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Bayesian Hierarchical Random
Effects Models in Forensic Science
Colin G. G. Aitken*

School of Mathematics and Maxwell Institute, The University of Edinburgh, Edinburgh, United Kingdom

Statistical modeling of the evaluation of evidence with the use of the likelihood ratio

has a long history. It dates from the Dreyfus case at the end of the nineteenth century

through the work at Bletchley Park in the Second World War to the present day. The

development received a significant boost in 1977 with a seminal work by Dennis Lindley

which introduced a Bayesian hierarchical random effects model for the evaluation of

evidence with an example of refractive index measurements on fragments of glass.

Many models have been developed since then. The methods have now been sufficiently

well-developed and have become so widespread that it is timely to try and provide a

software package to assist in their implementation. With that in mind, a project (SAILR:

Software for the Analysis and Implementation of Likelihood Ratios ) was funded by the

European Network of Forensic Science Institutes through their Monopoly programme to

develop a software package for use by forensic scientists world-wide that would assist

in the statistical analysis and implementation of the approach based on likelihood ratios.

It is the purpose of this document to provide a short review of a small part of this history.

The review also provides a background, or landscape, for the development of some of

the models within the SAILR package and references to SAILR as made as appropriate.

Keywords: Bayes’ Theorem, evidence evaluation, forensic science, hierarchical models, likelihood ratios, random

effects, SAILR, statistics

1. INTRODUCTION

Statistical analyses for the evaluation of evidence have a considerable history. It is the purpose of
this document to provide a short review of a small part of this history. It brings together ideas
from the last forty years for statistical models when the evidence is in the form of measurements
and thus of continuous data. The data are also hierarchical with two levels. The first level is that
of source, the origin of the data. The second level is of items within a source. The models used
to represent the variability in the data are random effects models. The models are chosen from
analyses of samples of sources from some relevant population. Finally, the analysis is Bayesian in
nature with prior distributions for the parameters of the within-source distributions. The nature
of the prior distributions is informed from training data based on the samples from the relevant
population.

The remainder of the document is structured as follows. Section 2 provides a general
introduction to the likelihood ratio as a measure of the value of evidence. Section 3 provides a
framework for models for comparison and discrimination. Section 4 discusses the assessment of
model performance. An Appendix gives formulae for some of the more commonly used models.
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2. THE VALUE OF EVIDENCE

Part of the role of a forensic scientist is to interpret evidence
found at a crime scene in order to aid fact-finders in a criminal
case (e.g., the judge or jury) in their decisionmaking. The forensic
scientist may be asked to comment on the value of the evidence in
the context of various competing statements about the evidence,
each of which may be true or false.Generally, a forensic scientist
must consider two competing statements relating to the evidence,
one put forward by the prosecution in a criminal case, and one
put forward by the defense (Cook et al., 1998b). These statements
are known as propositions1. They generally come in pairs that
are mutually exclusive, though not necessarily exhaustive. For a
debate about the requirement, or otherwise, for the propositions
to be exhaustive (see Biedermann et al., 2014; Fenton et al.,
2014a,b).

One member of the pair is associated with the prosecution
and conventionally denoted Hp. The other member of the pair
is associated with the defense and conventionally denoted Hd.
The evidence to be evaluated is denoted E2. The value of
evidence is taken to be the relative values of the probability of
the evidence if a proposition put forward by the prosecution
is true and the probability of the evidence if a proposition
put forward by the defense is true. However, evidence is
not evaluated in isolation. There is always other information
to be taken into account, including, for example, personal
knowledge of the fact-finder. Denote this information by I.
The value of the evidence, denoted V say, can then be written
formulaically as

V =
Pr(E | Hp, I)

Pr(E | Hd, I)
,

where Pr denotes Probability. This ratio is known as the likelihood
ratio.

The likelihood ratio is the method used by SAILR to evaluate
evidence. SAILR (Software for the Analysis and Implementation
of Likelihood Ratios) is a user-friendly Graphical Interface (GUI)
to calculate numerical likelihood ratios in forensic statistics and
its development under the direction of the Netherlands Forensic
Institute (NFI) was funded by the European Network of Forensic
Science Institutes through their Monopoly programme. The
likelihood ratio is a generally accepted measure for the value of
evidence in much forensic case-work.

This representation of the value of evidence has a very
good intuitive interpretation. Consider the odds form of Bayes’
Theorem in the forensic context of the evaluation of evidence.
The odds form of Bayes’ Theorem then enables the prior

1Other writers use the term hypothesis (see section 2.7). The term proposition will

he used except when there is an explicit need for the term hypothesis; see, for

example, section 3.1
2In ENFSI guidelines ENFSI (2015) “findings” are distinguished from “evidence.”

“Findings are the result of observations, measurements and classification that

are made on items of interest.” “[E]vidence refers to outcomes of forensic

examinations (findings) that, at a later point, may be used by legal decision-makers

in a court of law to reach a reasoned belief about a proposition.” However, the

word “evidence” will be used in this document to refer to both situations for ease

of nomenclature.

odds(i.e., prior to the presentation of E) in favor of the
prosecution proposition Hp relative to the defense proposition
Hd to be updated to posterior odds given E, the evidence under
consideration. This is done by multiplying the prior odds by the
likelihood ratio. The odds form of Bayes’ Theorem may then be
written as

Pr(Hp | E, I)

Pr(Hd | E, I)
=

Pr(E | Hp, I)

Pr(E | Hd, I)
×

Pr(Hp | I)

Pr(Hd | I)
. (1)

The likelihood ratio (LR) is the ratio

Pr(Hp | E, I)/Pr(Hd | E, I)

Pr(Hp | I)/Pr(Hd | I)
(2)

of posterior odds to prior odds. It is the factor which converts the
prior odds in favor of the prosecution proposition to the posterior
odds in favor of the prosecution proposition. The representation
in Equation (1) also emphasizes the dependence of the prior odds
on other information I. Values of the LR > 1 are supportive of
Hp, the proposition put forward by the prosecution. Values of the
LR < 1 are supportive of Hd, the proposition put forward by the
defense. The word “odds” should be used advisedly. IfHp andHd

are not exhaustive then the component probabilities Pr(Hp | E, I)
and Pr(Hd | E, I) cannot be derived from this ratio. All that can
be said is that the posterior ratio is different from the prior ratio
by a factor V .

An advantage of this formulation of evidence evaluation is the
ease with which the effect of the addition of new evidence can be
determined. The posterior odds for one piece of evidence, E1 say,
can be the prior odds for a second piece of evidence, E2 say. Then
Equation (1) may be rewritten as

Pr(Hp | E1,E2, I)

Pr(Hd | E1,E2, I)
=

Pr(E2 | Hp,E1, I)

Pr(E2 | Hd,E1, I)
×

Pr(Hp | E1, I)

Pr(Hd | E1, I)
, (3)

where the conditioning of the evaluation of E2 on E1 is made
explicit.

An illustration of the effect of evidence with a value V of 1,000
on the odds in favor of Hp relative to Hd is given in Table 1.

The following quote is very pertinent.

‘That approach does not ask the jurors to produce any number, let

alone one that can qualify as a probability. It merely shows them

TABLE 1 | Effect on prior odds in favor of Hp relative to Hd of evidence E with

value V of 1,000.

