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Long non-coding RNA (lncRNA) plays an important role in many important biological

processes and has attracted widespread attention. Although the precise functions and

mechanisms for most lncRNAs are still unknown, we are certain that lncRNAs usually

perform their functions by interacting with the corresponding RNA- binding proteins.

For example, lncRNA-protein interactions play an important role in post transcriptional

gene regulation, such as splicing, translation, signaling, and advances in complex

diseases. However, experimental verification of lncRNA-protein interactions prediction

is time-consuming and laborious. In this work, we propose a computational method,

named IRWNRLPI, to find the potential associations between lncRNAs and proteins.

IRWNRLPI integrates two algorithms, randomwalk and neighborhood regularized logistic

matrix factorization, which can optimize a lot more than using an algorithm alone.

Moreover, the method is semi-supervised and does not require negative samples. Based

on the leave-one-out cross validation, we obtain the AUC of 0.9150 and the AUPR of

0.7138, demonstrating its reliable performance. In addition, bymeans of case study in the

“Mus musculus,” many lncRNA-protein interactions which are predicted by our method

can be successfully confirmed by experiments. This suggests that IRWNRLPI will be a

useful bioinformatics resource in biomedical research.

Keywords: lncRNA, protein, interaction prediction, random walk, neighborhood regularized logistic matrix

factorization, integration method

INTRODUCTION

A great quantity of studies has indicated that more than 90% of DNA is transcribed into
RNA in human organism, the vast majority of which are non-coding RNA. Non-coding RNA
(ncRNA) is a RNA that does not encode a protein, and plays a very broad regulatory role
in many organisms’ life activities. Abundant and functionally important types of non-coding
RNAs include transfer RNA (tRNA) and ribosomal RNA (rRNA), and small RNAs such as
microRNAs, siRNAs, piRNAs, snoRNAs, snRNAs, exRNAs, scaRNAs, and the long non-coding
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RNAs. Long non-coding RNA (lncRNA) refers to ncRNA
longer than 200 nucleotides. LncRNA was originally considered
a “noise” of genomic transcription, a byproduct of RNA
polymerase II transcription, without biological function. But
recent studies indicate lncRNA involves in a variety of important
regulatory procedures, such as chromatinmodification (Guttman
et al., 2009), cell differentiation and proliferation (Wapinski and
Chang, 2011), RNA progressing (Wilusz et al., 2009), and cellular
apoptosis (Yu et al., 2015) and so on. These lncRNA regulation
effects begin to attract widespread attention from the abnormal
convey of biological cell genes. In addition, more and more
experiments demonstrate that lncRNAs involve in the regulation
of a variety of physiological and pathological processes, as well
as the development processes of a variety of diseases including
tumors (Wilusz et al., 2009; Harries, 2012; Chen and Yan, 2013;
Morlando et al., 2014; Chen et al., 2015, 2016c, 2017d, 2018a,b;
Yu et al., 2015; Chen and Huang, 2017b; Li et al., 2017; You
et al., 2017). For instance, Gupta et al. issued an increase in
the expression of lncRNA HOTAIR in primary breast tumors
(Gupta et al., 2010). Along with the growth of bioinformatics,
many lncRNAs have been discovered, some of which have been
studied or are being studied. However, the functionality of most
lncRNAs remains unknown. Usually, most lncRNAs exert their
function through the interaction with the corresponding RNA-
binding proteins. Although we have succeeded in identifying
some RNA-binding proteins in the human genome and this
number is growing steadily (Cook et al., 2011; Ray et al., 2013),
we are not fully aware of the association between lncRNA and
protein and its function in the post-transcriptional regulating
network (Mittal et al., 2009; Kishore et al., 2010). Moreover,
the experimental identification of lncRNA-protein associations
is time-consuming, laborious and costly, so it is necessary to
develop effective computational prediction methods.

