR between DS and normal conditions and mean features
obtained from in vitro and in silico analyses, for each target
gene, are shown numerically in Table 4 and graphically in
Figure 3. The correlation between the observed and expected
gene expression ratios, performed by bivariate analysis using JMP
5.1 program, is statistically highly significant (Pearson correlation
coefficient = 0.93 and p-value < 0.0001) (Figure 3).

DISCUSSION

The study of differences in gene expression among DS and
control individuals has become one of the central issues of DS
research. The presence of an extra Hsa21 inevitably leads to an
altered expression of genes within it, but it has not yet been
clarified how this alteration leads to the onset of the typical
symptoms in DS. The annotation of the long arm of Hsa21
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FIGURE 3 | Correlation between observed end expected gene expression
ratios. The graph shows the correlation between the gene expression ratios
observed (Y-axis) and expected (X-axis) calculated by bivariate analysis by
JMP 5.1 program. Assuming that the variables have a bivariate normal
distribution, the ellipse (Bivariate Normal Ellipse) contains about 95% of the
points. The narrowness of the ellipse shows the correlation of the variables. If
the ellipse is narrow and diagonally oriented, the variables are related. Pearson
correlation coefficient = 0.93 and p-value < 0.0001.

sequence in 2000 (Hattori et al., 2000) allowed to identify, to
date, 273 validated or reviewed known genes on Hsa21 (Piovesan
et al., 2016), which have become the objects of various research
aimed to assess their expression in DS and their involvement
in pathways and molecular mechanisms that may be related to
the pathogenesis of DS (Vilardell et al., 2011; Briggs et al., 2013;
Weick et al., 2013; Letourneau et al., 2014; Olmos-Serrano et al.,
2016; Sullivan et al., 2016).

To date, meta-analyses about DS gene expression have been
performed by Vilardell et al. (2011) and Guedj et al. (2016),

both choosing to integrate human and murine data. Moreover
Vilardell et al. (2011) analyzed data obtained through different
quantitative (microarray, Real-Time RT-PCR, MALDI) and
qualitative techniques (SAGE, Western Blot). The meta-analysis
approach is a very useful and effective method for summarizing
data from several studies, leading to a higher statistical power and
more significant conclusions than those drawn on the basis of
individual studies. In particular, these meta-analyses showed that
the majority of dysregulated genes were not located on Hsa21,
although, proportionally, Hsa21 contains the greater number of
over-expressed genes, suggesting an important role of trisomic
genes in the global gene expression alteration (Vilardell et al.,
2011) and the largest number of differentially expressed genes
mapped to the 21q11-21q22.3 chromosomal location (Guedj
et al., 2016). However, these studies based their meta-analysis
approach on scoring the recurrence of a result across multiple
reports.

Our original approach is instead able to integrate previous
data at numerical level, generating quantitative maps including
expression level provided as a consensus, reference value for
each gene analyzed in at least one experiment. This in turn
allows the determination of DS/normal ratio of expression for any
gene, along with identification of differentially expressed genomic
segments based on quantitative measure of the RNA output of
the segment rather than a simple enrichment in differentially
expressed genes within the segment. Another unique feature
of our quantitative mapping approach is the inclusion of
uncharacterized loci such as EST clusters. The study of these
sequences, whose functions are still unknown, might be useful
to identify new transcripts related to the pathogenesis of trisomy
21, representing a potential new field of investigation for future
studies.

Together with all the described advantages, a disadvantage
we can identify in this type of analysis in comparison to the
elaboration of the gene expression profiles presented in the
original reports releasing the datasets used by us is the additional

TABLE 4 | Genes selected for the validation in vitro of the transcriptome map of fibroblasts by Real-Time RT-PCR.