Prior odds V Posterior odds

Pr(Hp)/Pr(Hd ) Pr(Hp | E)/Pr(Hd | E)

1/10,000 1,000 1/10

1/100 1,000 10

1 (evens) 1,000 1,000

100 1,000 100,000

Reference to background information I is omitted.
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how a “true” prior probability would be altered, if one were in fact

available. It thus supplies the jurors with as precise and accurate

an illustration of the probative force of the quantitative data as

the mathematical theory of probability can provide. Such a chart,

it can be maintained, should have pedagogical value for the juror

who evaluates the entire package of evidence solely by intuitive

methods, and who does not himself attempt to assign a probability

to the “soft” evidence.’ Kaye (1979).

The “it” in this context is a chart depicting, in numerical terms,
how much the prior odds in favor of a proposition is enhanced
by the evidence being evaluated. This is a graphical equivalent
of Table 1. The mathematical tool for devising such a chart is
Bayes’ Theorem. These remarks of Kaye’s refer to characteristics
of the general method for the evaluation of evidence that is
the likelihood ratio. They do not refer to a particular case. For
example, it is not possible to comment on the accuracy of a
likelihood ratio estimation in a particular case because the true
value of the likelihood ratio is not known nor can it be known.
It is, however, possible to refer to the accuracy of a method and
performance assessment in general is discussed in section 4.

The use of a likelihood ratio for the evaluation of evidence is
not a new idea. In the Dreyfus case (Champod et al., 1999), it was
argued that

. . . since it is absolutely impossible for us [the experts] to know

the a priori probability, we cannot say: this coincidence proves

that the ratio of the forgery’s probability to the inverse probability

is a real value. We can only say: following the observation of this

coincidence, this ratio becomes X times greater than before the

observation (Darboux et al., 1908).

The “ratio” in this quotation is the odds in favor of one
proposition over another, The X refers to the likelihood ratio.
The posterior odds in favor of the proposition is then X times
the prior odds.

The ideas were also used in the work of I.J. Good and A.M.
Turing as code-breakers at Bletchley Park during World War II
(Good, 1979).

2.1. Background Information
The likelihood ratio updates the prior odds, those before
consideration of evidence E, to posterior odds, which take E into
account. The posterior odds are the odds with which, ultimately,
the fact-finder is concerned. If the likelihood ratio multiplied by
the prior odds is larger than one, then the probability ofHp given
the evidence is larger than that of Hd given the evidence. As
these propositions may not be exhaustive their explicit values,
rather than their relative value, may not be known. It is the
responsibility of the fact-finder to determine a value for the prior
odds. The prior odds can then be combined with the likelihood
ratio to obtain posterior odds. A forensic scientist is concerned
only with the value of the evidence as expressed by the likelihood
ratio so cannot usually comment on the value of the posterior
odds. The likelihood ratio is considered as the strength of support
of the evidence for one of the two propositions Hp or Hd.

The application of this form to a specific case is crucially
dependent on the background information I. However, the

background information available to each person is different. In
part, this is because each person is different. In part it is because of
professional differences. The information that a forensic scientist
should use for their determination of the likelihood ratio is
different from that which a fact-finder, such as judge or jury
member, should use for their determination of the odds in
favor of the prosecution proposition. There are differences in
the background information available to these participants in
the judicial process but these differences have no effect on the
posterior odds in favor of the prosecution proposition.

Let I = Ia∪Ib where Ia is background information available to
the forensic scientist and Ib is background information available
to the fact-finder. There will be information available to both, the
intersection Ia ∩ Ib is not empty. It can then be shown (Aitken
and Nordgaard, 2017) that the posterior odds may be written in
the form

Pr(Hp | E, I)

Pr(Hd | E, I)
=

Pr(E | Hp, Ib)

Pr(E | Hd, Ib)
×

Pr(Hp | Ia)

Pr(Hd | Ia)
.

The fact-finder and the forensic scientist have to treat the
common information (Ia ∩ Ib) with appropriate discretion.

2.2. Uniqueness of the Likelihood Ratio
The role of the likelihood ratio as the factor that updates the prior
odds to the posterior odds has a very intuitive interpretation.
There is also a mathematical derivation that shows it, or a
function of it such as the logarithm, is the only way to update
evidence. It was shown many years ago by I.J.Good in two brief
notes in the Journal of Statistical Computation and Simulation
(Good, 1989a,b) repeated in Good (1991) and in Aitken and
Taroni (2004) that, with some very reasonable assumptions, the
assessment of uncertainty inherent in the evaluation of evidence
leads inevitably to the likelihood ratio as the only way in which
this can be done.

Consider evidence E which it is desired to evaluate in the
context of two mutually exclusive propositions Hp and Hd.
Denote the value of the evidence by V . As always, the value
will depend on background information I but this will not be
stated explicitly. There are other assumptions implicit in this
approach, namely that there is a probability that can be associated
with evidence and one that is dependent on propositions and
only on propositions (and background information). Another
assumption is that V is a function only of the probability of E,
given Hp to be true, and of the probability of E, given Hd to be
true.

Let x = Pr(E | Hp) and y = Pr(E | Hd) where I is omitted
for ease of notation. The assumption that V is a function only of
these probabilities can be represented mathematically as

V = f (x, y)

for some function f .
Now, consider another piece of evidence T which is irrelevant

to E, to Hp and to Hd. Irrelevance is taken in the probabilistic
context to be equivalent to independence so that T may be taken
to be independent of E, ofHp and ofHd. It is then permissible for

Frontiers in Genetics | www.frontiersin.org 3 April 2018 | Volume 9 | Article 126

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Aitken Forensic Statistics

Pr(T) to be given notation which does not refer to any of E,Hp or
Hd. Thus, let Pr(T) be denoted by θ . Then

Pr(E,T | Hp) = Pr(E | Hp) Pr(T | Hp) by the independence of E and T
= Pr(E | Hp) Pr(T) by the independence of Tand Hp

= x θ .
Similarly,

Pr(E,T | Hd) = y θ .

The value of (E,T) is f (θx, θy) by the definition of f . However,
evidence T is irrelevant and has no effect on the value of evidence
E. Thus, the value of the combined evidence (E,T), f (θx, θy), is
equal to the value V of E, f (x, y), and

V = f (x, y) = f (θx, θy)

for all θ in the interval [0,1] of possible values of Pr(T).
The only class of functions of (x, y) for which this can be said

to be the case is the class which are functions of x/y or

Pr(E | Hp)/Pr(E | Hd)

which is the likelihood ratio. Hence the value V of evidence has
to be a function of the likelihood ratio. It has been argued (Lund
and Iyer, 2017) that the forensic community view the likelihood
ratio as only one possible tool for communication with decision
makers. The argument of Good shows that it is the only logically
admissible form of evaluation.