At present, computational models have been broadly utilized
in bioinformatics such as lncRNA-disease interactions prediction
(Zeng et al., 2015; Chen et al., 2016b,d,e, 2017c,d; Huang et al.,
2016; Li et al., 2016; Liu et al., 2016; Zhao et al., 2016a; Zou et al.,
2016; Zhang et al., 2017a,b; Hu et al., 2018; Tang et al., 2018).
However, only a few models can be used to forecast lncRNA-
protein associations. For example, Bellucci et al. (2011) proposed
catRAPID, which encoded the lncRNA-protein as a characteristic
vector, and combined two value structures between lncRNA and
protein forces, hydrogen bonding and Fan Dehua force. Later,
Muppirala et al. (Muppirala et al., 2011) developed RPISeq, which
utilized merely lncRNA and protein sequences, and used support
vector machine (SVM) classifier (Hearst, 1998) and random
forest (RF) (Liaw and Wiener, 2002) to predict the interactions
between lncRNAs and proteins. Wang et al. presented a model,
it utilized the same dataset of a paper by Muppirala et al.
and similar data characteristics. Its theoretical basis was Naive
Bias (NB) and Extended NB (ENB) classifier. In 2015, Suresh
et al. proposed RPI-Pred (Suresh et al., 2015), a method on
account of SVM, the sequences and structures of lncRNAs
and proteins, and the high-order 3D structure characteristics
of proteins are used in this method. In the same year, a
method based on heterogeneous networks, called LPIHN, was
proposed by Li et al. (2015). They predicted new lncRNA-protein

associations by implementing a random walk with restart (RWR)
on a constructed heterogeneous network. In a recent study, Ge
et al. (2016) introduced a network bisection approach, named
LPBNI. They carried out the resource allocation procedure in
the lncRNA-protein dichotomous network to evaluate candidate
proteins for each lncRNA to achieve the goal of predicting the
absence of the interaction. Lately, Hu et al. (2017) advanced
a semi-supervised method called LPI-ETSLP that revealed the
lncRNA-protein associations. In particular, LPI-ETSLP did not
require negative samples.

There are several problems with these methods, as follows:
(1) Most of the models mentioned above don’t use lncRNA-
protein interactions data, but are trained using RNA-protein
interactions data. This leads to a limitation on the ability to
forecast the lncRNA-protein associations. (2) Some of the models
utilize the NPInter (Yuan et al., 2014; Hao et al., 2016) database to
predict the interactions between lncRNAs and proteins. Although
NPInter is by far the best lncRNA-protein database, it only
provides lncRNA’s gene-protein interactions entries, and dose
not directly provide the entries of lncRNA-protein interactions.
If these models are directly investigated using lncRNA’s gene-
protein interactions, it will certainly affect the prediction results.
(3) Finally, although the current researches and understanding
of lncRNA-protein interactions are increasing, there isn’t enough
negative samples data yet, and it is hard to choose lncRNA
and protein features. In order to solve these problems, we
integrate the two methods of random walk and neighborhood
regularized logistic matrix factorization to develop a new model
called IRWNRLPI. The model utilizes known lncRNA-protein
associations, protein similarity network and lncRNA similarity
network to forecast possible lncRNA-protein associations. And
unlike the traditional machine learning methods, IRWNRLPI
uses semi-supervised learning to derive unknown information
primarily through known associations and their similarities,
so it does not need negative samples. In addition, our model
provides a high level of importance for the nearest neighbors,
thus avoiding noise information. We implement leave-one-
out cross validation (LOOCV) on IRWNRLPI to evaluate its
performance, resulting in the AUC of 0.9150, which indicates
that the model has reliable performance. And the AUPR value of
0.7138 demonstrates the reliability of ourmodel. Moreover, in the
case study, we predict the lncRNA-protein associations of “Mus
musculus” in view of the predicted score level, demonstrating that
our method is generally effective.

MATERIALS AND METHODS

Dataset
Along with the development of bioinformatics, there are a
number of public databases available for scientists to study
lncRNA-protein interactions. The database NPInter includes
experimental verification interactions between non-coding RNAs
and other biomolecules (proteins, RNA and genomic DNA).
NONCODE (Xie et al., 2014; Zhao et al., 2016b), a comprehensive
annotation database, covers all types of non-coding RNA
(not including tRNA and rRNA). And the database Uniprot
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(Consortium, 2015; Pundir et al., 2016) can provide us with
protein sequences. With these databases, we can acquire the
datasets we need for lncRNAs and proteins, which will help us
to carry out our research better.

