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The tobacco use disorders are the largest preventable cause of morbidity and mortality in

the world. A substantial barrier to the development of better intervention and screening

measures is the lack of clinically employable biomarkers to detect the existence and

extent of tobacco consumption. In prior work, we and others have shown that array

based assessment of DNA methylation status at cg05575921 is a sensitive and

quantitative method for assessing cigarette consumption. Unfortunately, in general,

arrays are not practical clinical tools. Herein, we detail the prediction performance

metrics and dose dependency of a clinically implementable droplet digital PCR (ddPCR)

assay for cigarette consumption in adults. First, we demonstrate that measurements

of cg05575921 as determined by Illumina array and ddPCR are highly correlated

(R2 = 0.98, n = 92). Second, using clinical data and biomaterial from 177 subjects

ranging from 18 to 78 years of age, we show that the Receiver Operating Characteristic

(ROC) area under the curve (AUC) for classifying smoking status using methylation status

at cg05575921 is 0.99. Finally, we conduct modeling analyses of cigarette consumption

over discrete time periods to show that methylation status is best correlated with

mean cigarette consumption over the past year (R2 = 0.5) and that demethylation at

cg05575921 is dose dependent with a demethylation (delta beta) of 1% being equivalent

to 1.2 cigarettes per day. But we do not find a relationship between Fagerstrom score

and DNAmethylation. We conclude that ddPCR assessment of cg05575921methylation

is an accurate method for assessing the presence and extent of cigarette consumption

in adult subjects. We suggest that skillful clinical implementation of this approach alone

or in combination with other assessment methods could lead to substantial reduction of

cigarette consumption related morbidity and mortality.
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INTRODUCTION

The tobacco use disorders are the largest cause of morbidity
and mortality in the United States (Centers for Disease
Control and Prevention, 2015). Despite the extensive use of
preventive measures and the development of modestly effective
pharmacotherapies, the rate of smoking in United States adults
remains relatively fixed at ∼18% (Centers for Disease Control
and Prevention, 2011). Although there are a number of reasons
for the persistence of this deadly addiction, one major barrier is
the lack of clinically employable biomarkers to assess the presence
and extent of cigarette smoking.

The main method to screen for smoking is self-report.
In epidemiologic settings, self-report is reasonably reliable
(Benowitz et al., 2009). However, in health care settings where
consequences could conceivably occur, self-report is considerably
less reliable. For example, at the health care payor level, although
∼18% of Iowa adults smoke, only 7% of the 1.4 million adults
covered by Wellmark Blue Cross and Blue Shield reported that
they smoke (Leys, 2014). Along with driving up the healthcare
costs for those who do not smoke, this misreporting also deprives
the insurance company a potential opportunity to provide and/or
incentivize smoking cessation interventions. At the point of
contact level, self-report, in particular for high risk patients,
can be equally unreliable. For example, up to 39% of pregnant
women who are positive for cotinine deny smoking while 36%
of lung transplant recipients are positive for cotinine yet deny
smoking (Britton et al., 2004; Shipton et al., 2009). Given the
effects of smoking on the developing fetus and the high costs of
many medical procedures, the economic and moral imperatives
to improve detection and treatment of smoking are considerable.

In response to this need for identifying active smokers, many
clinicians elect to use either exhaled carbon monoxide (CO) or
cotinine assessments. Exhaled CO levels are easy to perform.
Unfortunately, CO has a short half-life (Florescu et al., 2009).
As a result, these tests are insensitive to intermittent smoking
and individuals can easily avoid detection by simply not smoking
in the hours before a clinic appointment (Florescu et al., 2009;
Cropsey et al., 2014). Assessments of cotinine, a metabolite of
nicotine, which can be performed on serum, urine, or hair
samples, are generally regarded as themost reliable biomarker for
the screening of smoking (Florescu et al., 2009). Unfortunately,
nicotine replacement therapies, which are used by up to 90% of
smokers undergoing smoking cessation therapy, also results in
the generation of cotinine and substantial numbers of ex-smokers
report being unable to discontinue nicotine replacement without
resumption of smoking. Hence, all individuals need to do to
evade detection is to claim that either they are “vaping” (i.e., using
e-cigarettes) or using nicotine replacement therapy. Conceivably,
these false reporters could be detected by the quantification of
pyrholized tobacco products (Jacob et al., 2002; Florescu et al.,
2009). But currently, the approaches to detect these oxidized
tobacco byproducts require complex and expensive procedures.