2.3. Weight of Evidence
An interesting note of terminology can be mentioned here. It is
common in some legal circles to talk of theweight of evidence. The
concept of weight of evidence is an old idea. The term weight of
evidence should be used for the logarithm of the likelihood ratio.
The terminology was first used by Peirce (1878). The likelihood
ratio is the value of the evidence and its logarithm is the weight
of the evidence. The logarithm of the likelihood ratio has the
pleasingly intuitive operation of additivity when converting the
logarithm of the prior odds in favor of a proposition to the
logarithm of the posterior odds in favor of the proposition.

log

{

Pr(Hp | E)

Pr(Hd | E)

}

= log

{

Pr(E | Hp)

Pr(E | Hd)

}

+ log

{

Pr(Hp)

Pr(Hd)

}

, (4)

with I omitted. When considering the scales of justice it is the
logarithm of the probabilities of the evidence given each of the
two competing propositions that should be put in the scales, not
the probabilities.

2.4. Terminology for Evidence
The evidence under consideration in this document and within
the SAILR project is evidence that could have been transferred
either from the crime scene to the criminal or from the criminal
to the crime scene. Evidence that could have been so transferred
is in the form of traces. Thus it has two names transfer or
trace evidence. The evidential material discussed here is in the
form of individual items. Thus, there may be a finite number of
items, such as tablets or sachets of drugs or fragments of glass.

Alternatively, the evidence may be a single measurement such as
that of a DNA profile.

Consider the situation in which a crime has been committed,
there is a crime scene and the investigation has reached the stage
where a suspect has been identified. Trace evidence, denoted
E, of a particular type has been found at the crime scene and
on the suspect and its value is of interest. The evidence E may
be partitioned into two parts, that found at the crime scene
and that found in association with the suspect. In practice, the
terminology takes a different form which depends on whether
the source of the evidence is known or not known. A distinction
is also drawn between evidential material and the evidence for
evaluation. Evidence for evaluation is the observations made on
thematerial. Only evidence which is in the form ofmeasurements
and thus represented by continuous data is considered here.
Other factors such as the locations in which the material was
found and the quantity of the material are not considered.
Evidence of a discrete nature such as binary data as in the
presence or absence of striation marks is also not considered.

Evidence whose source is known is called control evidence Ec.
Evidence whose source is not known is called recovered evidence
Er . Measurements on Ec are conventionally denoted x where
x = (x1, . . . , xm) are m sets of measurements and where xi, i =
1, . . . ,mmay be univariate or multivariate. Measurements on Er
are conventionally denoted y where y = (y1, . . . , yn) are n sets
of measurements and where yj, j = 1, . . . , nmay be univariate or
multivariate 3.

For an evaluative comparison of x and y, background data z
are needed. These background data should be a representative
sample of all possible sources from the population of interest,
known as the relevant population. Ideally, the sample should be
a random sample but this is rarely possible for practical reasons.
The sample is often what might be called a convenience sample.
If the convenience sample can be demonstrated to be composed
of sources chosen in a manner independent of the case under
investigation then the inference based on the comparison of x and
y informed on z should be valid. Computation of the likelihood
ratio requires data files from x, y and z.

One example of evidence in the form of multivariate data
relates to glass elemental content. Such data are often subjected
to a logarithmic transformation after taking the ratios of a
particular elemental content to the oxygen content, for example,
log10(NaO) = log10(Na/O). These measurements can be for
each of m fragments of control evidence and for each of n
fragments of recovered evidence (Zadora et al., 2014). This
evidence can be multivariate as there can be several ratios
measured for each fragment, e.g., log10(NaO), log10(MgO) and
log10(AlO). The control evidence is the measurements from a
number m of fragments of glass from a broken window at a
crime scene; the source of the fragments is known to be the
window, items within source are the fragments. The recovered

3The use of x and y here is not to be confused with the use of x = Pr(E | Hp) and

y = Pr(E | Hd) in section 2.2.
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evidence is the measurements from a number n of fragments of
glass found in association with a suspect, for example on clothing
identified as theirs. The source of the fragments of glass from
the suspect is unknown. It may or may not have come from
the window at the crime scene. A second example could be the
measurements of color chromaticity coordinates on fibers and
the evidence is bivariate (Martyna et al., 2013). There are three
color chromaticity coordinates. The sum of their values is fixed
so given the values of any two, the third is known. Control
evidence is the measurements of color chromaticity coordinates
from a number m of fibers from an article of clothing belonging
to a suspect; the source is the article, the items are the fibers.
Recovered evidence is the measurements of color chromaticity
coordinates from a number n of fibers found at a crime scene.
Thus control evidence may be found at a crime scene or in
association with a suspect. Similarly, recovered evidence may be
found at a crime scene or in association with a suspect.

Often the number m of control items can be chosen by
the investigator. The number n of recovered items may be
determined by what is available and the investigator has little
choice in the selection of this number. If the number of recovered
items is large, in some sense, and perhaps so large as for it to be
impractical to count or analyse them, then the investigator may
decide to select n items where n is less than the number available.
Procedures for the choice of n and the manner of selection of the
items are not discussed in this document or SAILR other than
to note that the evidence selected should be representative of the
total evidence available as far as is possible. Further information
is available in Aitken and Taroni (2004) and references therein.

The likelihood ratio V for the comparison of {x, y} where E is
replaced by {x, y} is then

V =
Pr(x, y | Hp)

Pr(x, y | Hd)
, (5)

where again the conditioning on I, the background information,
has been omitted for clarity of notation.

Often, the propositions being considered are Hp that the
control and recovered evidence are from the same source and
Hd that the control and recovered evidence are from different
sources. In such a circumstance, x and y may be assumed
independent if Hd is true as they come from different sources.
Then Equation (5) may be written as

V =
Pr(x, y | Hp)

Pr(x | Hd) Pr(y | Hd)
. (6)

If x and y are continuous data, as is the case when the evidence is
in the form of measurements rather than counts, the probabilities
in the numerator and denominator are replaced by probability
density functions, denoted say f (x, y) for the joint density and
f (x) and f (y) for the marginal distributions. The continuous
analog of Equation (6) can then be written as

V =
f (x, y | Hp)

f (x | Hd)f (y | Hd)
. (7)

In most cases, the full specification of the probability density
function is unknown. The form of the distribution may be
known or a reasonable assumption of its form may be made. For
example, it may be known or can be assumed that the appropriate
distribution is a Normal distribution. This assumption may be
based on the unimodal, symmetric nature of the distribution.
If the distribution has a positive skew then a transformation to
normality with a logarithmic transformation of the data may be
possible before consideration of the likelihood ratio. However,
the parameters may neither be known nor able to be assumed
known.

The numerator of Equation (7) may be written as f (x, y |

Hp) = f (y | x) | Hp)f (x | Hp). Since the distribution of x is
independent of whether Hp or Hd is true, f (x | Hp) = f (x | Hd)
and Equation (7) may be written as

f (y | x,Hp)/f (y | Hd).

See Equation (18) in Appendix for an example.

2.5. Training Data
When parameters are not known, information about their
possible values may be obtained from data independent of
the crime but thought to be relevant for consideration of the
variability in the measurements of the data comprising the
evidence. These data are the training data or background data
and are conventionally denoted z. These data are considered to
be a sample from a population, known as a relevant population.
There is considerable continuing debate as to how to choose
a population that is relevant for a particular crime and,
once chosen, how a sample may be chosen from it to be a
representative sample of the population. See, for example, R. v.
T [2010] EWCA 2439, where the debate related to the choice of
populations of shoes relevant for the consideration of evidence
of shoeprints. Often the sample is a convenience sample; see
section 2.4.

