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Objectives: The aim of the present study was to define the potential relationship of
xeroderma pigmentosum group D (XPD) Lys751GIn polymorphisms and the risk of
leukemia.

Methods: Comprehensive electronic search in Pubmed, Web of Science, EBSCO, the
Cochrane Library and China National Knowledge Infrastructure (CNKI) to find original
articles about the association between XPD Lys751GIn polymorphisms and leukemia
risk published before March 2017. Literature quality assessment was performed
using the Newcastle-Ottawa Scale. Heterogeneity across studies was assessed by /2
statistics. Random- or fixed-effects models was used to calculate pooled odds ratios
(ORs) in the presence or absence of heterogeneity, respectively. Sensitivity analysis was
used to assess the influence of individual studies on the pooled estimate. Publication
bias was investigated using funnel plots and Egger’s regression test. All data analyses
were performed using Stata 14.0 and Revman 5.3.

Results: Fourteen studies with a total of 7525 participants (2,757 patients; 4,768
controls) were included in this meta-analysis. We found that XPD Lys751GIn
polymorphism significantly increased the risk of developing leukemia in both a dominant
[Odds Ratio (OR)] = 1.21, 95%CI [1.10-1.35], P < 0.001) and heterozygote (OR = 1.22,
95%ClI [1.09-1.36], P < 0.001) models. An allele model showed borderline significant
increase in leukemia risk (OR = 1.13, 95%ClI [1.00-1.27], P = 0.05). Subgroup analysis
revealed a consistent association for some genetic models in Caucasian populations,
adult or chronic groups, and in almost all models of childhood or acute groups.

Conclusion: Our results overall indicate that XPD Lys751GIn polymorphism increases
the risk of leukemia, especially in childhood and acute cases.

Keywords: leukemia, XPD, ERCC2, meta-analysis, polymorphism

INTRODUCTION

Leukemia, a common malignant disease of the hematopoietic system (Jiang et al., 2014), can be
classified on the basis of speed of disease progression and cell cytogenetics into four common
subtypes: acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid
leukemia (CML) and chronic lymphocytic leukemia (CLL) (Arber et al., 2016). The etiological and
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mechanism of leukemogenesis are still unclear, though radiation,
smoking, obesity and exposure to chemical carcinogens are
considered high risk factors (Larsson and Wolk, 2008; Fircanis
et al, 2014; Malagoli et al., 2016; Nikkila et al, 2016).
Nevertheless, only a small proportion of people exposed to these
risk factors develop leukemia, suggesting that hereditary factors
may play critical role in leukemia carcinogenesis (Li et al., 2016;
Huang and Ovcharenko, 2017).

Decreased efficiency of DNA repair is considered a crucial
event in carcinogenesis (Hoeijmakers, 2001). Recently, a
series of studies revealed that reduced DNA repair, leading
to chromosomal aberrations and genomic instability, is a
major contributor to the pathogenesis of leukemia (Das-
Gupta et al., 2000; Esposito and So, 2014). Xeroderma
pigmentosum group D (XPD) gene, also known as ERCC2,
encodes a 5-3 superfamily 2 (SF2) helicase that plays
a key role in unwinding the DNA double helix around
damaged DNA during nucleotide excision repair (NER)
(Kuper et al., 2012; Constantinescu-Aruxandei et al., 2016).
Because of the biological significance of XPD, the XPD
polymorphism has been extensively studied in different
malignant diseases, such as pancreatic (Wu et al, 2017),
colorectal (Ni et al., 2014) and gallbladder (Srivastava et al., 2010)
cancers.

Several studies revealed inconsistent results on the
relationship between the XPD Lys751Gln polymorphism
(SNP IDs: rs13181) and leukemia susceptibility. Some studies
showed a clear trend of XPD Lys751Gln polymorphism
with increased risk of leukemia (Juan et al, 2005; Ganster
et al., 2009; Shi et al, 2011; Banescu et al, 2014, 2016),
while others displayed decreased risk of leukemia (Ozcan
et al, 2011; Douzi et al, 2015), and yet others suggested
no association between this polymorphism and leukemia
(Seedhouse et al., 2002; Allan et al., 2004; Matullo et al., 2006;
Mehta et al., 2006; Pakakasama et al.,, 2007; Batar et al., 2009;
Canalle et al., 2011; Ozdemir et al., 2012; Sorour et al., 2013;
Dincer et al., 2015). To evaluate more precisely the potential
relationship between XPD Lys751Gln polymorphism and
leukemia, we hereby report on a meta-analysis using all available
published data.