According to NPInter V2.0, we chiefly extract species for
human lncRNA relevant items. We obtain 4870 items which are
experimentally identified lncRNA-protein associations, covering
1114 lncRNAs and 96 proteins. From NONCODE 4.0, we can
obtain lncRNA sequence information. From Uniprot, we can get
the protein sequence information. Further, we remove proteins
and lncRNAs that can’t obtain sequences information. Besides,
we delete those lncRNAs associated with only one protein, and
those proteins that are associated with only one lncRNA. These
data are low-similarity pairs and potential noise. Removing these
data helps improve the performance of the model. Finally, we
construct a dataset containing 4158 lncRNA-protein correlations,
including 990 lncRNAs and 27 proteins.

LncRNA-Protein Interaction Matrix
To facilitate the description of lncRNA-protein interactions
and the algorithmic model, matrix Y is denoted as the
adjacency matrix of lncRNA-protein interactions, if lncRNA l(i)
is connected with the protein p(j), Y(l(i), p(j)) is 1, otherwise
0. According to sequence similarity matrix, the interactions
between lncRNAs and proteins are measured. We screen the
lncRNAs and proteins sequences which are inferior quality or
cannot find their corresponding proteins and lncRNAs. The
inferior quality refers to incomplete sequence information and
repeated lncRNA and protein sequences. Finally, 4158 high
quality lncRNA-protein associations are obtained.

LncRNA Sequence Similarity Matrix
In our work, we calculate the similarity of the lncRNA sequence
according to the lncRNA sequence information. These lncRNAs
sequences information is acquired from the NONCODE 4.0
database. As a result of filtering, we gain 990 credible
lncRNAs sequences. The regularized Smith-Waterman algorithm
(Pearson, 1991) is used to compute lncRNAs sequence similarity.
Thus, the lncRNA sequence similarity matrix LS is built, where
the empty LS(l(i), l(j)) indicates the sequence similarity between
lncRNA l(i) and l(j). LS is normalized as below:

LS(l (i) , l
(

j
)

) =
sw(l (i) , l

(

j
)

)

max(sw(l (i) , l(i)), sw(l
(

j
)

, l(j)))

Where sw(l (i) , l
(

j
)

) is the sequence similarity between lncRNA
l(i) and l(j) calculated according to the Smith-Waterman
algorithm.

Protein Sequence Similarity Matrix
We screen 27 dependable protein sequences on the basis of the
lncRNA-protein network, they come fromUniprot (Consortium,
2015; Pundir et al., 2016) entirely. Similarly, protein sequence
similarity can also be calculated by utilizing a regularized Smith-
Waterman algorithm. Then, we can construct a protein sequence
similarity matrix PS, in which the entity PS(p(i), p(j)) expresses

the sequence similarity between protein p(i) and p(j). The PS is
normalized as below:

PS(p (i) , p
(

j
)

) =
sw(p (i) , p

(

j
)

)

max(sw(p (i) , p(i)), sw(p
(

j
)

, p(j)))

Where sw(p (i) , p
(

j
)

) is the sequence similarity between protein
p(i) and p(j) calculated according to the Smith-Waterman
algorithm.

Work Flow
The workflow of our IRWNRLPI model is given in Figure 1.
The procedure for predicting the lncRNA-protein interactions
consists of four steps. (1) Firstly, abstract gene-protein pairs
information in NPInter v2.0, and we can obtain the interaction
matrix between lncRNAs and proteins. (2) The second step
is to extract lncRNA sequences and protein sequences from
NONCODE and UniProt on account of gene-protein pairs,
separately. (3) Next, we screen and remove the lncRNAs in
NONCODE that fail to discovery the relevant information,
as well as the protein in Uniprot that cannot seek out the
corresponding information. Then, we employ the regularized
Smith-Waterman algorithm to compute the similarity of lncRNA
sequences and protein sequences, respectively, and generate
corresponding lncRNA and protein similarity matrix. (4) Last,
we will apply the three matrixes obtained above to random
walk algorithm and neighborhood regularized logistic matrix
factorization algorithm, respectively, to gain a potential lncRNA-
protein interactions score matrix, and then enter these two score
matrixes to IRWNRLPI integration model. Eventually, we gain
final lncRNA-protein associations score matrix. The above is
the whole prediction process to obtain new lncRNA-protein
associations.