Gene symbol EEV A EEV B ER OR

RCAN1 453.79 263.66 1.72 0.98

SDC2 437.68 823.53 0.53 1.14

SERPINF1 194.90 328.31 0.59 0.41

SOD1 2,937.37 1,845.43 1.59 2.00

POSTN 373.55 1,866.22 0.20 0.82

BACE2 191.80 95.41 2.01 1.25

ACTB 5,048.13 4,775.04 1.06 0.37

ADAMTS1 1,132.72 552.20 2.05 1.27

ATP5J 1,459.89 944.98 1.54 1.64

DHFR 151.07 51.51 2.93 1.84

DONSON 107.93 45.93 2.35 1.96

DYRK1A 120.45 87.71 1.37 1.30

MX1 446.86 52.12 8.57 4.65

From left to right: official symbol of the gene; expected expression value (EEV) of each gene in Pool A and Pool B calculated by TRAM; expected ratio (ER) between
DS and non-DS fibroblasts provided by TRAM; observed ratio (OR) determined by Real-Time RT-PCR with the method of 2−11Ct provided by Bio-Rad CFX Manager
Software 2.1.
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work needed to perform the analysis, including manual critical
curation to identify suitable samples, uniformation of the data
which may be presented as linear numbers, natural logarithm
(ln) or binary logarithm (log2n) of the raw spot intensity
level, and set up by feeding the TRAM software with updated
human genomic data before starting the analysis with the desired
parameters. In addition, an intrinsic limitation of microarray-
based expression profile datasets is the not comprehensive
coverage of human genes due to incomplete representation of
all the relative probes on the analysis platforms (for example,
for the most representative platform in our analysis, GPL570,
we calculated the coverage of 84% of the whole 22,451 currently
known human genes and of 93% of the 18,255 protein-coding
gene subset) (Piovesan et al., 2016). Finally, it should be noted
that protein expression levels might be different from the mRNA
abundance due to post-transcription regulation (Liu et al.,
2017).

Following systematic selection of all the available DS vs.
normal microarray experiments from different tissues and data
integration allowed by uniform probe-to-gene assignment as
well as intra- and inter-sample normalization as described in
“Materials and Methods” section, we obtained a systematic,
quantitative database of gene expression in different tissues useful
for comparing DS and normal tissues.

We decided to select only human samples, excluding samples
derived from mice because of the incomplete human trisomy 21
in the context of mouse models (Weick et al., 2013).

Samples derived from fetal or embryonic tissues/annexes were
not considered in our analysis because of the small amount of
available data related to this condition. Moreover, concerning
gene expression patterns, information about the origin of
embryonic tissues/annexes (regular pregnancy, spontaneous
or induced ending of pregnancy) might be relevant because
complications or miscarriages often occur due to genetic
alterations causing gene expression changes. Further studies
including embryonic gene expression patterns might be useful for
understanding critical changes during development.

Although gene expression is normally affected by a gender
bias (Shah et al., 2014), pathological alterations due to a clear
effect of an autosome are not expected to be related to gender-
biased manifestations, in accordance with the fact that no main
clinical difference has been reported between males and females
in DS (Tolksdorf and Wiedemann, 1981) as well as with the
recent demonstration of DS-specific alterations in metabolome
irrespectively of gender (Caracausi et al., 2018). However, we
provide the gender for each sample included in our analysis
(Supplementary Table S1) in order to allow further analysis
regarding this aspect.

The TRAM database allows to search every single gene
of interest and to observe the corresponding expression ratio
between DS and normal samples, the expression values for each
biological condition and for each sample in the two pools and the
number of data points and samples used for the analysis.

In the standardized tables we provide, one can test any
hypothesis regarding general or specific alterations of gene
expression due to extra copy of Hsa21. For instance, in the
case of the SOD1 gene for which a 3:2 gene dosage effect

has been well known for decades, also for protein product,
the reference expression values expressed as percentage of the
mean value (DS/normal) are: brain, 1,807/1,236 (ratio 1.46);
LCLs, 1,762/1,259 (1.40); blood, 1,467/1,138 (1.29); fibroblasts,
2,937/1,845 (1.59); thymus, 751/488 (1.54); iPSCs, 1,774/1,701
(1.04), thus providing evidence of differences in expression levels
of SOD1 in different tissues, as well as excellent across-tissue
conservation of the 1.5:1 ratio expected from the additional
Hsa21. Interestingly, iPSCs biological model appears farther from
the primary tissues under this aspect. A modest increase of SOD1
expression in DS iPSCs compared to normal cells was also found
by Weick et al. (2013).