An alternative procedure would be to sample anew
each time from a population deemed relevant to the case
under investigation. A relatively early example of this is the
investigation of a murder in Biggar, a town near Edinburgh,
in 1967. A bite mark found on the breast of a young girl who
had been murdered had certain characteristic marks, indicative
of the conformation of the teeth of the person who had bitten
her. A 17-year-old boy was found with this conformation and
he became a suspect. Examination of 90 other boys of the
suspect’s age showed that the particular conformation was
not at all common. The 90 other boys could be considered
as a sample from a relevant population. Further details are
available in Harvey et al. (1968). However, in most individual
investigations it is not practical to obtain such a bespoke relevant
population.

2.6. Hierarchy of Evidence
Often, with measurements, the training data can be thought of
as a set of sources of items. Measurements are made of one or
more characteristics of the items. For example, consider again
the composition of the elemental ratio of various elements of
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glass to oxygen for glass fragments from a set of windows. The
items are glass fragments. A source would be a window. The
training set is a set of windows. The set of windows is a sample
from some population of windows, deemed relevant for crimes
involving windows. The measurements are said to be hierarchical
with two levels. One level is the fragment of glass within a
window. Variation amongst measurements of fragments within a
window is known as within-group or within-source variation. The
second level is the window. Variation amongst measurements
between windows is known as between-group or between-source
variation. Measurements are taken from an item (fragments of
glass) within a source (window). Notationally, the training data
z has two indices, one for each level and may be represented as
z = {zkℓ; k = 1, . . . , g, ℓ = 1, . . . , h} where g is the number of
sources in the training set and h is the number of measurements
within sources. The number of measurements within sources
need not necessarily be constant though it is computationally
convenient if this can be arranged during the compilation of the
training set. Occasionally there may be further levels, for example
measurement error.

2.7. Propositions
As well as evidence (E) and background information I, evidence
evaluation depends on propositions Hp and Hd. There are
different types of propositions, also known as levels. Both
propositions (Hp and Hd) in any particular situation for the
evaluation of evidence are at the same level. There are four
different levels of propositions, known respectively as offense
level, activity level, source level and sub-source level (Cook et al.,
1998a; Evett et al., 2000).

The levels, with examples, are described as follows.

• Offense level: the propositions may be that the defendant is
guilty of an offense (truly guilty, not just declared guilty)
and that the defendant is innocent (truly innocent, not just
declared not guilty).

• Activity level: the propositions concern an activity by the
defendant which may or may not be a criminal act. An
example of a pair of activity level propositions could be that
the defendant hit the victim and that the defendant did not hit
the victim.

• Source level: the propositions concern the source of evidential
material. There is no consideration of the activity that may
have led to the material being where it was found. An example
of a pair of source level propositions could be that blood
found at the scene of a crime came from the defendant and
that the blood found at the scene of the crime came from
some other source, unrelated to the defendant. Note that
this example is one in which the two propositions are not
exhaustive; relatives of the defendant are not included. SAILR
can only be used for likelihood ratio computation on source
level.

• Sub-source level: the propositions concern material for which
it is not possible to identify a source. An example of a pair of
sub-source level propositions could be that DNA found at a
crime scene came from the defendant and that DNA found at
the crime scene came from some other source, unrelated to

the defendant. The quantity of material found is insufficient to
identify its source, e.g., whether it came from blood or semen.

3. FRAMEWORK FOR MODELS

The likelihood ratio may be used in the context of forensic
science in two different ways, that of comparison and that
of discrimination. For comparison, two pieces of evidence
found in different places are compared to see if they had a
common source. For discrimination, one piece of evidence is
compared with several sets of training or background data from
different sources to see from which source the evidence may
have come.

Most of the models described here are so-called feature-based
models. These are models developed from the measurements
(features) on the evidential material. Other models described
are so-called score-based models. There may be occasions with
multivariate data when a feature-based model is not tractable,
e.g., multidimensional binary data where the number of possible
models is unmanageable. On such occasions, the distance,
denoted d(x, y), between control (x) and recovered (y) data can
be used instead.

3.1. Comparison for Feature-Based Models
3.1.1. The Likelihood Ratio Approach for Continuous

Univariate Evidential Data With Normal Distributions

for the Means and Known Variances
A common problem occurs in forensic science when the
prosecution and defense propositions concern whether two
objects are from the same source or from different sources.
For example, if a glass fragment is found on a suspect and
there is a broken window at the crime scene, one proposition
might be that the glass fragment found on the suspect came
from the window at the crime scene, and the other proposition
might be that the glass fragment came from some other window.
The evidence is given by a set of measurements from the glass
fragment found on the suspect (the recovered sample) and a
set of measurements from one or more glass fragments from
the crime scene (the control sample). The problem is one of
comparison.

The structure of these models reflects the hierarchical nature
of the underlying data (measurements and variation within a
source and then variation between sources). Using a distribution
for the means θ1 and θ2 in this way accounts for variance within
source (σ 2) and variance between sources (τ 2).

The problem for the fact-finder is to determine which
of the two propositions (Hp or Hd) is more likely, given
all of the evidence in the case. Denote the other evidence
and background information by I as before. The fact-finder
can consider which proposition is more likely by considering
the relative size of the two probabilities Pr(Hp | x̄, ȳ, I) and
Pr(Hd | x̄, ȳ, I) (technically, in cases where the statistical
assumptions include knowledge of the variances σ 2 and τ 2

and of a Normal distribution for the measurements, the means
of the control and recovered samples are sufficient statistics
so can be used in place of the measurements x and y). Let
f (x̄, ȳ | Hp, I) be the joint probability density function of x̄
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and ȳ, given proposition Hp and I and let f (x̄, ȳ | Hd, I)
be the joint probability density function of x̄ and ȳ given
proposition Hd and I. In this context Equation (1) may be
represented as

P(Hp | x̄, ȳ, I)

P(Hd | x̄, ȳ, I)
=

f (x̄, ȳ | Hp, I)

f (x̄, ȳ | Hd, I)
×

P(Hp | I)

P(Hd | I)
, (8)

where E is replaced by (x̄, ȳ). For examples where the within-
source variance is not known, the sample variances of x and y

will also be included in the representation.
Denote the common mean of the measurements under the

prosecution proposition by θ1 = θ2 = θ . The likelihood ratio
V is given by Equation (7). This may be rewritten as

V =

∫

f (x̄ | θ)f (ȳ | θ)f (θ)dθ
∫

f (x̄ | θ1)f (θ1)dθ1
∫

f (ȳ | θ2)f (θ2)dθ2
, (9)

where the dependence on I has been suppressed for ease of
notation. The analytical form of this likelihood ratio, given
the independence and Normality assumptions detailed above,
is given by Lindley (1977). The density functions f (x̄ | θ) and
f (ȳ | θ) are taken to be density functions of a Normal distribution.
Note that when the prosecution proposition is chosen the
random variables X̄ and Ȳ , of which x̄ and ȳ are realizations,
are conditionally independent, conditional on θ . They are
independent if it is known they are from the same source.
The distributions associated with these density functions are
termed the within-source distributions, because they account
for the within-source variability. The distribution associated
with the density function f (θ) is termed the between-source
distribution because it accounts for between-source variability,
and it is a prior distribution for θ . The use of a between-source
distribution allows the rarity of the data x and y to be taken
into account when assessing the strength of the evidence; see
Equation (13) in the Appendix for an example. Information to
assist with the estimation of the prior distribution is contained
in the training set. If the control and recovered samples have
similar means, and the mean is unusual, then the strength of
evidence supporting the proposition that the samples are from
the same source should be stronger than if the mean is relatively
common.