IRWNRLPI
The flowchart of this section is given in the Figure 2. The
upper two parts in Figure 2 are the main flow of the random
walk method and the neighborhood regularized logistic matrix
factorizationmethod, respectively. The left box is the four steps of
random walk, and the lncRNA-protein score matrix SR is finally
obtained. The right box is the process of adjacency regularization,
and finally the lncRNA-protein score matrix SN is obtained.
The bottom of Figure 2 is the process of obtaining the final
lncRNA-protein score matrix S by integrating the above two
methods.

Random Walk

In random walk model, given a protein p, the process of
predicting the lncRNAs associated with p is modeled as a random
walk on the weighted graph G. The process can be roughly
divided into four steps.

In the first step, the lncRNA network is established based on
the sequence similarity between lncRNAs. For a given protein p,
the known lncRNAs associated with p and the candidate lncRNAs
associated with p and their relations form a network, expressed as
a weighted graph G (V, E, W). Each vertex (v∈V) represents the
lncRNA or candidate lncRNA associated with p. Each edge (e∈E)
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FIGURE 1 | The work flow of the IRWNRLPI model.
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FIGURE 2 | The process of constructing the integrating model.

denotes the relationship between the two vertices connected by
edge e. We denote sequence similarity between vx and vy as Sim
(vx, vy), and the weight w of edge e is Sim (vx, vy). The greater the
w, the more likely that the two vertices are correlated with a set of
similar proteins. In this network, the known lncRNA associated
with p is called a labeled node. The remaining lncRNAs have so
far, no evidence that they are related to p, which are unlabeled
nodes.

In the second step, constructing the correlation matrix R to
establish two one-step transition matrices LQ and LU . First of
all, we construct the correlation matrix R. For vi, we evaluate the

extent of relevance between neighbors vj and p, which is denoted
by rij. Firstly, suppose that the set of all the labeled nodes is
denoted as Q, vi∈Q. If vi is relevant to protein p, its neighbors
may also be relevant to p. In addition, when vi is a labled node, the
association probability is greater than the association probability
when vi is an unlabeled node. Thus, the former and the latter are
multiplied by wQ∈(0,1) and wU∈(0,1) separately. Evidently, wQ

is higher than wU . Secondly, supposeU is the set of all unmarked
nodes, which may be associated with lncRNAs, and vi∈U. If vi
is related to p, its neighbors may also be associated with p. The
weight of the associated information from the unmarked node is
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wU . Thirdly, if the two lncRNAs are not connected, such as vi and
vj, rij is set to 0. Finally, an lncRNA to a value of itself is set to 0.

R (rij) M×M
is constructed on the basis of the above rules, rij is

formally defined as follows:

rij =







Sim
(

vi, vj
)

· wQ, vi ∈ Q,
(

vi, vj
)

∈ E

Sim
(

vi, vj
)

· wU , vi ∈ U,
(

vi, vj
)

∈ E

0,
(

vi, vj
)

/∈ E or vi = vj

(1)

In which vi is the vertex and vj is one of its neighbors.
Then, we construct the transfer matrix L (lij) M×M

. We
proportionate the transfer probability lij to rij. The matrix R is
normalized by the next type, and the one step transfer probability
array L (lij) M×M

is obtained:

lij = rij/
∑N

j=1
rij (2)

lij indicates the transition possibility from vi to vj. Nevertheless,
after the row of R is normalized, the weights (wQ and wU) for
distinguishing between the labeled node and the unlabeled node
associated information are lost, thus ignoring the effect of the
previous information about whether the vertex is relevant to p.
In order to settle the difficulty, we divide the matrix L into two
arrays of LQ and LU . LQ expresses the transformation array of
the marked node, and LU indicates the transfer matrix of the
unmarked node. All lines of the marked (unmarked) node in LQ
(LU) are in accordance with the relevant rows in L, the rest of
rows of LQ (LU) are set to 0.