MATERIALS AND METHODS

Search Strategies

A computerized search of Pubmed, Web of Science, EBSCO,
the Cochrane Library and China National Knowledge
Infrastructure (CNKI) up to March 2017 was conducted
using the following search strategy: (“XPD” or “ERCC2” or
“XPD”), and (“polymorphism” or “variant” or “mutation”),
and “Leukemia.” The search was restricted to English and
Chinese written publications. A manual search of references of
the retrieved articles and relevant reviews was also conducted.
A flowchart of information pertaining to identification,
screening, eligibility, and final datasets selected was constructed
according to Preferred Reporting Items for Systematic Reviews
and Meta-analyses (PRISMA) guidelines (Moher et al., 2009).

Inclusion and Exclusion Criteria

In this report, the studies that investigate the association
between XPD Lys751GIn polymorphism and leukemia risk were
included. The inclusion criteria were (1) case-control study
design; (2) available genotype information of the XPD Lys751GIn
polymorphism; (3) evaluation of the XPD gene polymorphism
and the risk of leukemia; and (4) the distribution of genotypes
among the controls agreeing with Hardy-Weinberg equilibrium
(HWE). Major criteria for exclusion were: (1) duplication of
earlier publications (for studies using the same sample in
different publications, only the most complete information was
included following careful examination), (2) unpublished papers,
dissertations, conference articles and reviews, (3) family based
studies of pedigrees.

Data Extraction

Data from each eligible study were extracted into Excel including
country of origin, ethnicity of each study population, age group
(adult or childhood), subtypes of leukemia, genotyping method,
numbers of cases and controls, numbers of cases and controls in
the XPD Lys751Gln genotypes and results of the HWE test.

Study Quality Assessment

The quality of the included studies was assessed by two reviewers
according to the Newcastle-Ottawa Scale (NOS) (Stang, 2010),
which is used to assess the quality of observational studies.
Discrepancies were reported and settled by a third party. Three
major aspects of study quality were scored: (1) selection of the
study groups (0 & 4 points); (2) determination of the exposure
of interest in the studies (0 £ 3 points); and (3) the quality
of the adjustment for confounding variables (0 + 2 points).
A study could be scored as a maximum of one star for each
item numbered within the categories of Selection and Exposure,
while at most two stars could be allocated to Comparability.
A higher score represents improved greater quality of the study
methodology. A score equal to or higher than 6 was considered
to indicate high study quality.

Data Analysis

The combined odds ratios (ORs) and 95% confidence interval
(CI) were used to evaluate the strength of the association with
the risk of leukemia. Pooled ORs were performed for allelic
comparison (a vs. A), dominant (aa + Aa vs. AA), recessive
(aa vs. Aa + AA) and codominant (aa vs. AA and Aa vs. AA)
models (@ and ‘A’ represent the mutant allele and the wild-type
allele, respectively). Heterogeneity among the included studies
was assessed by I? statistic. A random-effects model or fixed-
effects model was used to calculate pooled odds ratio (OR)
in the presence or absence of heterogeneity, respectively. To
detect possible sources of heterogeneity and potential difference
among subgroups, meta-regression and subgroup analyses were
carried out on stratification of different ethnicity, age group
and subtypes of leukemia. The significance of the pooled
OR was determined by Z-test, with p < 0.05 considered
statistically significant. Publication bias was investigated using
funnel plots and Egger’s regression test. We also conducted
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sensitivity analysis to test the robustness of associations by
sequentially omitting each of the included studies one at a
time. All the data analysis was performed using the software
STATA 14.0 (StataCorp, College Station, TX, United States)
and Review Manager 5.3 (Cochrane Collaboration, Oxford,
United Kingdom).

RESULTS

Literature Search and Study

Characteristics

We used several search criteria to include or exclude reported
studies on the relationship between XPD polymorphism and
leukemia (Figure 1). A total of 14 studies (2,757 cases and
4,768 controls) about XPD Lys751Gln polymorphism were
included in the final evaluation (Table 1). Quality assessment of
the individual studies showed that the Newcastle-Ottawa scale

(NOS) score ranged from 6 to 8, indicating that the quality of
methodology was generally good (Table 2).