Methylation sensitive droplet digital PCR methods may
offer a more scalable, sensitive, and specific approach to
assessing cigarette consumption. In 2012, we reported that
DNA methylation status at cg05575921, a CpG locus in the

aryl hydrocarbon receptor repressor (AHRR) was significantly
associated with smoking status (Monick et al., 2012). Since
that time, over 50 studies using these genome wide tools have
replicated this finding (for a partial listing, please see Andersen
et al., 2015; Gao et al., 2015) with other studies extending
the relationship of methylation of this locus to key healthcare
outcomes including mortality, cardiac risk, and lung cancer
(Zhang et al., 2016; Bojesen et al., 2017).

Although stimulating, due to their high cost, complexity of
data processing and long turnaround time, these array based
approaches for measuring cg05575921 methylation are not
clinically implementable as smoking assessment tools. Therefore,
in 2015, we developed a methylation sensitive quantitative PCR
method for assessing DNA methylation at cg05575921 (Dogan
et al., 2014). However, although qPCR can be rapidly and cheaply
performed, due in part to their need for external reference
standards, qPCR approaches have significant limitations in
their precision and accuracy (Hayden et al., 2013). The recent
introduction of digital PCR methods largely circumvents many if
not most of these difficulties while providing rigorous confidence
interval estimates for methylation measurements (Hayden et al.,
2013; Dogan et al., 2014; Maheshwari et al., 2017).

In this communication, we describe the droplet digital
implementation of a ddPCR assay for cg05575921 methylation
and its relationship to Illumina array measurements. Then,
using data from subjects specifically collected for quantitative
substance consumption analyses, we determine sensitivity and
specificity of this assay for detecting smoking in adults and
the relationship of cg05575921 demethylation to cigarette
consumption across the life cycle.

MATERIALS AND METHODS

The current study uses clinical data and biomaterials from
subjects collected from two NIH funded protocols both of which
were approved by theWestern Institutional Review Board (www.
wirb.com), WIRB approval 20160135 and 20162083.

Clinical Characterization of Subjects
The first protocol ascertained heavy drinking subjects and
alcohol abstinent controls (Philibert et al., in press). The heavy
alcohol consuming subjects were recruited from one of three
Iowa substance use treatment organizations; Center for Alcohol
and Drug Services (CADS, Davenport, IA), Prelude Behavioral
Services (campuses in Iowa City and Des Moines, IA) and
Alcohol and Drug Dependency Services of Southeast Iowa
(ADDS, Burlington, IA) using our previously described protocol
(Philibert et al., 2014). In brief, between 1 and 7 days after their
last intake of alcohol, adults who were admitted for detoxification
were referred for participation in the study by staff or via
printed posters concerning the study. These individuals were not
considered for inclusion if under the influence of any substance.
After full informed written consent was received, each subject
was interviewed with a series of instruments including amodified
form of Version II of the Semi Structured Assessment for Genetic
Studies (SSAGA-II) and our Substance Use Questionnaire, an
inventory that assesses substance consumption over recent time
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periods (Selzer, 1971; Bucholz et al., 1994; Philibert et al., 2014).
After interview, the subjects were phlebotomized to provide DNA
and sera for the study. Serum and DNAwere prepared and stored
as previously described (Philibert et al., 2014). Only subjects who
reported current smoking were considered for inclusion in this
study.