In the third step, a new forecast method on account of random
walk is established to evaluate the correlation scores between each
unmarked node and p, that is, estimate the correlation score of
the candidate lncRNAs. In view of the transfer matrix LQ and LU ,
the prediction method is further established as below:

S (t + 1) = rQL
T
QS (t)+pQ

(

1− rQ
)

X+rUL
T
US (t)+pU(1−rU)X

(3)
First, S(t + 1) represents a probability vector, indicating the
probability that the walker reaches the ith vertex at time t +
1 is Si(t + 1). The walker begins with the marked node, the
components in S(0) represent the original probability, which
means the walker begins at the same probability at time 0 from
a marked node. And Si(0) calculates according to the following
formula:

Si (0) =

{ 1
|Q| if vi ∈ Q

0 otherwise
(4)

Second, to use priori information, we assign weights rQ and rU
(0 < rQ, rU <1, rQ > rU) to the labeled node and the unlabeled
node, respectively. In fact, rQ and rU replace the ignored function
of wQ and wU . Finally, when the walker finds a marked node,
at time t+1 it will go back the initial vertex (marked node) at
probability pQ(1-rQ) and start walking again. The probability
total of the walkers arriving at each marked node at time t is
expressed as pQ. The formula is as follows:

pQ =
∑

vi∈Q
Si(t) (5)

Likewise, when the walker finds an unmarked node, at the
next time it will return to the beginning vertex with possibility
pU(1-rU). The probability total of the walkers arriving at each
unmarked node at time t is expressed as pU , it is equal to 1-pQ. X
defines the nodes at which the walker returns and restarts. Since
walker begins with a marked node, X is equal to S(0).

The fourth step is to sort all unmarked nodes and choose
potential candidates. The walker begins with the marked node
and starts iterating. When the iteration satisfies the condition of
convergence, the iteration procedure suspends. The convergence
condition is L1-norm between S(t) and S(t + 1) less than 10−10.
The definition of the correlation fraction of unmarked nodes
is the steady state probability of the pedestrians staying at that
vertex. In this way, all unmarked nodes get a correlation score,
and we sort them according to their fractions. The greater the
fraction, the more likely that the unlabeled node is associated
with the given protein p. The score matrix obtain by this part
is denoted by SR, in which SR(l(i), p(j)) is the possibility of
association between lncRNA l(i) and protein p(j).

Neighborhood Regularized Logistic Matrix

Factorization

Here we explain the neighborhood regularized logistic matrix
factorization method. First, lncRNAs and proteins are mapped to
shared potential spaces with dimension r, and r << min (m, n).
ui ∈ R

1×r and vj ∈ R
1×r represents the characters of lncRNA

li and protein pj, separately. The following formula is used to
calculate the probability of association pij of the lncRNA-protein
pair (li, pj):

pij =
exp(uiv

T
j )

1+ exp(uiv
T
j )

(6)

In order to simplify, we utilizeU∈R
m×randV∈R

n×r to represent
the set of potential vectors for all lncRNAs and all proteins.

In order to make our modeling more efficient and more
accurate for lncRNA-protein interactions prediction, we
recommend giving positive samples a higher level of importance
than negative samples (Johnson, 2014; Liu et al., 2014), the
weight of the positive sample given above is c, the weight of the
negative sample is 1.

Suppose all samples are trained independently, and the
probability as follows:

p (Y|U,V) =

(

∏

1<i<m,1<j<n,yij=1

[

pij
yij

(

1− pij
)(1−yij)

]c
)

×

(

∏

1<i<m,1<j<n,yij=0

[

pij
yij

(

1− pij
)(1−yij)

]

)

(7)

Note that when yij = 1, c
(

1− yij
)

= 1 − yij, when yij = 0,
cyij = yij. So, we rewrite the formula (7) as follows:

p (Y|U,V) =

(

∏

1<i<m,1<j<n,yij=1
pij

cyij
(

1− pij
)(1−yij)

)

×

(

∏

1<i<m,1<j<n,yij=0
pij

cyij
(

1− pij

)(1−yij)
)
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=
∏m

i=1

n
∏

j=1

pij
cyij

(

1− pij

)

(

1− yij
)

(8)

In addition, we will carry out zeromean spherical Gaussian priori
on the potential vector of lncRNA and protein:

p
(

U
∣

∣σ 2
l

)

=
∏m

i=1
N(ui|0, σ

2
l I), p

(

V
∣

∣

∣
σ 2
p

)

=
∏n

j=1
N(vj|0, σ

2
p I)