Association Between the XPD Lys751GIn

Polymorphism and Risk of Leukemia

Since significant heterogeneity was identified in recessive,
homozygote and alleles models, random-effects model was
used. The other genetic models were analysis by fixed-
effects model. Overall, significant increase in leukemia risk
was identified in dominant (Gln/Gln + Lys/Gln vs. Lys/Lys:
I? = 24%, P < 0.001, Figure 2) and heterozygote models
(Lys/Gln vs. Lys/Lys: I> = 0%, P < 0.001, Figure 3). No
significant association was found in recessive (GIn/Gln vs.
Lys/Gln + Lys/Lys: I> = 43%, P = 0.560, Figure 4) and
homozygote (Gln/Gln vs. Lys/Lys: I = 51%, P = 0.29,
Figure 5) models. In addition, allele model showed a borderline
significant increase in leukemia risk (Gln vs. Lys: I = 50%,
P = 0.05, Figure 6). Moderate heterogeneity (I?: 43-51%)

82 of records excluded, with reasons:
Reviews and meta-analysis (n = 14)

Conference article,comment and reply (n = 24)
Not correlation with Leukemia or XPD (n = 44)

17 of Full-text articles excluded, with reasons
Not case-control study (n = 11)
» Case and control not match (n=1)

Not have sufficient data (n = 4)
Not agree with HWE (n = 1)

(meta-analysis)
(n=14)

PRISMA 2009 Flow Diagram
Records indentified through database searching:
Pubmed (n=48)
5 Web of Science (n=110)
"5 EBSCO (n=57)
Sg The Cochrane Library (n=2)
5 CNKI (n=4)
o)
Records after duplicates removed
— (n=113)
ae
c
‘c v
]
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qualitative synthesis
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FIGURE 1 | A flow diagram showing the study selection process for the meta-analysis.
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TABLE 2 | Quality assessment analysis.

Number Author Selection Exposure Comparability Total score
1 Seedhouse C 4 2 2 8
2 Allan JM 3 2 1 6
3 Matullo G 4 2 1 7
4 Mehta PA 3 2 1 6
5 Pakakasama S 3 2 1 6
6 Batar B 4 2 2 8
7 Ganster C 4 2 2 8
8 Canalle R 4 2 1 7
9 Ozcan Ali 4 2 1 7
10 Shi JY 3 2 1 6
11 Sorour A 4 2 1 7
12 Banescu C 4 2 2 8
13 Douzi K 3 2 2 7
14 Dincer Y 4 2 2 8
A Leukemia Control Odds Ratio Odds Ratio

Study or Subgroup _ Events Total Events Total Weight M-H, Fixed. 95% C M-H, Fixed, 95% C

Allan 2004 294 474 403 696 18.8% 1.19[0.94, 1.51] H

Banescu 2014 105 156 98 180 4.5% 1.72[1.10, 2.69] e

Batar 2009 4 70 48 75  26% 0.95[0.48, 1.87] 1

Canalle 2011 101 189 165 361 8.0% 1.36 [0.96, 1.94] =

Dincer 2015 19 30 21 30 12% 0.74 [0.25, 2.17] —

Douzi 2015 112 206 114 206 7.9% 0.96 [0.65, 1.42] =

Ganster 2009 287 444 258 444 13.8% 1.32[1.01, 1.73] =

Matullo 2006 99 169 697 1094 11.7% 0.81[0.58, 1.12] s

Mehta 2006 215 351 308 578 13.7% 1.39[1.06, 1.82] —

Ozcan 2011 23 45 59 100 2.7% 0.73 [0.36, 1.47] —

Pakakasama 2007 21 108 57 317  35% 1.10[0.63, 1.92] O G

Seedhouse 2002 78 122 43 73 29% 1.24[0.68, 2.24] I e —

Shi 2011 60 303 74 554  6.4% 1.60 [1.10, 2.33] I

Sorour 2013 57 90 33 60 22% 1.41[0.73, 2.75] |

Total (95% Cl) 2757 4768 100.0%  1.21[1.10, 1.35] *

Total events 1515 2378

it Chiz = - - -2 = 249 t t t I
Heterogeneity: Chi? = 17.19, df = 13 (P = 0.19); I? = 24% 0.2 05 1 2 5

Test for overall effect: Z = 3.70 (P = 0.0002)

o SE(0g[OR))

or

02 05 1 2

FIGURE 2 | Comparison of XPD Lys751GIn for overall data in dominant model (GIn/Gin + Lys/GIn vs. Lys/Lys). (A) Forest plot, (B) funnel plot, (C) sensitivity analysis.