Non-smoking control subjects for this first protocol were
collected at the University of Iowa site using our previously
described protocol (Philibert et al., 2014). In brief, control
subjects who denied consumption of alcohol in the past year
and a lifetime history of any substance use disorder, with the
exception of tobacco use disorder were solicited for the inclusion
in the control arm of the overall study. After consent was
received, the subjects were interviewed with the SSAGA and
the Substance Use Questionnaire, and then phlebotomized to
provide biomaterial for our studies. Importantly, only those
subjects who denied significant lifetime use of smoking either
tobacco (<100 cigarettes) or tetrahydrocannabinol (THC) (<21
times) were considered for the sensitivity and specificity analyses
described in this study.

A second cohort of smoking subjects were collected as part
of an observational study of smoking cessation subjects at
the Davenport CADS site. In brief, before consideration for
inclusion, subjects 18 years or older were prescreened to ensure
interest in smoking cessation, current cigarette consumption at
least 8 cigarettes per day, 5 pack years of cigarette consumption
and an exhaled CO of ≥ 8 ppm. Subjects meeting those criteria
were referred for medicationmanagement, then offered inclusion
in an observational study of smoking cessation. After consent,
each of these subjects were also interviewed with the SSAGA and
Substance Use Questionnaire, then phlebotomized to provide
biomaterials for this study.

Methylation Methods
The array measurements of cg05575921 methylation were
extracted from an Infinium MethylationEpic Beadchip data set
(GSE 110043) obtained from a recently conducted genome wide
analysis of the relationship of DNA methylation to alcohol
consumption status (Philibert et al., in press). The University
of Minnesota Genomics Center conducted these measurements
using reagents and protocols from the manufacturer (Illumina,
San Diego, USA) (Pidsley et al., 2016). After the methylation
intensity data (IDAT) files were downloaded from their secure
server, we conducted probe filtering, background correction and
adjustment for probe types using the MethyLumi, WateRmelon
and FDb.InfiniumMethylation.hg19 R packages (Pidsley et al.,
2013; Triche, 2014; Davis et al., 2017). Quality control was
performed on the sample and probe levels with all values for
cg05575921 methylation surviving quality control.

The methylation status of cg05575921 was determined for
each of these samples using a droplet digital PCR paradigm
featuring a Bio-Rad (Carlsbad, CA) QX-200 Droplet Reader
and an Automated Droplet Generator (AutoDG) In brief,
1 µg of DNA from each subject was bisulfite converted using
the Fast 96 Bisulfite Conversion kit (Qiagen, Germany). An
aliquot of each sample was pre-amplified, diluted 1:3,000, and
then PCR amplified using fluorescent, dual labeled primer

probe sets specific for cg05575921 from Behavioral Diagnostics
(Coralville, IA, USA; available via sale via IBI Scientific, Dubuque,
IA, www.ibisci.com) and Universal Digital PCR reagents and
protocols from Bio-Rad (Carlsbad, CA, USA). The number of
droplets containing amplicons that have at least one “C” allele
(corresponding to the methylated cytosine residue), at least one
“T” allele, at least one “C” and “T” allele, or no amplifiable
alleles was determined using a QX-200 droplet counter and
QuantiSoft software lasso function (Bio-Rad, USA). The results
were expressed as a percent methylation (Andersen et al., 2017).
Reactions were excluded if fewer than 10,000 droplets were
counted or the 95% confidence interval for the mean of the
observed value exceeded 3%.

ELISA Methods
Serum cotinine and tetrahydrocannabinol (THC) levels were
obtained for all subjects using quantitative cotinine and THC
enzyme linked immunoassays (ELISA) kits from AbNova
(Taiwan) according to the manufacturer’s directions. Absorbance
of each sample was determined using a Molecular Devices
(Sunnydale, USA) EMax spectrophotometer.