(9)
Among them, σ 2

l
and σ 2

p are to regulate the variance of the
Gaussian distribution, I is the unitary array. So, through Bayesian
inference, we have:

p
(

U,V
∣

∣

∣
Y , σ 2

l , σ
2
p

)

∝ p (Y|U,V) p
(

U
∣

∣σ 2
l

)

p
(

V
∣

∣

∣
σ 2
p

)

(10)

Thus, the posterior distribution logarithm is as below:

log p
(

U,V
∣

∣

∣
Y , σ 2

l , σ
2
p

)

=
∑m

i=1

∑n

j=1
cyijuivj

T

−(1+ cyij − yij) log
[

1+ exp
(

uivj
T
)]

−
1

2σ 2
l

∑m

i=1
||ui||

2
2

−
1

2σ 2
p

∑n

j=1

∣

∣

∣

∣vj
∣

∣

∣

∣

2
2
+ C (11)

Where C is an absolute term. Maximizing the posterior
distribution is same as minimizing the below object functions:

min
U,V

∑m

i=1

∑n

j=1
(1+ cyij − yij) log

[

1+ exp
(

uivj
T
)]

−cyijuivj
T +

λl

2
| |U| |2F + λp2 (12)

Where, λl = 1
σ 2
l

and λp = 1
σ 2
p

and || • ||F show the

Frobenius norm of the array. Alternating gradient descent
method (Johnson, 2014) can resolve the difficulty in Equation
(12).

By mapping lncRNAs and proteins to shared potential
space, the logistic matrix factorization method can effectually
evaluate the monolithic structure of lncRNA-protein interactions
information. In addition, we use lncRNAs and proteins neighbors
to further advance the forecast veracity. For lncRNA li, we denote
the nearest neighbor set with N(li)∈L\li, where N(li) makes
up selecting the K1 most similar lncRNAs of li. After that, we
structure the set N(pj)∈P\pj, which is made up of the K1 most
similar proteins of pj. In the experiment, we set K1 to 5 according
to experience.

Here, the lncRNA neighborhood information can be
represented by the adjacency array A, and aiµ is defined as below:

aiµ =

{

sliµ if lµ ∈ N(li)

0 otherwise
(13)

The protein neighborhood information is described by the
adjacency matrix B, and bjv is defined as below:

bjv =

{

s
p
jv if pv ∈ N(pj)

0 otherwise
(14)

It should be noted that matrix A and B are asymmetric.
The main idea of predicting lncRNA-protein interactions with

lncRNAs neighborhoods information is to minimize the distance
between li and its nearest neighbor N(li) in the potential space,
which can be gained by minimizing the below object functions:

α

2

∑m

i=1

∑m

µ=1
aiµ||ui − uµ||

2
F =

α

2

[

∑m

i=1

(

∑m

µ=1
aiµ

)

uiui
T

+
∑m

µ=1

(

∑m

i=1
aiµ

)

uµuµ
T
]

α

2
tr

(

UTAU
)

−
α

2
tr

(

UTATU
)

=
α

2
tr

(

UTLlU
)

(15)

Among them, tr(•) is matrix trace, Ll =
(

Dl + D̃l
)

− (A + AT).

Dl and D̃l are two diagonal arrays, where diagonal elements
are Dl

ii =
∑m

µ=1 aiµ and D̃l
µµ

=
∑m

i=1 aiµ separately. We
also minimize the following objective functions to use the
neighborhood information of the protein for lncRNA-protein
interactions prediction:

β

2

∑n

j=1

∑n

v=1
bjv||vj − vv||

2
F
=

β

2
tr

(

VTLpV
)

(16)

Wherein, Lp =
(

Dp + D̃p
)

− (B + BT), Dp and D̃p are two
diagonal arrays, where diagonal elements are Dp

jj =
∑n

v=1 bjv

and D̃
p
vv =

∑n
j=1 bjv respectively.