A solution to this problem of the comparison of sources in
the case where the measurements are univariate and are assumed
to be independent and Normally distributed was developed
by Lindley (1977). Some details are given in the Appendix;
see Equations (12) and (13) in the Appendix. Denote the m
measurements on the control sample by x = (x1, . . . , xm) and
the nmeasurements on the recovered sample by y = (y1, . . . yn).
The corresponding means of each of these samples are denoted
x̄ and ȳ. The two propositions to be considered are at the source
level and are:

• Hp: the control and recovered sample are from the same
source.

• Hd: the control and recovered sample are from different
sources.

Lindley’s solution assumes that the means x̄ and ȳ of the
control and recovered samples are sample means of data, whose
corresponding random variables have Normal distributions with
means θ1 (control) and θ2 (recovered), respectively, and variances
σ 2/m (control) and σ 2/n (recovered). The variance σ 2 is a
within-group (e.g., within window) variance. The means θ1 and
θ2 are the means of the groups associated with x and y in the
terminology of hierarchical data. Variability between groups has
also to be considered. This is done with consideration of the
variation in the group means. The two means θ1 and θ2 are
also assumed to be realizations of a random variable which
is Normally distributed, this time with mean µ and variance
τ 2. At present the variances σ 2 and τ 2 are assumed known.
Also, the within-group variance σ 2 is assumed constant within
groups. An expression for the likelihood ratio if the between-
group distribution is not Normal but is represented with a
general distribution p(·), with second derivative p′′(·) is given by
Equation (14) in Appendix.

An extension using kernel density estimation has been derived
to allow for a general non-Normal between-group distribution
Equation (15) in Appendix. Checks of the distributional
assumptions and estimation of hyperparameters aremade using a
training set of groups which are assumed to be a random sample
of groups (sources) from some relevant population. Later work
(e.g., Bozza et al., 2008 with an extension to multivariate data,
Equation 24 in Appendix) relaxes the assumption that σ 2 and τ 2

are known.
The likelihood ratio can be used to assess evidence in a

criminal trial and hence is a solution to the comparison of sources
problem; Lindley (1977).

This approach for evidence evaluation based on the likelihood
ratio is different from an approach based on hypothesis testing.
The likelihood ratio approach has many advantages; a discussion
of these can be seen in Aitken and Stoney (1991) and Aitken
and Taroni (2004). One such advantage is that the likelihood
ratio has no dependence on an arbitrary cut off point ( e.g., 5%
significance). Another advantage is that the use of a likelihood
ratio reduces the risk that a transposition of the conditional
probabilities (also known as the prosecutor’s fallacy) occurs,
a transposition which confuses the probability of finding the
evidence on an innocent person with the probability of the
innocence of a person on whom the evidence has been found.
In addition, the likelihood ratio provides a method of comparing
the likelihood of the evidence under the propositions of both
the prosecution and the defense. This guards against potentially
misleading situations when the likelihood under only one of
these propositions is considered. Finally, an approach based
on the likelihood ratio ensures equality of treatment of both
propositions. In a procedure based on hypothesis testing, a null
hypothesis is assumed true unless sufficient evidence is found
to reject it at a pre-specified significance level. Often, the null
hypothesis is that of a common source, θ1 = θ2 in Lindley’s
example. This is the prosecution proposition. Thus the burden of
proof is placed on the defense to put forward sufficient evidence
to enable rejection of the prosecution proposition, contrary to
the dictum of “proof beyond reasonable doubt.” The prosecution
need prove nothing.
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3.1.2. The Likelihood Ratio Approach for Other Forms

of Continuous Evidential Data, Including Multivariate

Data
Later work on evidence evaluation has extended the work done
in Lindley (1977) to cover other data types, allowing for different
forms of the within and between source distributions (Aitken and
Lucy, 2004; Aitken et al., 2006, 2007a). In Bozza et al. (2008) and
Alberink et al. (2013), extensions are given so that the between-
source distribution in Equation (9) becomes a function of both
the mean and the variance. This allows for variation in the
variance of samples from different sources. All of these extensions
assume that themmeasurements x are independent and that the
n measurements y are independent. Methods for autocorrelated
data types, such as measurements associated with drug traces on
banknotes are described in Wilson et al. (2014, 2015).

For multivariate measurements which are independent and
which have a multivariate Normal distribution the analytical
form is derived in Aitken and Lucy (2004). The likelihood ratio
is given for two forms of the distribution of the mean between
sources. The first form assumes multivariate Normality, and the
second form uses nonparametric kernel density estimation. The
within-source variance is assumed constant over all sources.

When there are several variables graphical models may be
used to reduce the number of parameters needing to be estimated.
The kernel density approach given in Aitken and Lucy (2004)
can then be used to calculate likelihood ratios for the subsets
of variables as indicated by the graphical models. The graphical
model considers partial correlations amongst the variables and
partitions these variables into overlapping subsets known as
cliques. The overall distribution may then be represented as
a function of the distributions over the cliques. These clique
distributions have very few variables each (e.g., one, two or three;
and the overall likelihood ratio is then a product of likelihood
ratios which are based on one-, two- or three-dimensional data
Aitken et al., 2007). Such a process for the reduction of dimension
is necessary to avoid the curse of dimensionality whereby very
large data sets are needed for the estimation of parameters in a
multi-dimensional parameter set.

In Aitken et al. (2006) themultivariatemethods used in Aitken
and Lucy (2004) assuming Normality are extended further to
allow for another level of variance (e.g., measurement error) to be
taken into account, giving a three-level model. Amodel assuming
an exponential distribution for between-sources in a three-level
model is assumed in Aitken et al. (2007a) and the analytical form
of the likelihood ratio is derived. Variation between the means
of samples from different sources, variation between the means
of different samples taken from the same source and variation
within repeatedmeasurements on the same sample are taken into
account.

Relaxation of the assumption that samples from different
sources will have the same variance means that an analytical
solution is not available. Measurements are assumed multivariate
and independently Normally distributed as before but the
between-source (prior) distribution is taken to be the product of
a multivariate Normal distribution (for the mean of the between-
source distribution) and an inverse Wishart distribution (for
the covariance of the between-source distribution). In this way,

variation of covariances, as well as means, between different
sources is taken into account. An analytical form of the likelihood
ratio is not available so Markov chain Monte Carlo (MCMC)
methods are used to estimate it (Bozza et al., 2008) (Equation 24
in the Appendix).

