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Lactation, a physiologically complex process, takes place in mammary gland after
parturition. The expression profile of the effective genes in lactation has not
comprehensively been elucidated. Herein, meta-analysis, using publicly available
microarray data, was conducted identify the differentially expressed genes (DEGs)
between pre- and post-peak milk production. Three microarray datasets of Rat, Bos
Taurus, and Tammar wallaby were used. Samples related to pre-peak (n = 85) and
post-peak (n = 24) milk production were selected. Meta-analysis revealed 31 DEGs
across the studied species. Interestingly, 10 genes, including MRPS18B, SF1, UQCRC1,
NUCB1, RNF126, ADSL, TNNC1, FIS1, HES5 and THTPA, were not detected in
original studies that highlights meta-analysis power in biosignature discovery. Common
target and regulator analysis highlighted the high connectivity of CTNNB1, CDD4 and
LPL as gene network hubs. As data originally came from three different species, to
check the effects of heterogeneous data sources on DEGs, 10 attribute weighting
(machine learning) algorithms were applied. Attribute weighting results showed that
the type of organism had no or little effect on the selected gene list. Systems biology
analysis suggested that these DEGs affect the milk production by improving the immune
system performance and mammary cell growth. This is the first study employing
both meta-analysis and machine learning approaches for comparative analysis of
gene expression pattern of mammary glands in two important time points of lactation
process. The finding may pave the way to use of publically available to elucidate the
underlying molecular mechanisms of physiologically complex traits such as lactation in
mammals.
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INTRODUCTION

Milk is the crucial natural source of nutrients for the growth
of newborn mammals. Mammary glands undergo regular but
complex cell proliferation and involution cycles after maturity
(Gao et al., 2013). Lactation can be classified into three main
steps: (1) early lactation where milk is produced in increasing
trends, (2) peak production where energy balance is negative,
and (3) late lactation where persistency of lactation is important,
especially in dairy animals. Early lactation has great differences
in gene expression profile with the ones form the late lactation
(Strucken et al., 2015). So, elucidating the genes influencing
each lactation time point can assist the animal breeders to
accelerate the genetic improvement of dairy animals in breeding
programs. Gene expression profiling of milk at different stages of
lactation may reflect the molecular events of mammary glands
(Farhadian et al., 2018). To provide a better understanding
of milk production, unraveling molecular events in mammary
glands is necessary.

One of the most studied animals for milk trait is Wallaby
(Macropus eugenii). Wallaby has a short pregnancy that lasts for
only 26 days followed by an extended lactation period of about
300 days with a lactation peak of 200 days postpartum (Lefèvre
et al., 2010). Rat is another employed animal for milk research
that produces multiple litters of milk during multiple gestations
in a short period of time. In rat, peak lactation is around 12th day
postpartum (Delongeas et al., 1997; Hadsell et al., 2012). In the
context of animal breeding, peak lactation of dairy cow occurs
60–90 days postpartum. The gene expression data from wallaby,
rat and cow can provide useful information for accurate discovery
of key genes that control milk production. In line with this
argument, the study of gene expression in mouse has facilitated
the identification of candidate genes of milk production in cattle
(Ron et al., 2007).

Important biological processes are often precisely conserved
across related species (McCarroll et al., 2004; Wang and
Rekaya, 2009). Meta-analysis and machine learning have the
potential to uncover the common biosignature among mammals
(Shekoofa et al., 2014; Ebrahimie et al., 2018; Farhadian
et al., 2018; Sharifi et al., 2018). Recently, with availability
of cross-species data, meta-analysis has been performed on
multiple species (Lu et al., 2009). Individual studies have
some limitations in their statistical power and reliability of
the results. Meta-analysis, by combining data and results of
different research, improves the statistical power and accuracy of
expression estimates (Ramasamy et al., 2008; Sharifi et al., 2018).
Transcriptomic meta-analysis can be classified into two types:
co-expression meta-analysis and expression meta-analysis. Co-
expression meta-analysis investigates whether genes co-expressed
in one species are also co-expressed in another species. In
contrast, expression meta-analysis investigates the commonality
between expression profiles of homologous genes in different
species. Significant strength of co-expression meta-analysis is that
microarray experiments of different species can be combined
even under different experimental conditions (Lu et al., 2009).

Attribute weighting (feature selection) models, artificial neural
network, deep learning, and decision trees are the main

algorithms for knowledge discovery and prediction (Ebrahimi
and Ebrahimie, 2010; Ashrafi et al., 2011; Ebrahimi et al., 2011;
Shekoofa et al., 2011). Data mining methods are still expected to
bring more fruitful results (Matsumoto, 1998; Hsiao et al., 2006;
Shekoofa et al., 2011).

The aim of this study was to use meta-analysis and
machine learning approaches together to increase the power of
detecting the conserved genes in milk production across three
different species of Wallaby, Rat, and Cow. We examined gene
expression pattern of mammary gland in early and late lactation
of mentioned species. Then, downstream analyses including
gene ontology and gene network were performed for better
understanding of the identified signature.

MATERIALS AND METHODS

Dataset Collection and Data
Preprocessing
Gene Expression Omnibus (GEO) database1 was used as a
source of transcriptomic data collection. Datasets with biological
samples for both pre- and post-peak milk production as well
as their corresponding raw gene expression and annotation
data were collected for meta-analysis. The general information
regarding the obtained datasets is presented in Table 1. The
datasets belonged to three different species including Wallaby,
Rat, and Cow.