Statistical Methods
To demonstrate the predictive capability of smoking status using
the ddPCR assay, data from all 177 subjects (98 smokers and
78 controls) were randomly split into training (60%) and testing
datasets (40%). The training and testing datasets consisted of 107
(60 smokers and 47 non-smokers) and 70 subjects (39 smokers
and 31 non-smokers), respectively. A binary logistic regression
model (100 bootstrap repetitions) was fitted in R using training
set data to predict the probability of being a smoker using DNA
methylation at cg05575921. A false negative misclassification
cost twice as much as a false positive misclassification cost,
was set to determine the prediction probability cutoff. The area
under the curve (AUC) of the Receiver Operator Characteristic
curve, sensitivity, and specificity of each bootstrap repetition
were calculated. To evaluate the performance of the model on
the test set, logistic regression was performed on the training
data and was saved for testing on the test set. This approach was
repeated to include age and gender in the prediction model.

Other non-genome wide quantitative analyses of both array
and ddPCR derived methylation data were conducted using JMP
Version 10 software (SAS, Cary, NC USA) and the specific
routines are outlined in the text.

RESULTS

Subject Characteristics
The clinical and demographic variables of the smoking and non-
smoking cohorts are given in Table 1. Overall, the average age
of the controls was 6 years greater than that of the smokers
(p < 0.001). In addition, the largely White controls were more
likely to be female (62%) while the smoking subjects were
more likely to be male (66%). The smoking subjects who were
recruited from the alcohol consumption study tended to be
heavier smokers than the subjects recruited from the smoking
cessation study (P < 0.01 at 1 month, 6 months, and 1 year
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TABLE 1 | Key clinical and demographic data on study subjects.

Controls Smoking

cessation

Alcohol

consumption

N 78 36 63

Age 46.7 ± 14.5 39.7 ± 12.5 40.4 ± 10.5

Ethnicity

White 70 31 52

African American 2 2 8

Other 6 3 3

Gender

Male 32 21 44

Female 46 15 19

Cigarettes per day

Past Month – 11.9 ± 6.7 18.8 ± 12.0

Past 6 Months – 14.8 ± 7.6 19.7 ± 13.1

Past Year – 14.7 ± 8.4 19.7 ± 13.1

Life Consumption Pack Yr 15.5 ± 8.4 14.5 + 12.0

Average cg05575921 (%) 85.9 ± 3.6 50.4 ± 13.9 47.2 ± 17.1

FTND Score – 4.3 ± 1.6 5.0 ± 1.9

Some Cannabis Past Year? 0 19 26

“±” indicates the standard deviation of the sample.

consumption windows). However, their self-reported life time
consumption (in pack years) of the two groups was very similar.

Methylation Sensitive ddPCR Assessments
of DNA Samples
The results from two typical methylation sensitive ddPCR
assessments of cg05575921 methylation in DNA from a smoker
and non-smoker are shown in Figure 1. In essence, treatment of
DNA with sodium bisulfite transforms a potential methylation
difference into a potential quantitative genotype difference. After
exposure to bisulfite, methylated cytosines remain unconverted
while the unmethylated cytosines are converted to uracils which
are subsequently read by DNA polymerases as thymines. In
the next step of the ddPCR process, the bisulfite converted
amplicons are pre-amplified under high stringency conditions.
Then, approximately 20,000 of those amplicons are added to
a 22 µl PCR mixture that contains allele specific fluorescent
hydrolysable probes. The resulting mixture is then mechanically
partitioned into∼20,000 individual oil encapsulated droplets for
PCR amplification. After PCR, the droplets are pulled through
a flow cytometer which fluorescently interrogates each droplet
to discern the degree of probe hydrolysis with respect to each
allele. The difference of methylation between smokers and non-
smokers as quantified by this process is visibly evident in the 2D
displays of the two samples. In the DNA from the non-smoker,
the cg05575921 cytosine residue is heavily methylated (86%) with
the vast majority of droplets are interpreted as having had all “C”
alleles (shown as blue) or one or more C and T alleles, shown as
orange (Figure 1B). In contrast, in results obtained using DNA
from a pack a day smoker (Figure 1A), the vast majority of the
droplets have one “T” alleles (shown as green) or one or more

C and T alleles, shown as orange which reflect the demethylated
status of cg05575921 (29%).