Favours [experimental] Favours [control]

Meta-analysis estimates, given named study is omitted
Lower CI Limit Estimate Upper CiLimit

Allan

Banescu

Batar

Canalle

Dincer

Douzi

Ganster
Matullo

Mehta

Ozcan

Pakakasama

Seedhouse
shi

Sorour

103 106 121 137 141

was found in the no-association model group. To explore
the source of this heterogeneity, a meta-regression analysis
was conducted. The results revealed that the heterogeneity
was not associated with ethnicity, age, clinical subtype or
detection method (p > 0.05 in all genetic models). We further
explored the source of heterogeneity by removing one study
each time. The results showed that the Matullo’s study was one
of the central sources of heterogeneity (its inclusion increased
heterogeneity by 12-24%). No publication bias was found in
any of the models. Sensitivity analysis suggested that with

exception of the allele model, the results were stable and
reliable.

Association Between the XPD Lys751GIn
Polymorphism and Risk of Leukemia by
Ethnicity

In Caucasian populations, a significant increase in leukemia risk

was found in heterozygote model (Lys/Gln vs. Lys/Lys: I> = 0%,
P =0.02) and dominant models (Gln/Gln + Lys/Gln vs. Lys/Lys:
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A Leukemia Control Odds Ratio Odds Ratio
-H. Fi o, -H. Fi o

Allan 2004 216 396 299 592 18.4% 1.18 [0.91, 1.52] o
Banescu 2014 77 128 79 161 47% 1.57 [0.98, 2.51]
Batar 2009 33 59 35 62 25% 0.98 [0.48, 2.01]
Canalle 2011 87 175 141 337 8.2% 1.37[0.95, 1.98] T -
Dincer 2015 100 194 93 185 7.8% 1.05[0.70, 1.57] -1
Douzi 2015 12 23 17 26 1.3% 0.58[0.18, 1.82] *
Ganster 2009 222 379 194 380 13.5% 1.36[1.02, 1.81] —
Matullo 2006 79 149 504 901 11.3% 0.89 [0.63, 1.26] D
Mehta 2006 160 296 246 516 13.9% 1.29[0.97, 1.72] — =
Ozcan 2011 20 42 41 82 2.5% 0.911[0.43, 1.91] - 1
Pakakasama 2007 19 106 56 316 3.9% 1.01[0.57, 1.80] -
Seedhouse 2002 59 103 32 62  2.9% 1.26 [0.67, 2.37] -1
Shi 2011 58 301 70 550 6.7% 1.64[1.12, 2.39] -
Sorour 2013 45 78 30 57 25% 1.23[0.62, 2.44]
Total (95% ClI) 2429 4227 100.0% 1.22[1.09, 1.36] <&
Total events 1187 1837 ) )

Heterogeneity: Chi? = 11.23, df = 13 (P = 0.59); I? = 0%

Test for overall effect: Z = 3.57 (P = 0.0004) 05 07 1 15 2

Favours [experimental] Favours [control]

o SE(0GIOR)

imates, given d
Lower ClLimit Estimate Upper Ci Limit
Allan

02 Banescu

Batar

Canalle
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04
Douzi
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6 o ] Y Matullo
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Pakakasama

08 Seedhouse

shi
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05 07 1 15 2 106 109 122 136 141

FIGURE 3 | Comparison of XPD Lys751GIn for overall data in heterozygote model (Lys/GIn vs. Lys/Lys). (A) Forest plot, (B) funnel plot, (C) sensitivity analysis.