The first dataset (GSE44112) had 10 biological samples from
three rats in three stages of lactation (on days 2, 9, and
16 postpartum) as well as one sample from serum. Samples
belonging to the second day and the serum were excluded from
the analyses. This dataset was one-color microarray data from rat
milk whey. The microarray slides were scanned by Agilent DNA
Microarray Scanner (Agilent Technologies) and Quantile method
was applied to normalize the data.

The second dataset (GSE19055) contained 60 mammary
biopsy samples in nine different time points from multiparous
Holstein dairy cattle breed (n = 8). The samples were collected
at 30 (n = 7) and 15 (n = 8) days before parturition, at days of
1 (n = 8), 15 (n = 8), 30 (n = 8), 60 (n = 6), 120 (n = 6), 240
(n = 5) and 300 (n = 4) of lactation. Samples belonging to 30
and 15 days before parturition and samples of 1 and 60 days
after parturition were excluded from the analysis. Microarray
type of this dataset was two-color. Background subtraction for
background correction, Loess for within array normalization and
Quintile for between array normalization methods were applied
on the data.

The third dataset (GSE63654) had 96 mammary gland
samples in four separate points of early and late pregnancies,
before peak (at days of 62, 87, 110, 130, 151, 171, and
193) and late lactation (at days of 216, 243, and 266
of lactation) from wallaby. The samples of early and late
pregnancy were excluded from the analyses. This dataset was
a two-color microarray. Normexp + offset (for background
correction), Loess (for within array normalization) and Quantile

1https://www.ncbi.nlm.nih.gov/
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TABLE 1 | The original datasets selected for meta-analysis of milk production.

GEO ID No. of samples Platform Reference RNA source

Pre-peak Post-peak

GSE44112 3 3 Agilent-014879 Whole Rat Genome Microarray 4x44K
G4131F (Feature Number version)

Izumi et al., 2014 Milk whey

GSE19055 16 15 UIUC Bos taurus 13.2K 70-mer oligoarray (condensed) Bionaz et al., 2012 Mammary gland

GSE63654 66 6 Tammar wallaby custom 13,440 spot cDNA array Vander Jagt et al., 2015 Mammary gland

GEO, gene expression omnibus; GES, gene expression series; No, number.

(for between array normalization) methods were applied for
normalization.

The identified outlier samples were excluded from further
analysis. Clustering of the samples was also carried out to ensure
a clear stratification of them into the two specified stages of
the lactation (pre- and post-peak milk production). R package
of Limma was employed for preprocessing of data including
background correction, between and within normalization,
and final probe summarization (Gautier et al., 2004; Ritchie
et al., 2015). Then, probe-to-gene mapping was carried out to
convert probe-set expression levels into gene expression levels
according to the corresponding chip datasets (Irizarry et al.,
2003).

Gene Matching
Probe IDs from different platforms were matched with their
corresponding official gene symbols. Among these probe IDs,
the ID with the largest interquartile range (IQR) of expression
value was selected to represent the gene symbol when multiple
probe IDs were matched to the same gene symbol. The IQR-
based method is more robust and biologically more acceptable
than the mean-based method (Hahne et al., 2010). Furthermore,
in the cases that multiple probes matched a single gene, IQR-
based method was used for selecting the probe (Wang et al.,
2012).

Gene Merging
Since the number of genes in the studies were different, the
multiple gene expression datasets may not be aligned by genes
correctly. So, common genes across multiple studies gathered
together to make the merged datasets. When a large number
of studies are combined, the number of common genes may be
very small. To deal with this shortcoming, we allowed a gone to
be present in the analysis when is present in at least 66.66% of
the studies. The steps of data preparation and meta-analysis are
shown in Figure 1.

Meta-Analysis
Meta-analysis can be performed based on “combining effect
size,” “combining ranks” or “combining P-value” (Sharifi et al.,
2018). Each of meta-analysis methods has different approaches
for different purposes. The employed approach in this study
was to analyze each experiment separately and then perform
meta-analysis based on the obtained p-values in the individual
experiments. For gene merging, we used the threshold that a gene

has to be present in at least 2 out of 3 (66.66%) of experiments.
The normalized datasets were used for meta-analysis. The
datasets were merged using the “metaDE” package (Li and Tseng,
2011). The “combining P-value” was selected for meta-analysis of
the current work. This technique sums the logarithm of the (one-
sided hypothesis testing) p-values across k studies for a given
gene. The statistic test of chi-square distribution was used with
2 degrees of freedom.

Before performing the meta-analysis, a set of p-values for each
dataset was estimated. The metaDE package provides functions
for conducting 12 major meta-analysis methods for differential
expression analysis. To obtain a set of p-value estimates in
the original individual analysis, the moderated-t statistics was
used. In order to determine up- and down regulated gene
after meta-analysis, the one-tailed p-value analysis was used in
individual studies. The Fisher’s method was used for performing
meta-analysis. We used permutation method (n = 2000) for
calculation of the p-values. We used false discovery rate (FDR)
corrected p-values (P < 0.05) to determine DEGs between the two
specified stages of lactation (Benjamini and Hochberg, 1995). The
flowchart of meta-analysis is shown in Figure 2.