Since the QuantiSoft software imputes percent methylation
using a Poisson distribution function, adequate number of counts
of each allele are necessary to ensure precision. Figure 2 shows
the total number of droplets observed and the counts of each
channel (“green” or “blue”) for a typical column of samples. A
total of 15,000 counts for each sample was generated then read
by the Bio-Rad ddPCR system. The total number of droplets
that contained at least one “C allele” (Blue) ranged from 3,769 to
10,282. The total number of droplets that contained at least one
“T allele” (Green) ranged from 997 to 3,925. In our experience
using this assay, counting fewer than 4,000 total positive events
(either blue or green) is associated with steadily increasing
confidence intervals for the observed mean methylation.

The cg05575921 methylation in the controls ranged from
72.5 to 90.1% with an average of 86%. In contrast, the range of
cg05575921 methylation in the smoking subjects ranged from
19.5 to 83.5% with an average methylation of 48.4%.

The comparability of the ddPCR and the Illumina array
assessments of cg05575921methylation is shown in Figure 3. The
assessments were highly correlated (R2 = 0.98; Pearson). The
standard error of ddPCR assessments of independently prepared
replicate samples was 0.7% with no significant batch effect.

Biochemical Verification of Self Report of
Substance Consumption
Our prior experience has demonstrated that subjects recruited
for our behavioral studies may misrepresent their substance use
status. To minimize the possible effect of misrepresentation, the
accuracy of ddPCR determination of cg05575921 status to classify
smoking status was examined using only subjects whose smoking
status was biochemically verified. To do this, we conducted
ELISA testing on sera from self-professed daily smokers and
cotinine negative controls who denied a history of substantial
tobacco smoking (>100 cigs lifetime), a substantial lifetime use
of THC (more than 21 uses), and no use of either substance in the
past year. The biochemical status of all smoking subjects matched
their self-reported status. However, despite explicit questioning,
serum testing of 6 of the 84 potential control subjects showed
the presence of cannabinoids or above background cotinine
(>1 ng/ml) inconsistent with their self-reported non-smoking
status. The data from these six subjects was excluded from further
analysis or inclusion in Table 1.

Sensitivity and Specificity Analyses
To determine whether cg05575921 methylation status in the
biochemically confirmed subjects predicts smoking status, we
conducted logistic regression (100 bootstrap repetitions) of
cg05575921 methylation to smoking status (smoker vs. non-
smoker) alone and with age and gender on the training set.
For the 100 repetitions, the range of ROC AUC, sensitivity
and specificity were 0.927–1.000 (mean = 0.994, std = 0.011),
0.760–1.000 (mean = 0.967, std = 0.054) and 0.769–1.000
(mean = 0.924, std = 0.054), respectively. A final logistic
regression model was then fitted to the training data. The
intercept andmethylation coefficients were 36.2675 and−0.4750,
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FIGURE 1 | Typical 2D plots of droplet counts by the fluorescent droplet counter. (A) Shows the results from a 19 cigarette per day smoker. Methylation at

cg05575921 was 29.0% with 15,910 total events, 3,607 “at least one blue” channel (Fam label) + events and 7,441 “at least one green” (Hex) + events have been

observed. (B) Shows the results from a non-smoker. Methylation was 86.4% with 15,824 total events, 15,291 “at least one blue” channel (Fam label) + events and

6,560 “at least one green” (Hex) + events have been observed.