A similar approach to Bozza et al. (2008) for the evaluation
of the likelihood ratio for the comparison of sources problem is
used by Alberink et al. (2013) in that variation in the variance
parameter between sources is modeled as well as variation in
the mean parameter, although in Alberink et al. (2013) the data
are univariate. As with all of the other approaches discussed, the
within-source distribution is Normal, and the data are assumed
independent. There are two main extensions seen in Alberink
et al. (2013). The first is that three different distributions are
used for the between-source distribution. One is the univariate
equivalent of the between-source distribution used in Bozza
et al. (2008) (a semi-conjugate prior), one is a non-informative
prior, proportional to the inverse of the variance, and one is
the conjugate prior distribution seen on p. 74 of Gelman et al.
(2004). This conjugate prior distribution gives a between-source
distribution for the parameter (µ, σ 2), denoting group mean and
variance, of

µ ∼ N(µ0, σ
2/κ0)

σ 2 ∼ Inv-χ2(ν0, σ
2
0 )

where µ0, κ0, ν0 and σ 2
0 are hyperparameters to be estimated and

the notation Inv-χ2 corresponds to a scaled inverse chi-squared
distribution. The difference between this and the univariate
equivalent of the between-source distribution used in Bozza et al.
(2008) is that the variance of the parameter µ is proportional
to σ 2. An analytical form of the likelihood ratio for the two
cases when the between-source distribution is given by the non-
informative prior and when the between-source distribution is
given by the conjugate prior (Alberink et al., 2013) who also show
that no analytic solution exists if a semi-conjugate prior is used.
(See Equations (16,17) in the Appendix.)

As in Bozza et al. (2008), Alberink et al. (2013) use MCMC
methods to evaluate the likelihood ratio when the between-
source distribution is given by the semi-conjugate prior, although
there are differences in the implementation, leading to the second
main extension. Alberink et al. (2013) use prior distributions on
the hyperparameters of the between-source distribution and then
combine these prior distributions with training data to obtain a
posterior distribution for the hyperparameters, conditional on
the training data. All of the other methods discussed estimate
the parameters of the between-source distribution directly from
the training data using summary statistics. The methods used
in Alberink et al. (2013) allow for a Bayesian approach for the
estimation of the between-source distribution. One disadvantage
of this approach is that the method for estimating the likelihood
ratio used in Bozza et al. (2008) is no longer feasible because,
instead of having a known analytic form for the between-source
density function, draws from the between-source distribution are
obtained usingMCMCmethods. Monte Carlo integration is used
by Alberink et al. (2013) to estimate the likelihood ratio.
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All of the literature discussed in sections 3.1.1 and 3.1.2
evaluates likelihood ratios for continuous evidential data. There
are some common assumptions. All assume that measurements
are independent and that the within-source distribution is
Normal (univariate or multivariate). Constant variation between
sources of the within-source distribution is assumed by Lindley
(1977), Aitken and Lucy (2004), Aitken et al. (2007) and Aitken
et al. (2006). This assumption is relaxed by Bozza et al. (2008)
and Alberink et al. (2013), allowing the variance to vary between
sources. A Bayesian approach is used by Alberink et al. (2013) to
obtain the parameters of the between-source distribution.

Methods for the evaluation of continuous, autocorrelated
data are described in Wilson et al. (2014) and Wilson et al.
(2015). The data used for illustration are the quantities of drugs
on banknotes where quantities on adjacent notes cannot be
considered independent. Some work has also been done on the
evaluation of evidence for discrete data, particularly in the field
of DNA profiling (Buckleton et al., 2005) and more recently
on data relating to clicks in speech (Aitken and Gold, 2013)
and the presence or absence (binary data) of striation marks for
screwdrivers (Aitken and Huang, 2015).

3.2. Discrimination
Forensic scientists are not only interested in comparisons of two
pieces of evidence, such as control and recovered evidence, under
different propositions, that of same source vs. that of different
source, without attention being paid to the identity of the source.
There is also interest in the source of one piece of evidence.
The support of the evidence for a proposition of source is of
interest. The problem concerns the determination of whether a
sample of data is more likely to be from one population (source)
or another. Of course, such a determination is the concern of
the fact-finder. The scientist is concerned with the probability
of the measurements on the evidential material if the material
came from one source or if it came from another. If there are
more than two possible sources, then prior probabilities, that
is, probabilities for each source under consideration before the
material is examined, are needed in order to obtain a likelihood
ratio. In this problem there is only one set of evidential data
compared with the two sets (control and recovered) in the
comparison problem. The aim is to assist the decision-maker
as to the population of origin of the evidential data. This is
a problem of discrimination, as distinct from a problem of
comparison.

An example of the use of likelihood ratios in a problem of
this sort can be seen in Zadora et al. (2010) which looks at the
discrimination of glass samples and in Wilson et al. (2014, 2015)
which considers discrimination between banknotes assocated
with a person associated with criminal activity and banknotes
associated with a person not associated with criminal activity. As
with the problem of comparison of sources, the likelihood ratio
alone cannot determine whether a set of data is more likely from
one population or another; it must be considered in conjunction
with the prior odds. The derivation of the likelihood ratio for
such discrimination problems is discussed in Taroni et al. (2010)
(Chapter 8). The likelihood ratio for a set of evidence consisting

of nmeasurements, z = (z1, . . . , zn), under two propositions, Hp

and Hd, is considered.
4 The two propositions are given by

• Hp : data z are from population 1, and
• Hd : data z are from population 2.

The likelihood ratio V for the discrimination problem, where
I is the background information as usual, is given in Taroni et al.
(2010) by

V =
f (z | Hp, I)

f (z | Hd, I)
. (10)

This expression can be compared with Equation (7) and the
comparison problem. In the comparison context, the joint
density function of control and recovered data is considered.
In the discrimination problem, two (or more) possible sources
(populations) are identified.

Assume as for the comparison problem that the data are
hierarchical and that there are two possible sources. The
probability density function of groups of data from source i is
parameterized by θi, i = 1, 2 (possibly multivariate). If the value
of θi (for i ∈ {1, 2}) varies between different groups in population
i then by conditioning on θ1 in the numerator and θ2 in the
denominator, the likelihood ratio V can be written

V =

∫

f (z | θ1)f (θ1)dθ1
∫

f (z | θ2)f (θ2)dθ2
. (11)

The probability density function f (θi) models the variability of
the parameter θi between groups in population i, and is termed
the between-group density function (the associated distribution
function will be termed the between-group distribution
function). This is analogous to the between-source distribution
used to model variability between sources in the comparison
of sources problem. Similarly, the density function f (z | θi) is
termed the within-group density function (with the associated
distribution function termed the within-group distribution
function).

Using this formulation for the likelihood ratio, the methods
discussed previously for the evaluation of the likelihood ratio for
the comparison of sources problem can be adapted to evaluate the
value of evidence for discrimination problems. The limitations
and assumptions of these methods still apply.

In the context of discrimination, training data are a random
sample of groups from each or both of the sources. Variation
is between groups within each of the sources. There is an
abuse of terminology here. In the comparison problem with
the proposition of common source, the control and recovered
evidence are deemed to be from the same source but without
specification of the source. The source is a member of a
population of sources. In the discrimination problem, support
for a particular source is assessed. The distinction between
comparison and discrimination problems is emphasized in
Zadora et al. (2014) where the two problems are discussed in

4Note the change of use of notation. In this section, z refers to evidential data and

not to training data.
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different chapters (and note that discrimination is there noted as
classification).