By taking into account lncRNA-protein associations and
lncRNAs and proteins K1 the nearest neighborhoods, the final
prediction model can be derived. By substituting Equations (15,
16) into Equation (12), the resulting model is as follows:

min
U,V

∑m

i=1

∑n

j=1

(

1+cyij−yij
)

ln
[

1+exp
(

uivj
T
)]

−cyijuivj
T

+
1

2
tr

[

UT
(

λlI + αLl
)

U
]

+
1

2
tr

[

VT
(

λpI + βLp
)

V
]

. (17)

An alternating gradient rise process can resolve the optimization
problem in Equation (17), which is represented as L, the gradient
relative to U and V as below:

∂ l

∂U
= PV + (c− 1) (Y ⊙ P)V − cYV +

(

λlI + αLl
)

U

(18)

∂ l

∂V
= PTU + (c− 1)

(

YT ⊙ PT
)

U − cYTU +
(

λpI + βLp
)

V

(19)

P∈ Rm×n, and pij (see Equation 1) represents the Hadamard
product of the two arrays. In order to quicken the constriction
of the gradient decline optimization method, we utilize the
AdaGrad algorithm to adaptively select the grad step length.

If potential carriers U and V are known, the association
probability of any unknown lncRNA-protein pair (li, pj)
can be forecasted by formula (6). The negative dataset
L− and P− of lncRNAs and proteins might influence on lncRNA−
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protein interactions. The set of K2 nearest neighbors in L+ and
P+ are denoted as N+(li) and N+(pj) for lncRNA li ∈ L− and
protein pj ∈ P−. N+(li) and N+(pj) are structured utilizing
the same standard as utilized to structure neighborhoods during
the training procedure. Then, the interaction probability between
lncRNA ui and protein vj is modified to:

p̂ij =
exp(ũiṽ

T
j )

1+ exp
(

ũiṽ
T
j

) , (20)

where

ũi =

{

ui if li ∈ L+

1
∑

µ∈N+(li)
sdiµ

∑

µ∈N+(li)s
d
iµuµ if li ∈ L− (21)

Note that Equation (21) shows a general case of smooth learning
lncRNA specificity and target-specific potential carriers. In our
experiment, K2 is set to 5 based on experience. The score matrix
obtained by this part is denoted by SN , and SN(l(i), p(j)) is the
possibility of association between lncRNA l(i) and protein p(j).

Integrating Model
At last, to avoid the unsatisfactory result of using one of
the two methods alone, we adopt an integration strategy
and propose the integration model IRWNRLPI. Here
we combine the two algorithms of random walk and
neighborhood regularized logistic matrix factorization, and
obtain a desired result. The specific approach is that we
use these two algorithms obtain two score matrix SR and
SN , and then take the average. The final fraction array is
denoted as S, and S(l(i), p(j)) is the possibility of association
between lncRNA l(i) and protein p(j). The formula is as
follows:

S =
SR + SN

2
(22)

RESULTS

Performance Evaluation
In this work, to measure the capability of our IRWNRLP
model, we perform LOOCV on lncRNA-protein interactions that
have been experimentally verified. In the LOOCV experiment,
it is assumed that a total of N samples, one of them is
selected as a test sample, and the rest of the samples are
selected as training samples. So, we result in N classifiers, N
test results, and we will utilize the average of the N results
to evaluate the capability of our method. Use the LOOCV
to obtain the receiver operator characteristics (ROC) curve
and calculate the area under ROC curve (AUC). AUC is an
important popular metric for evaluating the classification model.
If AUC = 1, IRWNRLPI has perfect performance; if AUC =

0.5, it represents random performance. There is also a popular
indicator the area under prediction recall curve (AUPR), it
is more adaptive for category unbalanced datasets because it
penalizes false positives more in the assessment. Because of
the presence of massive unknown labeled data in the dataset,

AUPR is used to lessen the impact of misinformation for
false positives on the function of the prediction model. The
larger the value of AUPR, the better the capability of the
method.

For adequately examining the capability of the method, we
introduce the following indicators to evaluate our method: ACC
(overall accuracy), SEN (sensibility), PRE (precision), and F1 (F1-
scores), these indices are extensively utilized in bioinformatics,
remarked as (Chen et al., 2016a, 2017a):

ACC =
TP+ TN

TP+ FP+ FN+ TN

SEN =
TP

TP+ FN

PRE =
TP

TP+ FP

F1 =
2× TP

2× TP+ FP+ FN

= 2 ·
PRE · REC

PRE+ REC

Where TP represents true positive, TN is true negative, FP is false
positive, FN is false negative. ACC is the index of systematic error,
up to 100% of ACC indicates that the prediction is perfect, and
in the random prediction ACC can only get 50%. Other metrics
in the binary classification can also measure the capability of the
method. PRE indicates the quantity of true positive predictions
in the positive prediction, and SEN is also called recall, indicating
the positive predictions amount of the positive samples that are
properly forecasted. Considering the accuracy and sensibility of
the test, the fractional value obtained by calculating the F1-score
(F-score or F degree measure) can reflect if the classification
model is robust. F1 is 1 for perfect method, while the worst model
of F1 is 0.