Gene Ontology (GO) Analysis
Gene ontology analysis was performed on the DEGs provided by
meta-analysis based on Molecular function (MF), biological
process (BP), and cellular component (CC) terms. For
interpretation of the data, the GO profile of a subset of
genes was compared to the GO profile of the reference set. Whole
genome annotation was considered as background and FDR of
0.05 was considered as cut-off threshold of statistical significance.
The String and comparative GO web tools were used to perform
this task (Fruzangohar et al., 2013, 2017; Szklarczyk et al., 2014;
Ebrahimie et al., 2017).

Network Analysis
The genes/proteins functions and their underlying pathways play
the key role in better understanding of the dynamic process of
complex traits such as milk production in mammals. Pathway
Studio was used for constructing the networks, as previously
described (Hosseinpour et al., 2012; Ebrahimie et al., 2015;
Pashaiasl et al., 2016; Pashaei-Asl et al., 2017). Pathway Studio
has a powerful database of mammalian gene/protein/small-RNA
interactions, collected by literature mining (Nikitin et al., 2003).

The network for DEGs was constructed using two algorithms
of common regulation and target (Alanazi and Ebrahimie, 2016).
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FIGURE 1 | Flowchart of the performed meta-analysis of milk production in this study.

Downstream targets that are regulated by at least two or more
of the selected entities in the network diagram are found by
common target algorithm. In the other ways, upstream regulators
that regulate two or more of the selected entities in the network
can be discovered by common regulation algorithm. Two types of
entities including small molecules and proteins along with some
different types of relations such as expression, promoter binding,
regulation and etc. were selected to provide a comprehensive
view on milk production pathways. In final network, we kept
only those relations that the number of references were more
than 15 for both algorithms. The Excel format of each network,
including all relations and entities of the networks are recorded
and presented as Supplementary Files.

Data Mining (Supervised Machine
Learning Models)
The issue of data heterogeneity from various sources (called batch
effect) and their effects on meta-analysis outcome is the main

concern in meta-analysis and needs to be addressed. In this study,
we used 10 attribute weighting algorithms, as supervised machine
learning models, to investigate the repeatability of discriminating
genes between pre- and post-peak milk production in three
species (Wallaby, Rat, and Cow). To test whether the developed
meta-gene signature of lactation is not species independent, we
used two approaches.

At first approach, attribute weighting models were run for
each species separately, while pre- and post-peak milk production
status was set as the target (label) variable. Then, the commonality
(intersection) of discriminating in three species were identified as
species-independent signature of lactation process.

In the second approach, at first, expression data of genes
were standardized. Then, the expression values as well as
type of species (Wallaby, Rat, and Cow) were set as the
variable (feature) for attribute weighting models while the pre-
and post-peak milk production status was set as the target
(label) variable. In other words, this analysis will identify the
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FIGURE 2 | Flowchart of the different steps of milk microarray meta-analysis
based on combining P-value strategy.

most informative genes features contributing to the type of
organism. The result of this analysis can address whether the
developed gene signature is species-independent or species-
dependent. On other words, this analysis finds whether species
announces as important discriminating feature of lactation
process or not.

Different algorithms of attribute weighting (feature selection)
models (Information gain, Information gain ratio, Chi Squared,
Deviation, Rule, SVM, Gini index, Uncertainty, Relief and PCA)
were applied for the above mentioned approaches. For attribute
weighting, datasets of these genes were imported into Rapid
Miner software (Rapid Miner 5.0.001, Dortmund, Germany), as
previously described (Ebrahimi et al., 2011, 2015; Shekoofa et al.,
2011; Jamali et al., 2016). The main idea of attribute weighting
was to select a subset of input features (variables) by eliminating
features with little or no distinguishing information. Application
of attribute weighting enables more complex data to be analyzed.
Attribute weighting, as a supervised learning model finds a good
for discrimination of levels of target variable. The importance
value of each feature calculates as (1- p) where p was the p
value of the appropriate test (Information gain, Information
gain ratio, Chi Squared, Deviation, Rule, SVM, Gini index,
Uncertainty, Relief, and PCA) between the candidate predictor
and the lactation status.

RESULTS

Meta-Analysis
After searching the microarray data repositories, we selected
three expression datasets with 85 biological samples related to
pre-peak and 24 biological samples related to post-peak stages of
lactation.

The probe IDs from different platforms required to be
matched with unique gene IDs. Thus, gene symbols were chosen
to match the probe IDs. This step reduced the dimension of

input matrices to a half. Finally, a total of 2,519 common
genes remained among the three datasets (Supplementary Data
Sheet S1) to be analyzed. Using Fisher method, a total of 31
DEGs (24 up-regulated and 7 down-regulated) were discovered
different between the pre- and post-peak milk production. As
compared to the post-peak, the top up-regulated gene in pre-peak
was ATP5B (P = 0.009), while the top down-regulated gene was
CTNNB1 (P = 0.01).

Ten, out of 31 DEGs, were identified only by the current meta-
analysis and not in the original studies. These include four down-
regulated (TNNC1, FIS1, HES5 and THTPA) and six up-regulated
(MRPS18B, SF1, UQCRC1, NUCB1, RNF126 and ADSL) genes.
The detailed information of the discovered DEGs is reported in
Table 2.