3.3. Score-Based Models
Return now to consideration of the problem of comparison
of sources with a p-dimensional control measurement x =

(x1, . . . , xp) and a p-dimensional recovered measurement y =

(y1, . . . , yp). For those occasions when a feature-based model is
not tractable (e.g., multidimensional binary data), the distance
d(x, y), known as a score can be used instead. The value of the
evidence is then

V =
f (d(x, y) | Hp, I)

f (d(x, y) | Hd, I)
.

Rarity is not considered. Inference may then continue as before
but using the score, which is univariate, as the statistic of interest.
Score-based approaches estimate the probability distribution
function of a calculated score. Score-based approaches have
been used for handwriting (Hepler et al., 2012) and speech
recognition (Brümmer and Du Preez, 2006; Gonzalez-Rodriguez
et al., 2006; Morrison, 2011). Score-basedmethods do not require
the distributional assumptions (such as within-source Normality)
needed to fit the models described above but do still require
a function to be chosen to model the probability distribution
function of the score.

There are various distance measures that may be used. Three
examples are

• Euclidean: d =

√

∑p
i=1(xi − yi)2;

• Manhattan: d =
∑p

i=1 | xi − yi |;
• Pearson correlation distance: 100(1− r)/2 with

r =

∑p
i=1(xi − x̄)(yi − ȳ)

√

∑p
i=1(xi − x̄)2

∑p
i=1(yi − ȳ)2

.

Other examples are available in SAILR. For multiple control and
recovered data xi, i = 1, . . . ,m and yi, i = 1, . . . , n, respectively,
pairwise score measurements or means can be used.

For the calculation of score-based likelihood ratios,
distributions of scores of same-source comparisons and of
different-source comparisons are required. Determination of
the same-source distribution can be made by comparing every
measurement in a training set z with every other measurement
within its own source except with itself for which the distance is
zero. For the different-source distribution, every measurement
is compared with all measurements from other sources. These
results may then be used to estimate the distributions of same-
source and between-source comparisons. The distributions
can be represented initially by histograms. They may then be
smoothed with a kernel density estimation or an appropriate
parametric distribution. The current choice of parametric
distribution in SAILR is a Gamma distribution or a Weibull
distribution. The chosen distribution functions, one for same-
source comparisons and one for different-source comparisons,
then can be used to determine the density calculation of the
evidence score for both distributions and hence calculate a
likelihood ratio.

3.4. Comparison of Feature-Based and
Score-Based Models
Models for discrimination and for comparison that use
the original data are feature-based models. The models
discussed in sections 3.1 and 3.2 are all feature-based. Feature-
based multivariate Normal models compare the probability of
observing the evidence given that the evidential samples (control
and recovered) measured, and compared, come from the same
source or come from different sources. In contrast, the score-
based model compares the probability of observing the pairwise
similarity between two samples (control and recovered) given
that they come from the same source with the probability
of the pairwise similarity given that the samples come from
different sources. A comparison of the performances of score-
based and frequency-based likelihood ratios for forensic MDMA
comparisons is given in Bolck et al. (2015).

The benefits and shortcomings of both methods are given by
Bolck et al. (2015) as:

• Feature-based benefits:

– Original data dimensionality preserved; no information
loss.

– Rarity and similarity of the features relate directly to the
magnitude of the likelihood ratio.

• Feature-based shortcomings:

– Covariance estimation is difficult when limited data are
available relative to the dimensionality of the variables.

– The feature-based method is often less robust than the
score-based model when there are limited population
samples.

• Score-based benefits:

– Covariance estimation between sources is possible with few
samples available.

– The method is robust and able to be generalized to new
samples.

• Score-based shortcomings:

– There is a loss of information because of a reduction of
dimensionality.

– The value of the likelihood ratio is based on the similarity
of pairwise scores rather than the similarity and rarity of
features.

3.5. Summary of Feature-Based Models
References for details of a selection of feature-based two-
level models with within-group measurements independent and
Normally distributed are listed here. Equation numbers are given
for models for which further details are given in the Appendix.

• Univariate:

– Within-group Normal,
Between-group Normal for between-group mean (assume
within-group variance known)
(Lindley, 1977, see Equations 12, 13 in the Appendix).
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– Within-group Normal,
Between-group Taylor expansion for between-group mean
(assume within-group variance known)
(Lindley, 1977, see Equation 14 in the Appendix).

– Within-group Normal,
Between-group kernel for between-group mean (assume
within-group variance known),
(Aitken and Taroni, 2004, see Equation 14 in the Appendix).

– Within-group Normal,
Between-group distribution:
(a) Normal distribution - semi-conjugate prior,
(b) Non-informative prior, proportional to the inverse of
the variance,
(c) Conjugate prior - Normal, scaled inverse chi-squared
(Alberink et al., 2013, see Equations 15, 16 in the Appendix).

• Bivariate:
Numerator (predictive distribution) (Bernardo and Smith,
1994),
Denominator (kernel),
(Evett et al., 1987, see Equation 18 in the Appendix).

• Multivariate, within-group measurements independent and
Normally distributed

– Within-group Normal,
Between-group kernel for distribution of group means,
Within-group variance assumed common and estimated
from training data, (Aitken and Lucy, 2004, 4.1, see
Equation 19 in the Appendix).

– Within-group Normal
Between-group Normal for distribution of group means,
Inverse Wishart for the covariance of within-source
distribution, (Bozza et al., 2008, see Equation 24 in the
Appendix).

– With graphical models:
See section 3.1.1; Aitken et al. (2007).

– In the presence of zeros, that is when no measurement of a
specific characteristic has been made on certain members
of the control data set, the recovered data set or the
training data set: both Normal and kernel between-group
distributions considered. Estimation of covariance matrices
by imputation and by available cases (Zadora et al., 2010).

– In addition, when within-group measurements are
autocorrelated and Normally distributed (see Wilson et al.,
2014, 2015).

4. MODEL PERFORMANCE

Model performance for the comparison problem is assessed with
a training set and associated data z as discussed in section 2.6.
If possible, another set, known as a validation set could be
used. The training set and validation set should both comprise
several sources of data from a relevant population. Within each
source, measurements are taken on each of several items. The
source of each member of the two sets is known. Models and
parameters can be fitted using the training set. The performance
can be assessed using the validation set. Thus when a method for

comparison or discrimination is tested usingmembers of the data
set it is known if the correct answer is given. In the absence of a
validation set, the performance can be assessed through a second
use of the training set (e.g., with a leaving-one-out method).
Validation enables the provision of measures of performance
based on calculated likelihood ratios.

For a comparison of two members of the validation (or
training) set a likelihood ratio is calculated. There are two
conclusions that may be drawn by the fact-finder: they are from
the same source or they are not from the same source. If the
likelihood ratio is greater than 1, then this is support for the
proposition of a common source for the two members of the
validation (training) set being compared. If they are truly from
the same source then this is counted as a correct result. Similarly,
if its value is less than 1, then this is support for the proposition of
different sources for the two members of the validation (training)
set being compared. If they are truly from different sources then
this is counted as a correct result. However, if the two members
have a value for the likelihood ratio of greater than 1 when they
are from different sources, this is an incorrect result and the result
is known as a false positive. Similarly, if the two members have a
value for the likelihood ratio of less than 1 when they are from the
same source, this is an incorrect result and the result is known as
a false negative.