A Leukemia Control Odds Ratio Odds Ratio
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Allan 2004 78 474 104 696 15.0% 1.12[0.81, 1.54] A=
Banescu 2014 28 156 19 180 86% 1.85[0.99, 3.47] _'_
Batar 2009 11 70 13 75 56% 0.89[0.37, 2.14] -1
Canalle 2011 14 189 24 361 7.8% 1.12[0.57, 2.23] —F
Dincer 2015 7 30 4 30 2.8% 1.98 [0.51, 7.63] D
Douzi 2015 12 206 21 206 71% 0.54[0.26, 1.14] S i
Ganster 2009 65 444 64 444 13.7% 1.02[0.70, 1.48] T
Matullo 2006 20 169 193 1094 11.1% 0.63[0.38, 1.02] ==
Mehta 2006 55 351 62 578 13.3% 1.55 [1.05, 2.28] —
Ozcan 2011 3 45 18 100 3.1% 0.33[0.09, 1.17] = =
Pakakasama 2007 2 108 1 317 1.0% 5.96 [0.54, 66.42] -1 —
Seedhouse 2002 19 122 11 73 6.3% 1.04 [0.46, 2.33] i
Shi 2011 2 303 4 554 1.9% 0.91[0.17,5.02] |
Sorour 2013 12 90 3 60 2.9% 2.92[0.79, 10.84] 7
Total (95% CI) 2757 4768 100.0% 1.08 [0.84, 1.37] *
Total events 328 541
Heterogeneity: Tau? = 0.08; Chi? = 22.83, df = 13 (P = 0.04); I> = 43% :0.01 0?1 1 1=0 100=

Test for overall effect: Z = 0.59 (P = 0.56) Favours [experimental] Favours [control]

B C
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FIGURE 4 | Comparison of XPD Lys751GIn for overall data in recessive model (GIn/Gin vs. Lys/Gin + Lys/Lys). (A) Forest plot, (B) funnel plot, (C) sensitivity analysis.
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A Leukemia Control
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FIGURE 5 | Comparison of XPD Lys751Gin for overall data in homozygote model (GIn/GIn vs. Lys/Lys). (A) Forest plot, (B) funnel plot, (C) sensitivity analysis.
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TABLE 3 | Summary of pooled OR in different ethnicities.

Genetic model Age group Pooled OR (95% ClI) Heterogeneity Test for overall effect Statistical model
P ? z P

Glnvs. Lys Caucasians 1.08 [0.95-1.21] 0.04 47% 1.18 0.24 Random-effects model
African 1.16[0.74-1.82] 0.66 0% 0.63 0.53 Fixed-effects model
Asian 1.39[1.05-1.86] 0.45 0% 2.26 0.02 Fixed-effects model

GInGIn vs. LysLys Caucasians 1.16 [0.87-1.56] 0.01 55% 1.00 0.32 Random-effects model
African 0.85[0.21-3.38] 0.29 12% 0.23 0.82 Fixed-effects model
Asian 1.77 [0.48-6.52] 0.23 30% 0.86 0.39 Fixed-effects model

LysGin vs. LysLys Caucasians 1.15[1.02-1.30] 0.77 0% 2.34 0.02 Fixed-effects model
African 1.41[0.81-2.48] 0.78 0% 1.20 0.23 Fixed-effects model
Asian 1.35[0.86-2.14] 0.17 46% 1.30 0.19 Random-effects model

GInGIn + LysGIn vs. LyslLys Caucasians 1.15[1.02-1.28] 0.31 14% 2.39 0.02 Fixed-effects model
African 1.33[0.77-2.30] 1.00 0% 1.02 0.31 Fixed-effects model
Asian 1.42[1.04-1.94] 0.27 17% 2.24 0.03 Fixed-effects model

GInGIn vs. LysGIn + LysLys Caucasians 1.04 [0.81-1.33] 0.05 44% 0.32 0.75 Random-effects model
African 0.75[0.19-2.93] 0.26 22% 0.41 0.68 Fixed-effects model
Asian 1.67 [0.46-6.14] 0.21 36% 0.78 0.44 Fixed-effects model

TABLE 4 | Summary of pooled OR in different age groups.