The analysis performed by TRAM yield results regarding
expression patterns at chromosome level and at single gene level;
moreover, TRAM allows to generate quantitative gene expression
data which can be used for further studies, e.g., functional
analyses.

Regarding whole chromosomes, the graphs representing
the DS/normal expression ratio for each chromosome (in
terms of mean expression level derived from all the genes
on that chromosome) showed that the most over-expressed
chromosome, in proportion, is Hsa21 in all analyzed maps, in
accordance with the most recently published results (Weick et al.,
2013; Olmos-Serrano et al., 2016; Sullivan et al., 2016). These data
indicate that, although a fraction of Hsa21 genes escapes dosage
effects, Hsa21 genes are selectively over-expressed in DS samples
compared to genes on other chromosomes, reflecting a decisive
role of the extra Hsa21 in the pathogenesis of the syndrome.

Regarding individual genes, the effect of an extra copy of
Hsa21 on the cellular transcriptome remains an open issue in
understanding the pathogenesis of DS.

Interestingly, analyzing all the expression ratios obtained for
each comparison, most of the DS/normal ratios were very close to
1, escaping gene-dosage effects whereas among the dysregulated
genes the expression ratios were very near to 3:2 or 2:3. These
observations are consistent with the hypothesis that (1) the
presence of an extra copy of Hsa21 resulted in increments in the
transcriptional activity of Hsa21 and (2) the downstream effects
of trisomy 21 might reflect the enhancer or silencer activity of
Hsa21 genes on other genes in the genome for which the gene
expression values result in 150% or 67%, respectively.

In each transcriptome map the genes with extreme profiles
are on other chromosomes than Hsa21, consistent with the
hypothesis that 3:2 gene dosage effects have their origin on
Hsa21 and the chain of effects may propagate throughout
the genome amplifying the final effect on specific genes. For
example, JAKMIP3, located on chromosome 10, (ratio 256.13 in
thymus transcriptome map) is the Janus kinase and microtubule
interacting protein 3 and has been found expressed at highest
levels in the central nervous system and in endocrine tissues
(Cruz-Garcia et al., 2007) and is thought to contribute in
the maintenance of TrkA-mediated nerve growth factor (NGF)
signaling in neurons (Diaz-Ruiz et al., 2013). BEX5, located on
chromosome X, belongs to the brain-expressed X-linked family
which is known to play a role in neuronal development (Alvarez
et al., 2005) while in our brain transcriptome map it is under-
expressed in DS (ratio 0.07). Furthermore, non-coding RNAs
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(ZNF667-AS1 over-expressed in brain and iPSCs and H19 over-
expressed in brain transcriptome maps) and unmapped loci are
found among extreme profile genes, pointing to the need of
further investigations on the DS pathogenesis.

Among the most commonly Hsa21 over-expressed genes,
TMEM50B gene has been identified as a candidate for DS brain
phenotypes by Lein et al. (2007) and was found over-expressed
in human adult and re-analyzed fetal DS brain (Lockstone et al.,
2007) datasets and in mouse cerebellum of DS models (Moldrich
et al., 2008).

Regarding chromosome segments, the analysis showed that
a significant number of over-expressed segments belongs to
Hsa21 in all transcriptome maps. The originality of TRAM
software consists in determining the expression value of each
segment not depending on the number of genes included
in the segment but measuring the mean of the expression
values of the genes included in that segment. This parameter
is indicative of the actual transcription level of that specific
DNA region, removing the bias deriving from the number of
genes contained in it. Interestingly, in the brain map, six of the
eight significantly over-expressed segments result on Hsa21. In
particular, the most represented over-expressed region maps on
the long arm of Hsa21, specifically on 21q22 band in all the
analyzed tissues (except thymus). The 21q22 band includes the
HR-DSCR (located on 21q22.13) (Pelleri et al., 2016), although
its expression cannot be evaluated due to the absence of probes
in the considered platforms of currently known genes in the
HR-DSCR.

An interesting possibility is to generate trisomy 21 cells
with the selective deletion of a single copy of the HR-DSCR
through CRISPR/Cas 9 system (Bauer et al., 2015). Through this
approach it would be possible to perform functional studies on
this region followed by gene expression analyses. This might yield
biological insights about new regulative pathways involved in DS
pathogenesis.