FIGURE 2 | Total count and channel specific droplet count for a typical column of samples. Droplets positive for at least one “T allele” (green bar), positive for at least

one “C allele” (“blue bar” and total number of droplets (positive and negative) are shown for each of the samples in the plate column.
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FIGURE 3 | The relationship of cg05575921 methylation as assessed by the

Illumina Epic array (expressed as fractional methylation) and the Smoke

Signature ddPCR assay (expressed as % methylation). R2 = 0.98, n = 92.

TABLE 2 | Confusion matrix for test set.

cg05575921 Only model cg05575921, Sex and age model

TRUE Smoker Non-smoker TRUE Smoker Non-smoker

TEST SET PREDICTED (n = 70)

Smoker 35 4 Smoker 37 2

Non-smoker 1 30 Non-smoker 1 30

respectively. The probability cutoff was determined to be 0.2384
(corresponding to a cg05575921 methylation value of 78.8%).
Table 2 shows the performance of this final model on the test
data. The test ROC AUC, sensitivity and specificity are 0.993,
0.897 and 0.968.

When age and gender were included, for the 100 repetitions,
the range of ROC AUC, sensitivity and specificity were 0.845–
1.000 (mean = 0.977, std = 0.034), 0.750–1.000 (mean =

0.939, std = 0.062) and 0.737–1.000 (mean = 0.947, std =

0.059), respectively. A final logistic regression model was then
fitted to the training data. The intercept, methylation, age
and gender coefficients were 45.6683, −0.5481, −0.0925 and
−0.1411, respectively. The probability cutoff was determined to
be 0.1183. Table 2 shows the performance of this final model
on the test data. The test ROC AUC, sensitivity and specificity
are 0.994, 0.949 and 0.968. In order to better visualize the
relationship between cg05575921 status and smoking status, a
logistic regression plot using the data from all 177 subjects
simultaneously is given in Figure 4.

Examining the Dose Dependency of
Methylation
Next, using the data from the SSAGA and our Substance Use
Questionnaire (SUQ), we examined the relationship of AHRR
methylation to cigarette consumption. The SUQ specifically

FIGURE 4 | Logistic plot of the relationship of cg05575921 methylation to

smoking status. The results from the smokers (n = 99) are in light gray and are

to the left of the blue curve while the results from the non-smoking subjects

(n = 78) are black and are to the right of the blue curve.

quantifies average consumption of each type of tobacco,
including cigarettes, cigars, and chew, over the past 1 month, 6
months, and 1 year thresholds, while the SSAGA is useful for
obtaining lifetime pack year cigarette consumption estimates. As
an initial step of our analyses, we determined the relationship
of the consumption variables to one another. Not surprisingly,
each of the SUQ variables were highly correlated to each other
(for each comparison, R2 > 0.82) with lesser, yet still significant,
correlation of each of them to lifetime consumption index (for
each comparison R2 < 0.09 with all p < 0.02). Using the
consumption estimates from these inventories, we next analyzed
the relationship of cg05575921 methylation, as assessed by
ddPCR, to each of those variables. Overall, methylation status was
best correlated with average cigarette consumption over the past
year (R2 = 0.47; p< 0.0001), with lesser correlations for average 6
month, 1 month, and lifetime consumption indices (R2 values of
0.42, 0.46, and 0.04, respectively). A linear model of methylation
to average consumption over the past year showed that every 1%
decrease in methylation corresponded to a 1.2 cigarettes per day.

Finally, we analyzed the relationship of cigarette craving,
as tabulated by the Fagerstrom Test for Nicotine Dependence
(FTND) and Carbon Monoxide levels, to self-reported and
methylation indices of cigarette consumption. FTND score
significantly predicted average cigarette consumption over the
past year (p < 0.05; R2 = 0.04; n = 97) but not cg05575921
methylation.