Functional Annotation and Pathway
Analysis
Gene ontology enrichment analysis was performed to achieve
the better understanding of the biological roles of the DEGs on
lactation process. There were 55 significant enriched GO terms
(31, 4 and 20 for CC, MF and BP categories, respectively). The
two top significantly enriched BPs were single-organism cellular
process (GO: 0044763, P = 0.000192) and single-organism
process (GO: 0044699, P = 0.000944). In CC category, the two
top enriched terms were vesicle (GO: 0031982, P = 3.47E-05)
and extracellular exosome (GO: 0070062, P = 3.47E-05). The two
most significantly enriched MFs were binding and ion binding.
The significantly enriched GO terms of the DEGs are reported in
Table 3.

Network Analysis
Sub-network Discovery in DEGs
Genes do not act solely but interact with other cell elements
in order to make the cell activities more efficient. Genes that
interact with each other generate a sub-network and two or
more sub-networks join each other to make a network. So,
detection of significant sub-networks is an important task in
network analysis. To this end, we used some relations such
as expression, regulation, promoter binding, direct regulation,
miRNA effect, mol synthesis and chemical reaction. Statistically
significant sub-networks which were generated by upstream and
downstream network analysis are presented in Supplementary
Data Sheets S2, S3, respectively.

In upstream level, sub-networks of glutathione, SOD2,
and ATP were three top important sub-networks (Figure 3).
Glutathione and ATP sub-networks were the two most enriched
small molecules that were enriched with DEGs. TKT and STMN1
were the two genes that affect the glutathione and SOD2 sub-
networks. SOD2 sub-network is regulated by two transcription
factors named CTNNB1 and HES5.

In downstream level, the PIWIL1, Ascorbic Acid and MTOR
were the most important sub-networks (Figure 4). Ascorbic Acid
was the major small molecular for regulation of some genes
including TKT, LPL, CD44, FTH1, PRDX1, HSPA8, CTNNB1 and
ALPL.
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TABLE 2 | The detailed information of the discovered differentially expressed genes via meta-analysis in lactation process.

Gene ID Gene symbol Official full name Class Cellular location P-value

Up-regulated genes

327675 ATP5B ATP synthase, H+ transporting, mitochondrial F1
complex, beta polypeptide

Protein Mitochondrion 0.009

281173 FTH1 Ferritin heavy chain 1 Protein Cytoplasm 0.011

616317 STMN1 Stathmin 1 Protein Cytoplasm, cytoskeleton 0.008

445425 TKT Transketolase Protein Cytoplasm 0.014

507924 LAS1L LAS1 like, ribosome biogenesis factor Transcription Factor Nucleus 0.021

281418 PPIA Peptidylprolyl isomerase A Receptor Cytoplasm 0.021

531676 KDELR2 KDEL endoplasmic reticulum protein retention
receptor 2

Receptor Endoplasmic reticulum membrane 0.018

286853 RPLP2 Ribosomal protein lateral stalk subunit P2 Protein Cytoplasm 0.033

510824 MRPS18B Mitochondrial ribosomal protein S18B Protein Mitochondrion 0.048

281831 HSPA8 Heat shock protein family A (Hsp70) member 8 Protein Cytoplasm 0.018

541229 SF1 Splicing factor 1 Protein Nucleus 0.045

507309 VAMP8 Vesicle associated membrane protein 8 Receptor Lysosome membrane 0.018

617534 RSU1 Ras suppressor protein 1 Protein Cytoplasm 0.046

535273 EMP3 Epithelial membrane protein 3 Protein Membrane 0.013

282379 TAGLN2 Transgelin 2 Protein Cytoplasm 0.019

282393 UQCRC1 Ubiquinol-cytochrome c reductase core protein I Protein Mitochondrion inner membrane 0.033

507672 FOLR2 Folate receptor 2 (fetal) Receptor Cell membrane 0.033

505351 NUCB1 Nucleobindin 1 Protein Golgi network membrane 0.039

281997 PRDX1 Peroxiredoxin 1 Protein Cytoplasm 0.048

507447 RNF126 Ring finger protein 126 Protein Cytoplasm 0.028

282290 NDUFV2 NADH:ubiquinone oxidoreductase core subunit V2 Protein Mitochondrion inner membrane 0.022

510949 ADSL Adenylosuccinate lyase Protein Cytoplasm 0.043

280994 ALPL Alkaline phosphatase, liver/bone/kidney Protein Cell membrane 0.027

505997 SPNS1 Sphingolipid transporter 1 Transporter Mitochondrion inner membrane 0.035

Down-regulated genes

539003 CTNNB1 Catenin beta 1 Transcription Factor Cytoplasm 0.01

615565 FIS1 Fission, mitochondrial 1 Protein Mitochondrion outer membrane 0.014

509486 TNNC1 Troponin C1, slow skeletal and cardiac type Protein Cytoplasm 0.018

281057 CD44 CD44 molecule (Indian blood group) Receptor Cell membrane 0.018

787633 HES5 Hes family bHLH transcription factor 5 Transcription Factor Nucleus 0.094

280843 LPL Lipoprotein lipase Protein Cell membrane 0.021

282090 THTPA Thiamine triphosphatase Protein Cytoplasm 0.036

Based on the sub-network results, especially downstream
analysis, the CTNNB1 and CD44 genes contributed in three most
enriched sub-networks and were under the control of PIWIL1,
Ascorbic Acid and MTOR. Also TKT, ALPL, LPL and HSPA8
were under the control of Ascorbic Acid and MTOR. Probably,
a gene under the control of more than one regulator plays a key
function in cell. There were some other enriched downstream
sub-networks such as glucose, cysteine, vitamin D, Ca2+, Fe2+,
and Mg2+ along with some microRNAs including m_Mir709,
MIR100, MIR590, and MIR655 that are shown in Supplementary
Data Sheet S3.