For discrimination with two groups, say A and B, the member
of the data set may be classified by the fact-finder as belonging
to group A or to group B. False positives and false negatives
can be defined in a manner analogous to that of the comparison
procedure. A likelihood ratio is calculated. If its value is greater
than 1, then this is support for the proposition that the member
of the training set belongs to group A, say. If the member is truly
from group A then this is counted as a correct result. Similarly, if
its value is less than 1, then this is support for the proposition that
the member is from group B. If it is truly from group B, then this
is counted as a correct result. However, if the member has a value
for the likelihood ratio of greater than 1 when it is from group
B, this is an incorrect result and the result is a false positive, say.
Similarly, if the member has a value for the likelihood ratio of less
than 1 when it is from group A, this is an incorrect result and the
result is a false negative.

For both comparison and discrimination problems, the
strength of the support is measured by the value of the likelihood
ratio. As noted in section 2.3 if the logarithm is taken this
is known as the weight of evidence. Given the existence of a
validation (training) set it is possible to measure the performance
of a method for comparison or discrimination as the correct
answer is known. It is not possible to assess the result in an
individual case; the correct answer in an individual case is not
known.

The likelihood ratio, or a function of it such as the logarithm,
has been shown byGood, 1989a,b (section 2.2) to provide the best
(only) value of the evidence. Attempts to express the uncertainty
associated with this assessment (e.g. with a confidence interval)
are attempts to put a probability on a probability and should
not be done (Taroni et al., 2016). This view is not universally
agreed, see discussion issues of Law, Probability and Risk (2016,
volume 15, issue 1) and Science and Justice (2017, volume 56).
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Note also the quote from Kaye (1979) in section 2: “It thus
supplies the jurors with as precise and accurate an illustration of
the probative force of the quantitative data as the mathematical
theory of probability can provide”. It is not necessary to provide
an interval estimate.

There are several measures of performance.

• The percentage of false positives and of false negatives amongst
all the comparisons or discriminations tested. Often, in a
criminal case, one of the propositions is associated with the
prosecution, hence the notation Hp, and other is associated
with the defense, with the notationHd. In such a circumstance,
the burden of proof lies with the prosecution. It is a more
serious error to support the prosecution proposition wrongly
than to support the defense proposition wrongly. Let support
for the prosecution proposition be known as a positive result.
Thus, when considering the performance of a test, it is better
to choose a test in which there is a low false positive rate and
a high false negative rate rather than one in which there is a
high false positive rate and low false negative rate. Ideally, zero
false positive and zero false negative results are best but such
an ideal is rarely achieved.

• A Tippett plot. See Evett and Buckleton (1996) and Tippett
et al. (1968). This is a graphical measure of rates of
misleading evidence for comparisons. It is the complement of
empirical cumulative distribution functions for same-source
and different-source comparisons. The plots come in pairs,
one for same-source comparisons and one for different-source
comparisons. The log(LR) is plotted on the x-axis and, for a
particular value x0 of the log(LR), the y-axis is the relative
frequency of the number of comparisons greater than x0. For
same-source comparisons, it is to be hoped that all log(LR)
values are greater than 0. Thus for x < 0, it is hoped
the corresponding value on the y-axis will be 1 (or 100%).
Similarly, for different-source comparisons, it is to be hoped
that all log(LR) values are less than 0. Thus for x > 0, it is
hoped the corresponding value on the y-axis will be 0 (or 0%).

The vertical distance from the intersection of the same-
source plot with the line log(LR) = 0 and the line y =

1(100%) is the rate of misleading evidence for same-source
comparisons, the proportion of same-source comparisons that
have a value of log(LR) < 0 (LR = 1). The vertical distance
from the intersection of the different-source plot with the line
log(LR) = 0 and the line y = 0(0%) is the rate of misleading
evidence for different-source comparisons, the proportion of
different-source comparisons that have a value of log(LR) >

0 (LR = 1).
• Detection error trade-off (DET) curves. See Meuwly et al.

(2017). A detection error trade-off (DET) plot is a 2-
dimensional graphical representation in which the proportion
of false positives is plotted as a function of the proportion of
false negatives. The closer the curves to the coordinate origin,
the better are the discriminating capabilities of the method.
The intersection of a DET curve with the main diagonal of the
DET plot marks the Equal Error Rate (EER) which is the point
when the proportions of false positives and false negatives are
equal.

• Empirical cross-entropy. See Meuwly et al. (2017), Ramos et al.
(2013) and Ramos and Gonzalez-Rodriguez (2013).
The performance of probabilistic assessments has been
addressed by strictly proper scoring rules (SPSR). Consider two
propositions about a parameter θ , one that θ = θp and one
that θ = θd, with Pr(θ = θp) = 1 − Pr(θ = θd) For evidence
evaluation, the logarithmic SPSR is used and defined as

C(Pr(θp | I), θ) = − log2(Pr(θp | I)) if θ = θp,

= − log2(1− Pr(θd | I)) if θ = θd,

The measure of accuracy for evidence evaluation based on the
SPSR is a weighted average value of the logarithmic scoring
rule, and is known as the empirical cross-entropy (ECE):

ECE = −
Pr(θp | I)

Np

∑

θ(i)=θp

log2 Pr(θp | Ei, I)

−
Pr(θd | I)

Nd

∑

θ(j)=θd

log2 Pr(θd | Ej, I)

=
Pr(θp | I)

Np

∑

θ(i)=θp

log2
(

1+
1

LRi × O(θp)

)

+
Pr(θd | I)

Nd

∑

θ(j)=θd

log2
(

1+ LRj × O(θp)
)

,

where LRi(LRj) is the likelihood ratio for the i-th (j-th)Ei (Ej)
piece of evidence where θ = θi(θj), respectively, and O(θp)
denotes the prior odds Pr(Hp)/Pr(Hd). For the discrimination
problem with two sources, the parameters θp and θd represent
the parameters of the two sources. For the comparison
problem θp represents same-source comparisons and θd
represents different-source comparisons in the validation
dataset.

This measure tends to indicate better performance when
the likelihood ratio leads to the correct decision. The
numerical value will be lower as the performance increases.
The ECE can be represented as an ECE-plot, showing its value
for a certain range of priors.

4.1. Conclusion
The development of methods for the evaluation of evidence
for frequency-based continuous two-level models is described
from the hierarchical model for univariate continuous data
developed by Lindley (1977) to multivariate models with
unknown means and covariances (Bozza et al., 2008). This
development is of interest in its own right as a compilation
of some thirty years of development. However, it also provides
a background to the development of the SAILR package,
a package which extends these ideas to include score-based
models.
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Formulae for many of these are given in the Appendix and
may also be found in many books on the subject (e.g., Aitken and
Taroni, 2004; Zadora et al., 2014).

There is muchmore that can be reviewed. References for some
of the omissions of this paper are given here. It is hoped they
are useful. There have been few papers on models for discrete
data; see Aitken and Gold (2013) for an example. Score-based
models have received a lot of attention recently and are included
in SAILR; see Bolck et al. (2015) for examples. Graphical models
provide an approach for a reduction in the dimensionality
of multivariate problems; see Zadora et al. (2014) for
examples.
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