DISCUSSION

Establishing a “normal range” of cg05575921 methylation for
non-smokers is not a trivial task. In fact, a recurrent major
challenge for biomarker development for all types of behavioral
illnesses is the identification of “clean controls.” Our current
study recruited control subjects from a university employee
population with specific emphasis on recruiting individuals with
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religious prohibitions against substance use. Still, 7% of potential
control subjects who denied any tobacco or cannabis use over the
past year had ELISA results indicative of recent use. This finding
is consistent with the results from our prior attempts to identify
“clean controls” for substance use studies (Philibert et al., 2014).
Because the ELISAs used in herein detect only recent usage, it
is quite possible that many of the “clean” subjects, in particular
those with lower AHRR values, had substantial prior histories
of tobacco or cannabis use. But that is speculation. To better
establish the “non-smoking” range for DNA methylation, we are
following a cohort of 450 Iowa high school sophomores using a
repeated sampling strategy to detect surreptitious substance use
under the suppositions that most 16 year-old subjects, if they
smoke, are only in the experimental phase of smoking, and that
those who are at least intermittent smokers, will either self-report
use or turn up ELISA positive in the two follow waves of bio-
sampling. Indeed, the results to date from that Iowa study and
the results from our 2015 cross sectional analysis of 16 year old
subjects from Georgia very much support a cg05575921 normal
range whose corresponding ddPCR derived methylation value
is above 82% (Philibert et al., 2012). However, collection from
our more rigorous longitudinal study will not be completed for
another year. So, for the time being, after considering the cutoff
rate empirically derived in our training set (81.4%) and eye-
balling the overall plot shown in Figure 4, we suggest that the
normal range for non-smokers for this assay is from 82% and
above, with all other values, particularly those below 75% be
considered as being from those individual with at least a lifetime,
if not current, history of smoking.

A frequent question that we are asked is “what is the effect of
smoking cannabis on the test.” In our experience of examining
thousands of subjects with this assay, the answer is clear, repeated
cannabis smoking results in demethylation of AHRR. Pyrolysis of
cannabis, like tobacco, results in the generation of polyaromatic
hydrocarbons (PAH) whose inhalation will lead to activation of
AHRR (Ding et al., 2005; Moir et al., 2008). But determining
the exact effects of smoking cannabis on cg05575921 methylation
may be difficult or impossible for a number of reasons. First, in
order to increase profits or improve the burning characteristics
of cannabis, tobacco is often mixed with the marijuana (Peters
et al., 2012). Second, between 25 and 52% of all tobacco smokers
also use cannabis periodically, while between 41 and 94% of all
cannabis users smoke cigarettes which makes recruiting “pure”
cannabis or tobacco consumers difficult (Peters et al., 2012).
Third, the amount of PAH ingested by the various methods
of smoking cannabis is poorly constrained. Hence, for a given
amount of THC consumption, the amount of PAH exposure
between cannabis consumers may greatly vary. Finally, in our
direct experience, self-report of cannabis use by substance users
is very unreliable. For example, while screening potential samples
for inclusion in our initial case and control study of smoking
associated DNA methylation in middle aged African American
adults (MH080898), 80% of those samples with ELISA values
strongly indicative of recent cannabis use came from subjects
who denied lifetime use of cannabis (Monick et al., 2012). Hence,
given the societal biases against cannabis consumption and the
need of biomarker studies to have stringently defined cases and

controls, we believe it will be difficult to provide a rigorous
understanding of the relationship of cannabis consumption to
AHRR methylation in the near future.