Network Analysis of DEGs in Before Versus After Milk
Peak Production
Network analysis was performed to construct the possible
networks of the DEGs using neighbor joining algorithm
(Figure 5). Additional information about this network is
presented in Supplementary Data Sheet S4.

TKT, SF1 and ALPL were up-regulated genes without any
connection to the main network while each influenced a specific
cell processes. Whereas, genes such as CTNNB1, CD44, STMN1
and LPL were down-regulated genes with a considerable number
of interactions, as compared with the remaining genes in the
network.

Unraveling the common targets of the DEGs is an important
issue in network analysis. Common target analysis showed that
the CTNNB1 and CD44 genes had the highest number of
common targets (Figure 6 and Supplementary Data Sheet S5).
Cross talk between six nodes (CTNNB1, CD44, ALPL, PRDX1,
PPIA and HSPA8 genes) is presented in Figure 6. CTNNB1 and
CD44 connected each other via their three common targets.
In addition, CTNNB1 and PRDX1 connected each other via
one transcription factor as a common target. LPL did not
have any target commonly with other genes but, it had the
highest number of common targets among the unconnected
nodes.
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TABLE 3 | The enriched Gene Ontology (GO) terms of differentially expressed genes discovered via meta-analysis between pre- and post-peak milk production.

GO ID GO Names GO Terms FDR

GO.0044763 Single-organism cellular process BP 0.000192

GO.0044699 Single-organism process BP 0.000944

GO.0032879 Regulation of localization BP 0.00133

GO.0065008 Regulation of biological quality BP 0.00133

GO.0044710 Single-organism metabolic process BP 0.00238

GO.0042592 Homeostatic process BP 0.00952

GO.0032880 Regulation of protein localization BP 0.014

GO.0051049 Regulation of transport BP 0.0167

GO.0008152 Metabolic process BP 0.0186

GO.0050789 Regulation of biological process BP 0.0186

GO.1903827 Regulation of cellular protein localization BP 0.0186

GO.0009987 Cellular process BP 0.0262

GO.0019637 Organophosphate metabolic process BP 0.0274

GO.0032386 Regulation of intracellular transport BP 0.0274

GO.0060341 Regulation of cellular localization BP 0.0274

GO.2000179 Positive regulation of neural precursor cell proliferation BP 0.0274

GO.0044237 Cellular metabolic process BP 0.0275

GO.0016192 Vesicle-mediated transport BP 0.0304

GO.0006810 Transport BP 0.0386

GO.0022411 Cellular component disassembly BP 0.0386

GO.0005488 Binding MF 8.54E-06

GO.0043167 Ion binding MF 0.00257

GO.0003824 Catalytic activity MF 0.00378

GO.0046872 Metal ion binding MF 0.011

GO.0031982 Vesicle CC 3.47E-05

GO.0070062 Extracellular exosome CC 3.47E-05

GO.0043226 Organelle CC 0.000192

GO.0005623 Cell CC 0.000228

GO.0044464 Cell part CC 0.000228

GO.0043209 Myelin sheath CC 0.000685

GO.0044444 Cytoplasmic part CC 0.000739

GO.0005739 Mitochondrion CC 0.00095

GO.0005576 Extracellular region CC 0.000965

GO.0016020 Membrane CC 0.000995

GO.0031966 Mitochondrial membrane CC 0.00102

GO.0043227 Membrane-bounded organelle CC 0.00102

GO.0005740 Mitochondrial envelope CC 0.00112

GO.0044425 Membrane part CC 0.00122

GO.0071944 Cell periphery CC 0.00292

GO.0005743 Mitochondrial inner membrane CC 0.00332

GO.0043229 Intracellular organelle CC 0.0038

GO.0005737 Cytoplasm CC 0.00404

GO.0005829 Cytosol CC 0.00414

GO.0032991 Macromolecular complex CC 0.0127

GO.0005886 Plasma membrane CC 0.0131

GO.0005622 Intracellular CC 0.0144

GO.0044455 Mitochondrial membrane part CC 0.0144

GO.0044429 Mitochondrial part CC 0.0189

GO.0043231 Intracellular membrane-bounded organelle CC 0.0242

GO.0005925 Focal adhesion CC 0.0257

GO.0031090 Organelle membrane CC 0.0257

(Continued)
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TABLE 3 | Continued

GO ID GO Names GO Terms FDR

GO.0031224 Intrinsic component of membrane CC 0.0267

GO.0043232 Intracellular non-membrane-bounded organelle CC 0.0316

GO.0031225 Anchored component of membrane CC 0.0319

GO.0044424 Intracellular part CC 0.0324

Only the significantly enriched (P ≤ 0.05) GO terms are presented. BP, biological process; CC, cellular component; MF, molecular function.

FIGURE 3 | Significant upstream sub-networks constructed by differentially expressed genes between pre-peak and post-peak milk production.
⊕

Represents
positive-regulated and ` represents negative-regulated. Glutathione, SOD2, and ATP were the three top important sub-networks.