Genetic model Age group Pooled OR (95% CI) Heterogeneity Test for overall effect Statistical model
P P? z P
Glnvs. Lys Adult 1.13[0.95-1.35] 0.006 65% 1.37 0.17 Random-effects model
Childhood 1.24[1.08-1.43] 0.74 0% 2.97 0.003 Fixed-effects model
GInGIn vs. LysLys Adult 1.13[0.77-1.66] 0.02 58% 0.64 0.52 Random-effects model
Childhood 1.54 [1.11-2.13] 0.54 0% 1.08 0.28 Fixed-effects model
LysGin vs. LysLys Adult 1.24[1.08-1.42] 0.36 9% 3.06 0.002 Fixed-effects model
Childhood 1.21[1.01-1.45] 0.77 0% 2.05 0.04 Fixed-effects model
GInGIn+LysGin vs. LysLys Adult 1.221.01-1.48] 0.07 46% 2.04 0.04 Random-effects model
Childhood 1.28 [1.06-1.54] 0.65 0% 2.57 0.01 Fixed-effects model
GInGin vs. LysGIn + LysLys Adult 1.03 [0.76-1.41] 0.07 47% 0.19 0.85 Random-effects model
Childhood 1.40 [1.04-1.90] 0.51 0% 2.19 0.03 Fixed-effects model

I? = 14%, P = 0.02). No significant association was found in
recessive (GIn/Gln vs. Lys/Gln + Lys/Lys: I> = 44%, P = 0.75),
homozygote (Gln/Gln vs. Lys/Lys: I? = 55%, P = 0.32) and allele
models (Gln vs. Lys: I2 = 47%, P = 0.24) (Table 3). In African and
Asian populations, subgroup analysis was unreliable as only two
studies were available.

Association Between the XPD Lys751GiIn
Polymorphism and Risk of Leukemia

by Age

In subgroup analysis by age group, one study was excluded as
it lacked data on patients’ age (Douzi et al., 2015). Significant
associations were consistently found in some genetic models
of adult group (GInGln + LysGln vs. LysLys: I? = 46.0%,
P = 0.04; LysGln vs. LysLys: I? = 9%, P = 0.002), and in
almost all models of childhood group (Gln vs. Lys: I> = 0%,
P = 0.003; GInGIn + LysGln vs. LysLys: I* = 0%, P = 0.01;
GInGln vs. LysGIn + LysLys: I> = 0%, P = 0.03; GInGlIn vs.
LysLys: I = 0%, P = 0.009; LysGln vs. LysLys: I? = 0%, P = 0.04).

Moderate to higher heterogeneity (I2: 46-65%) was found in the
no-association models of the adult group (Table 4).

Association Between the XPD Lys751GIn
Polymorphism and Risk of Leukemia by
Subtype

In subgroup analysis by leukemia subtypes, one study was
excluded as it lacked such data (Matullo et al., 2006). Significant
associations were found in almost all genetic models of acute
leukemia (Gln vs. Lys: I? = 12%, P < 0.001; GInGln + LysGln vs.
LysLys: I* = 0%, P < 0.001; GInGln vs. LysLys: I> = 14%, P = 0.02;
LysGln vs. LysLys: I* = 0%, P = 0.003), and in some models of
chronic disease (GInGln + LysGln vs. LysLys: I> = 34%, P = 0.009;
LysGln vs. LysLys: I> = 0%, P < 0.001) (Table 5).

DISCUSSION

The NER pathway is a highly conserved DNA repair mechanism
that removes bulky intra-strand adducts created by agents
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TABLE 5 | Summary of pooled OR in different leukemia subtype.

Genetic model Subtype Pooled OR (95% CI) Heterogeneity Test for overall effect Statistical model
P P z P
Glnvs. Lys Acute 1.17 [1.07-1.29] 0.33 12% 3.37 0.0007 Fixed-effects model
Chronic 1.14[0.83-1.57] 0.038 72% 0.80 0.42 Random-effects model
GInGin vs. LysLys Acute 1.29 [1.04-1.59] 0.32 14% 2.35 0.02 Fixed-effects model
Chronic 1.08 [0.40-2.88] 0.01 78% 0.15 0.88 Random-effects model
LysGin vs. LysLys Acute 1.22 [1.07-1.39] 0.76 0% 2.99 0.003 Fixed-effects model
Chronic 1.36 [1.09-1.69] 0.67 0% 2.70 0.007 Fixed-effects model
GInGIn + LysGIn vs. LyslLys Acute 1.24 [1.09-1.40] 0.63 0% 3.38 0.0007 Fixed-effects model
Chronic 1.32 [1.07-1.63] 0.22 34% 2.60 0.009 Fixed-effects model
GInGin vs. LysGIn + LysLys Acute 1.19[0.98-1.45] 0.35 10% 1.72 0.09 Fixed-effects model
Chronic 0.94 [0.39-2.28] 0.02 76% 0.13 0.90 Random-effects model