Comparing genomic segments that we found significantly
over-/under-expressed in DS vs. normal fibroblasts transcriptome
map with dysregulated domains in fetal skin primary fibroblasts
derived from the study by Letourneau et al. (2014), some
discrepancies could be due to the methodological and biological
differences (array vs. RNA-seq, 3.2 Mb vs. 500 Kb size and adult
vs. fetus samples), but the over-expression of chromosomes 10,
18, and 21 segments is confirmed.

We performed a functional enrichment study of over-
and under-expressed genes in all the genome and Hsa21
over- and under-expressed genes. In particular, the over-
expressed gene analyses highlighted molecular and biological
mechanisms involving cell development that may be related to
several characteristic features of trisomy 21 and are consistent
with previous studies (Lockstone et al., 2007; Weick et al.,
2013). Enriched biological processes resulted from the analysis
concern the embryogenesis, cell growth and neurogenesis.
These processes represent the main alterations that have been
correlated to the ID of trisomy 21. DS subjects have a
reduced head circumference, brachycephaly, cerebral atrophy
and abnormalities in the cerebral cortex, brain stem, and
cerebellum (Pinter et al., 2001). In DS brains, there is a general

reduction of cortex development and an anomalous formation
and localization of neurons (Guidi et al., 2011). Also dendritic
arborization is affected, limiting contacts between neurons and
other cells (Becker et al., 1986). The embryo development reflects
a general alteration that turns into congenital anomalies and
malformations that occur during prenatal life of DS subjects, such
as heart and gastrointestinal defects, skeletal anomalies and many
others. Moreover, the functional enrichment analysis of Hsa21
genes with expression ratio≥ 1.30 showed that the most enriched
Hsa21 molecular functions involving the CBS, GART and FTCD
gene products might be related to the one carbon cycle including
the folic acid cycle and the homocysteine pathway. These data
are coherent with the general outlook of metabolic disturbances
leading to mental retardation performed by Prof. J. Lejeune, who
stated: “As a very broad and very tentative hypothesis, it could
be postulated that in case of mental retardation in which there
is no gross anatomic defect of the brain, no obvious disturbance
of the insulating substances, no demonstrated abnormality of
the membranes building blocks, a deficiency of the one carbon
cycle could be the most likely trouble to be looked for” (Lejeune,
1981).

To test the reliability of the transcriptome maps generated by
TRAM software, we chose to validate the fibroblast transcriptome
map performing an experimental validation of the obtained
data on DS and normal fibroblast cell lines. The very good
correlation coefficient (r = 0.93, p-value < 0.0001) between
the values obtained by meta-analysis of multiple datasets and
independent samples assayed by Real-Time RT-PCR, despite
the high biological variability of the samples and the limits
deriving from the comparison between two different methods,
demonstrates the high reliability of TRAM results.

Our study suggests that a specific region of Hsa21 (21q22)
might contain most sensitive over-expressed genes involved in
DS pathogenesis and that a complex interaction between trisomic
genes and other dysregulated regions of the genome could
exist and not only a direct correlation of Hsa21 genes with
DS symptoms. Several mechanisms such as negative feedback,
dosage compensation or epigenetic gene expression variation
could explain this apparent discordance between the genomic
dosage imbalance and the expression levels of Hsa21 genes
(Antonarakis, 2001, 2017; Prandini et al., 2007). Surely, it would
be useful to determine which mechanisms control the expression
pattern of Hsa21 genes and furthermore whether non-trisomic
gene deregulation is stochastic or if it is the result of the influence
of Hsa21 genes on specific non-Hsa21 genes. The identification
of the mechanisms at the basis of the expression of these genes
remains one of the crucial points of DS research in order
to characterize molecular pathways and molecular targets for
targeted drug treatments.

This work could be extended to a higher number of samples
by adding more types of tissues or cells and also including RNA-
seq data, a high-throughput method that has been spreading in
the last years and could contribute significantly to the addition of
more and relevant data, although to date a very minor number of
datasets, obtained through this method, is available for DS. Our
datasets provide a standardized, quantitative reference model
useful for further studies of transcription in DS.
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