The identification of common regulation of genes is important
in gene networking. The common regulation entities of DEGs
is presented in Figure 7 and Supplementary Data Sheet S6.
Down-regulated genes of CTNNB1, CD44 and LPL along with up-
regulated genes of HSBA8, STMN1 had more common regulator
entities. In this network, we infer the important genes, i.e., genes
with more regulators. So, it can be understood that these genes
play an important function in milk production, especially at later
stage of lactation. Each of TNNC1, TAGLN2 and PRDX1 had only
one regulator. In contrast, LPL had the highest number of small
molecules as regulator.

Sub-networks Generated by DEGs
The analysis of significant sub-network for up and down-
regulate genes was carried out using up- and down-stream
categories. For each category, the significant level of 0.05
selected and maximum significant sub-network for each
were 100. SPARK (P = 2.37E-07) and SYP (0.000125875)
were the enriched sub-networks with down and up-regulated
genes, respectively, (Figure 8). Additional information about
the significant sub-networks for down and up-regulated
genes are presented in Supplementary Data Sheets S7, S8,
respectively.
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FIGURE 4 | Significant downstream sub-networks constructed by differentially expressed genes between pre-peak and post-peak milk production.
⊕

Represents
positive-regulated and ` represents negative-regulated. PIWIL1, Ascorbic Acid and MTOR were the most important sub-networks.

RNF43 (P = 1.4E-05) and TLR4 (P = 2.4E-05) were
the most enriched sub-networks by down and up-regulated
genes, respectively, by upstream neighbors (Figure 9 and
Supplementary Data Sheets S9, S10, respectively).

RNF43 sub-network is controlled by down-regulated genes
such as CTNNB1 as a transcription factor and CD44 as a receptor.
Furthermore, TLR4 sub-network is under the control of HSPA8,
PRDX1, STMN1 and PPIA genes as receptors.

The enriched sub-network for up-regulated genes using up
and down-stream categories were SYP and TLR4, respectively.
The STMN1 and HSPA8 were the common genes that involved
in both sub-networks (Figures 8, 9). The enriched sub-networks
with up and down-stream categories using down-regulated genes
(SPARK and RNF43, respectively) were similar in two genes. The
CTNNB1 and CD44 were the down-regulated genes that exist in
the sub-networks.

Data Mining
Data Cleaning
Meta-analysis on datasets from three different species (Bovine,
Rat, and Wallaby) determined 2519 common genes. Using some
data cleaning methods such as useless attributes remover and
remove correlated attributes (correlation greater than 95%), the
final number of genes decreased to 215 genes.

Useless attributes were the attributes (genes) with very low
variation (CV < 0.1) that could not be important in pre-peak and
post-peak stage discrimination.

Attribute Weighting
As data was normalized before running the attribute weighting
models, all resulting weights were between 0 and 1. The results of
10 different attribute weighting algorithms application on three
spices (Cow, Rat, and Wallaby) are presented in Supplementary
Tables S1–S3, respectively. Features with weights closer to 1
show the importance of each variable in regard to target label.
An attribute was assumed important if the assigned weight
was higher than 0.7 by a certain attribute weighting algorithm
(Supplementary Tables S1–S3).

The number of attribute weighting algorithms that supported
the selected DEGs are presented in Table 4. The complete
list for all common genes are shown in Supplementary
Data Sheet S10.

From 76 DEGs in cow dataset (GSE19055), 18 of them were
also selected as DEGs by meta-analysis DEGs list; while the
numbers of DEGs from meta-analysis for rat (GSE44112) and
wallaby (GSE63654) datasets were 5 and 20 DEGs (out of 5 and
174 genes for each dataset, respectively). The results of meta-
analysis showed 31 DEGs and 11 genes were not in any of three
datasets. According to the Table 4, the organism weight compare
with DEGs is low.

The number of common gene which has more than three
attribute weighting models with count higher than 50% in three
species are presented in Figure 10.

The number of genes has at least three weighting models in
rat, wallaby, and cow is 95, 9, and 34 respectively. There are 9
common genes between rat and bovine; 5 common genes between
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FIGURE 5 | Network for differentially expressed genes involved in lactation process. The green and blue boxes are up- and down-regulated genes interactions,
respectively. CTNNB1, CD44, STMN1, and LPL genes from down-regulated genes list and TKT, SF1, and ALPL from up-regulated genes list have the most number
of interactions.

rat and wallaby and only 1 common gene between cow and
wallaby.

DISCUSSION

Although vertebrates differ each other phenotypically, they share
similar body plans, organs and tissues. The three selected
species in this study have a range of lactation processes.
Wallaby is a marsupial, with an entirely different gestation-
birth-lactation system to eutherian mammals. Cow has a
relatively slow single birth system and rat has a rapid birth
system. However, the physiology of the mammary gland
is relatively similar among mammals and there are core
physiological events in the mammary gland that are similar
in the mammalian species (Lu et al., 2009). Our findings
show that a common transcriptome signature of lactation
process exists between animals with a range of lactation
system.