such as UV radiation and certain chemicals, including
several commonly used chemotherapy agents (Scharer,
2013). Genetic polymorphism in DNA repair genes may
cause variation in DNA repair capacity, which in turn
can lead to cumulative genotoxic damage and increased
susceptibility to cancer (Douzi et al, 2015). As an important
component of NER, XPD is an evolutionarily conserved
ATP-dependent DNA helicase that plays an essential role in
DNA repair (Kim et al,, 2016). Several studies suggested an
increased risk of cancer in individuals with polymorphism
in XPD or other NER pathway genes (Paszkowska-Szczur
et al,, 2013; He et al, 2016). Moreover, several molecular
epidemiological studies have found an association between
XPD polymorphism and leukemia risk in diverse populations.
However, the results were inconsistent and even contradictory.
We therefore conducted a meta-analysis to globally evaluate
the potential relationship between XPD polymorphism and
leukemia.

Our results indicate that XPD Lys751Gln polymorphism
significantly increase overall leukemia risk in dominant and
heterozygote models, but not in allele model or homozygote
model. The results suggest that heterozygous mutations but
not homozygote mutations of XPD (Lys/Gln) may increase the
genetic susceptibility of leukemia. This may be the result of a
higher rates of heterozygous vs. homozygous mutations (the ratio
between heterozygous and homozygous mutations is 2.27 ~ 56
in control and 1.71 ~ 29 in leukemia). Subgroup analysis
by ethnicity showed the same result in Caucasian population.
The exact mechanism for association between different tumors
susceptibility and XPD Lys751Gln polymorphism is currently
unknown. XPD is a 5-3' superfamily 2 DNA helicase that
opens damaged DNA for bulky lesion repair in NER. The
interaction of C-terminal domain of XPD with the p44 helicase
activator protein are critical for both helicase activity and
stability of the TFIIH complex, which is essential for RNA
polymerase (RNAP) II-mediated transcription initiation and
the NER (Liu et al,, 2008). The XPD C-terminal Lys751GIn
polymorphism may alter the structure of the C-terminal domain,
hence blocking critical interaction with p44 and destructive
TFIIH conformation, which subsequently reduce DNA repair
activity (Lunn et al., 2000; Fan et al., 2008; Monaco et al., 2009).

Furthermore, by stratifying the data by age and subtype of disease,
we found that XPD Lys751GIn polymorphism significantly
increased leukemia risk in almost all models of childhood and
acute disease. The occurrence and development of leukemia
appeared to be regulated by genetic and environmental factors.
In children with acute leukemia, malignancy manifests with
a short latency period, thus does not have enough exposure
time to allow the initiation of a long carcinogenic process.
Unlike children, adults usually develop cancer because of the
cumulative effect of environmental exposure during his/her
life (Brisson et al, 2015). Thus, we speculate that genetic
polymorphism is more important for childhood and acute
leukemia.

Compared to previous reports (Liu et al.,, 2014; Wu et al,
2014), the present study has the following advantages: (1) it
analyzed the association between XPD Lys751Gln polymorphism
and acute leukemia, but also it association with chronic leukemia;
(2) A total of 14 studies (2,757 cases and 4,768 controls) were
compiled in our research, thus increasing the statistical power
of the analysis. (3) Strict literature inclusion and exclusion
criteria were enforced, the Ozdemir’s study was excluded from
our analysis due to lack of discerning information between
ALL and Burkitt lymphoma patients. However, our research
also has some limitations: (1) The number of original studies
included in the meta-analysis are relatively small, especially
in the subgroup analysis. Future studies on ethnicity, age and
subtype of leukemia are needed to further corroborate our
findings. (2) Heterogeneity, which can greatly affect conclusions
of meta-analysis, was high in some models. Our result showed
that moderate or higher heterogeneity was found in some
models, which showed no association with leukemia risk. The
Matullo’s study was a major source of this heterogeneity, probably
due to the significant differences in number of cases and
controls.

CONCLUSION

Our meta-analysis demonstrates that XPD Lys751GIn
polymorphism significantly increases overall leukemia risk in
dominant and heterozygote models, and that this polymorphism
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is significant associated with almost all genetic models of
childhood and acute leukemia.
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