A second question that is frequently asked is “how quickly
does the methylation signature at AHRR revert to normal?”
In particular, this question is of critical importance to those
of us who wish to use changes in methylation to guide
tobacco cessation therapy. AHRR methylation clearly reverts as
a function of smoking cessation (Tsaprouni et al., 2014; Bauer
et al., 2016; Philibert et al., 2016; Wilson et al., 2017). However,
the exact shape of the reversion curve is poorly constrained for
a number of reasons. First, the majority of smokers who manage
to quit smoking relapse before achieving final cessation (de Jesus
et al., 2016). Hence, longitudinal studies of smoking cessation will
suffer a steady attrition of non-smoking subjects. Second, in our
experience, smokers rarely stop “cold turkey.” Instead, in our two
commercial studies of smoking cessation where we biochemically
checked smoking status monthly (CA213507; DA037620), none
of the subjects quit “cold turkey.” Instead, each of the smokers
who managed to quit tapered down cigarette consumption over
a period of weeks to months. Finally, as evidenced in Table 1,
those contemplating smoking cessation treatment often reduce
cigarette consumption before presenting for treatment. As a
result of these other phenomenological characteristics, from a
methodological standpoint, it may be difficult to get a blood
samples representing cleaning defined periods of consumption
from the time before cessation through the necessary future
time periods to that are necessary to more exactly determine the
reversion curve of AHRR methylation in response to smoking
cessation.

The finding that the current AHRR methylation is better
related to the average daily consumption over the past year
rather than the past month will be of use in conceptualizing
the “real life” tempo of environmental induced epigenetic
reprogramming. On the shortest time scales, changes in gene
expression are moderated through transcriptional co-activators
and repressors (Voss and Hager, 2013; Bintu et al., 2016).
However, on longer timescales, epigenetic changes are thought
to play a larger regulatory role (Bintu et al., 2016). Some
of these epigenetic changes, such as histone modifications,
can occur within minutes with changes in DNA methylation
being thought to occur over the course of hours to days.
However, the timing of most of these epigenetic changes
has been determined using in vitro paradigms and non-
physiologically relevant environmental exposures. Whereas
clearly informative, these in vitro experiments cannot take into
account in vivo factors such as the effects of tar deposition and
the chronic inflammatory state that occurs as a consequence
of smoking (Sinden and Stockley, 2010). The current findings
that show that average consumption over the past 1 month
(R2 = 0.46) and past 6 months (R2 = 0.46) were the best
predictors of AHRR methylation lend modest support to the
suggestion that the time scale for changes in this portion
of the methylome with alterations of cigarette consumption
is on the weeks or months. Studies of methylation changes
secondary to alteration of other substances such as alcohol may
contribute additional information on the response characteristics
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of the peripheral white blood cell methylome to beneficent
interventions. However, we will note that although not yet well
defined, the time scale for the reversion of changes of the
methylome in heavy alcohol consumers suggest the period of
abstinence required to achieve 50% reversion of the alcohol
induced changes is on the order of months as well (Philibert et al.,
2014).

We did not find any relationship of cg05575921 methylation
to FTND. Given the rather modest relationship of cigarette
consumption to FTND score in our subjects, this might simply
be an issue of insufficient power. Still, it is important to realize
that nicotine is the major addictive substance in cigarettes and
whereas AHRR is a potent feedback modulator of Cyp1A1
and Cyp1A2, it does not regulate nicotine metabolism which
instead involves Cyp2A6 (Hukkanen et al., 2005; Nguyen and
Bradfield, 2007). Indeed, the use of “chew” has no effect on
cg05575921 methylation (Besingi and Johansson, 2013; Philibert
et al., 2015). Still, there are other potentially neuroactive
substances such as carbon monoxide (CO) in tobacco smoke
and CO may modulate cigarette craving (Milne et al., 2012;
Hanafy et al., 2013). Since both PAH and CO are generated
through pyrolysis, we are engaging in additional studies to
determine whether there is a relationship between CO levels and
cg05575921 levels, and whether a combination of nicotine and

cg05575921 levels better capture craving than either measure
alone.

In conclusion, we report that ddPCR assessments of
cg05575921 methylation can be used to accurately determine
smoking status in adults and lay the groundwork for a better
understanding of the dose response relationship of cigarette
smoking to demethylation at this locus. Further studies to
determine the dose response relationships in adolescents and the
reversion curve of methylation in former smokers are indicated.
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