Nowadays, the high throughput data has enabled the
researchers to discover several candidate biomarkers for various
traits. Using publicly available high throughput microarray
data, a meta-analysis was carried out in the current work to
identify the DEGs between early (pre-peak) and late (post-
peak) lactation. Meta-analysis is a powerful method for detection

of the genes with small, but consistent effect on the trait of
interest (Rest et al., 2016). The small-effect genes may neither
be discoverable in a sole experiment nor be consistent in
effect in multiple individually studied experiments. However,
gathering information from multiple studies, as performed
in meta-analysis, helps to discover these kind of effective
genes more accurately. To our knowledge, this is the first
study in which the multiple publicly available microarray
datasets belonging to the two important time points of
lactation were analyzed. As the main result, we identified
31 (24 up- and 7 down-regulated) DEGs between the two
specified stages of lactation from which ten DEGs were novel.
These novel genes include six up-regulated (MRPS18B, SF1,
UQCRC1, NUCB1, RNF126 and ADSL) and four down-regulated
(TNNC1, FIS1, HES5 and THTPA) and are reported as milk
production-related DEGs for the first time in the current
work.

The up-regulated gene with the lowest P-value was ATP5B.
This gene has been used as a housekeeping gene in the gene
expression analysis of mammary gland samples, as its expression
is relatively stable across estrus cycle phases (Hvid et al., 2011).
Housekeeping genes tend to keep their expression relatively
constant across various tissues or conditions. However, although
there is no previous report about the possible effect of this
gene on milk production, the significantly over expression
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FIGURE 6 | Common target analysis between differentially expressed genes in lactation process. The green and blue boxes are up- and down-regulated genes,
respectively. CTNNB1, CD44, and LPL genes have the most common target.

of ATP5B at early stage of lactation, as compared to later
stage of lactation, suggests an important role for ATP5B to
contribute to the differences in milk production. In line with the
previous reports, we found some DEGs with direct or indirect
association with milk production including FTH1, TAGLN2,
STMN1, TKT, RSU1, RPLP2, NDUFV2, LAS1L, KDELR2, TKT,
PPIA, HSPA8, VAMP8, FOLR2, PRDX1 and ALPL. One of
the most important genes express in secretary tissues, such as
mammary gland, is VAMP8 (Ren et al., 2007). The expression
of VAMP8 in the current study was significantly higher in
pre-peak than the post-peak, probably due to the more milk
production of secretary cells of mammary gland at earlier stage
of lactation.

The lowest P-value among the down-regulated genes was
CTNNB1. Wnt signaling pathway, involved in mammary growth
and differentiation in mice (Shimizu et al., 1997; Howe et al.,
2003; Mankertz et al., 2004; Teulière et al., 2005), is the most
important pathway of CTNNB1. CTNNB1 may contribute to
the maintenance of milk production after peak or persistency
of lactation. Among the genes related to lipid metabolism,
only the expression of LPL was significant. A complex process
take place in mammary gland (Bionaz and Loor, 2008) where
milk fat content is higher at post-peak than the early stage
of lactation. Higher fat content of milk sustains the young
growth through supplying it the major source of energy

(Green et al., 1983; Green, 1984; Kwek et al., 2007). The
significantly lower expression of LPL pre-peak is in accordance
with the findings of Green et al. (1983) and Kwek et al.
(2007).

Candidate genes with known effects on the production of milk
or its ingredients including DGAT1 (Grisart et al., 2004), GHR
(Blott et al., 2003), SCD (Kinsella, 1972) were not differentially
expressed in the current work. Also, the most important milk
protein genes such as CSN2, CSN1S1, LGB, CSN3, CSN1S2 and
LALBA did not have significant differential expression between
the two stages of lactation. At least 22 genes are in close relation
with citrate metabolism (Cánovas et al., 2013), and 31 genes
encode endogenous proteases (Wickramasinghe et al., 2012;
Suárez-Vega et al., 2015). None of them, however, is among the
DEGs identified in this meta-analysis. This is not because these
genes are less important, rather this probably means that the
mentioned genes are equally important throughout the lactation.

Results of GO analysis confirmed the functional role of the
DEGs on milk production. The biological importance of single-
organism cellular process is in the development of mammary
gland alveolus. Also, the biological function of the single-
organism process related to epithelial cell proliferation involved
in mammary gland duct elongation (Humphreys et al., 1997).
Exosomes have been shown to package and present antigen to
immune cells and have other immune modulators roles (Giri
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FIGURE 7 | Common regulation analysis between DEGs in lactation process. The green and blue boxes are up- and down-regulated genes, respectively. CTNNB1,
CD44 and LPL genes have the most common regulation.

FIGURE 8 | Enriched sub-networks in up-stream neighbors of differentially expressed genes in lactation process; (A) Down-regulated genes, (B) Up- regulated
genes.
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FIGURE 9 | Enriched sub-networks in down-stream neighbors of differentially expressed genes in lactation process; (A) Down-regulated genes, (B) Up- regulated
genes.

et al., 2010). In the vesicle membranes, not only the alveolar cells
calcium pump activates but also glucose transport system in the
mammary gland (McManaman and Neville, 2003).

Based on the results of sub-network analysis, the SOD2,
glutathione and ATP sub-networks were the three most upstream
enriched sub-networks. Glutathione is a small molecular that
affects the immune system (Perricone et al., 2009). Also, SOD2

TABLE 4 | Machine learning models based on attribute weighting models
demonstrated that the developed transcriptomic signature of lactation is
independent from the species.

Attribute The number of attribute weighting algorithms that
indicated the DEGs algorithm weighting

RSU1 5

MRPS18B 3

PPIA 3

TAGLN2 3

ATP5B 3

VAMP8 3

THTPA 3

FTH1 3

RPLP2 3

LAS1L 3

RNF126 3

EMP3 3

STMN1 3

KDELR2 3

HSPA8 3

Here, type of species (Tammar Wallaby, Rat, and Cow) was included in analysis
as well as expression levels of genes. The number of attribute weighting for
differentially expressed genes and organism by different attributes weighting
algorithms higher than 0.5. Total number of attribute weighting algorithms
which have announced the certain attribute important (weight higher than 0.5,
Supplementary Data Sheet S11). This table presents the number of algorithms
that selected the attribute. Weighting algorithms were Uncertainty, Gini index, Chi
Squared, Rule, Information Gain, and Information Gain Ratio.

FIGURE 10 | Venn diagram representing the number of genes that were
selected by more than three attribute weighting model in three species to
differ in lactation process.

acts as a regulator of immunity (Scheurmann et al., 2014). In
addition to the enriched sub-networks related to immunity, the
function of NUCB1 (Ma et al., 2014), RNF126 (Delker et al.,
2013), FIS1 (Cheng et al., 2008), and TNNC1 (Augustin et al.,
2016) genes were all reported to be related to the improvement
of immune system. It can be concluded that, the activation
of immune system is one of the most important functions of
the DEGs. Therefore, it seems that one of the ways the DEGs
affect the milk production is the development of immunity.
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In fact, animals with strong immunity against some disease
(e.g., resistant to mastitis) produce more milk than non-healthy
animals.

Network analysis for detection of hub genes revealed that
CTNNB1 is a hub protein with higher number of interactions
with others in the network. It is regulated by 11 small molecules.
Cell proliferation, the most relevant cell process related to
CTNNB1, has been frequently referred to in the literature
(Supplementary Data Sheet S4). In the network, CTNNB1 joined
to LPL and CD44, which were both also central genes with a
considerable number of connections. Interestingly, all of these
three hub genes were down-regulated in the pre-peak rather than
the post-peak. The important role of these three hub genes on
the milk production was confirmed by all of the three algorithms
(neighbor joining, common target, common regulation) used to
construct the networks. The RNF43 had negative regulation effect
on Wnt signaling pathway (Strikoudis et al., 2014). In addition,
RNF43 was regulated by CTNNB1 and CD44. Therefore, it can
be concluded that these genes regulate Wnt signaling pathway
through negative effect on RNF43 and decline the production of
milk at later days of lactation. There were other DEGs that related
to cell proliferation and differentiation including SF1 (Tanaka
and Nishinakamura, 2014); UQCRC1 (Zucchi et al., 2002); HES5
(Fathi et al., 2011); THTPA (Fischer-Fodor et al., 2015); ADSL
(Skottman et al., 2005) and MRPS18B (Thompson-Crispi et al.,
2014).

Applying 6 statistically different attribute weighting
algorithms and selection of the key features based on the overall
(intersection) of these algorithms reinforced the importance of
the selected features. According to Table 4, the organism feature
attribute weighting is less than the most gene features. So, we
conclude that, the type of organism has lower importance in
this analysis. Milk production is influenced by many factors that
can be classified into genetic and non-genetic factors. Since the
lactation lasts for a long time in mammalian life, there should
be some genes that regulate the entire lactation by keeping their
expression relatively constant throughout the lactation. While
some genes may go into considerable or negligible modifications
in expression during the different stages of lactation and,
thus, contribute to the corresponding differences exist in milk
production at different stages of lactation. We investigated
the possible modifications happen in gene expression between
early and late stages of lactation and found out that genes
related to the development of the mammary gland, proliferation
and differentiation of cells as well as genes related to the
improvement of immune system were mainly altered in their
expression between the specified time-points of the lactation. We
conclude that the development of immunity, especially at early
stages of lactation, is probably very important. Because animals
are very sensitive against pathogens and diseases like mastitis
at early stages of lactation. Furthermore, the activation of genes
related to cell proliferation and cell differentiation sustain the
growth of mammary gland, especially after peak, and help milk
production to continue more persistently.

Mammals are distinguished from other animals since they
produce milk for their newborn nutrition. These animals transfer
some immunity-related elements to their milk in order to develop

their youths‘ immune system and to protect themselves from
infectious disease such as mastitis (Hasselbalch et al., 1996;
Thompson et al., 2000). The developed gene signature is involved
in activation of immune system and propagation of mammary
gland cells as observed in other mammals (Farhadian et al., 2018).

CONCLUSION

The present study was designed to identify the DEGs between
two different stages (pre- and post-peak) of milk production
using meta-analysis of multiple milk microarray datasets. In
total, this work detected 31 DEGs in two different stage of milk
production. Among DEGs, we report 10 genes for first time as
candidate genes that affect milk production at different periods
of lactation. Network analysis highlighted the CTNNB1, CDD44
and LPL genes. Our study suggests that the DEGs influence on
milk production by improvement of immune system and cell
differentiation. Milk production is a complex trait so considerably
more work will need to be performed to identify all genes related
to specific time points of lactation. Using attribute weighting
models and counting the species as variable in addition to
gene expression levels, we showed that the developed meta-
analysis signature of lactation is species-independent and is
common among species. The employed approach in this study, by
integrating supervised machine learning and meta-analysis, can
be verified in future similar studies.
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