Comparison With Other Methods on
NPInter V2.0
In this part, we compare IRWNRLPI with other four models
on NPInter v2.0, which are LPI-ETSLP, RWR, LPBNI, and
RPISeq. Among them, RPISeq is compared with IRWNRLPI as
an example of the machine learning model, in view of RF and
SVM classifiers. The other three methods, LPI-ETSLP, RWR, and
LPBNI, forecast potential correlations with IRWNRLPI using
identical type of lncRNA and protein sequences information. The
results of IRWNRLPI and the other four models are displayed in
Figure 3 and Table 1, and indicate that IRWNRLPI is more ideal
than the others by comparison.

We perform all of these models on the same dataset, and
implement LOOCV experiments to compare their performance.
As shown in Figure 3, our IRWNRLPI method has a AUC
value of 0.9150, well above 0.5 (random), indicating that this
model is feasible to predict lncRNA-protein associations. And
we can see that the AUC of IRWNRLPI is higher than those of
LPI-ETSLP (0.8876), RWR (0.8332), LPBNI (0.8586), RPISeq-
RF (0.3949), and RPISeq-SVM (0.3987). Obviously, RPISeq is
much worse than other models, even less than 0.5 (random).
There are two reasons for this result: First, RPISeq is a machine
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FIGURE 3 | The ROC curves of IRWNRLPI, LPI-ETSLP, RWR, LPBNI,

RPISeq-RF, and RPISeq-SVM are expressed in red, brown, green, blue, purple

and pink, respectively. The light gray line represents the ROC curve of the

interaction between IRWNRLPI and the randomized lncRNA-protein pairs.

TABLE 1 | Comparison of IRWNRLPI with LPI-ETSLP, RWR, LPBNI, and RPISeq

models.

Methods AUC AUPR ACC PRE SEN F1-score

IRWNRLPI 0.9150 0.7138 0.9009 0.7187 0.5960 0.6516

LPI-ETSLP 0.8876 0.6438 0.8834 0.5932 0.9239 0.5978

RWR 0.8332 0.2893 0.9536 0.3680 0.3538 0.3603

LPBNI 0.8586 0.3306 0.9581 0.3713 0.4139 0.3868

RPISeq-RF 0.3949 0.0631 0.4626 0.0983 0.3003 0.1481

RPISeq-SVM 0.3987 0.0698 0.4823 0.1003 0.2922 0.1493

learning method and depends on data, and our model does not
have negative sample set; Second, RPISeq utilizes RNA-protein
associations to train rather than lncRNA-protein associations,
whereas the biological function of lncRNA differs from the
biological function of common RNA, thus affecting the final
outcome. In contrast, IRWNRLPI can avoid the problem of
feature selection, thereby avoiding reliance on negative sample
datasets.

From the indicators in Table 1, we can see that the prediction
ability of IRWNRLPI is obviously superior to the other four
methods. First, we compare the values of AUPR, which are
0.6438 (LPI-ETSLP), 0.2893 (RWR), 0.3306 (LPBNI), 0.0631
(RPISeq-RF), and 0.0698 (RPISeq-SVM) respectively. The above
values are lower than 0.7138 (IRWNRLPI), indicating that the
prediction result of IRWNRLPI is more dependable. Next, we
further analyze the ACC, PRE, SEN, and F1-score of these
models. As we can see the ACC of IRWNRLPI is less than
RWR and LPBNI, owing that IRWNRLPI predicts potential

lncRNA-protein associations based on known lncRNA-protein
correlations, but for now, experimentally verified lncRNA-
protein interactions are still less. Consequently, it is not
difficult to forecast, with the lncRNA-protein associations
data continuing increasing, IRWNRLPI prediction accuracy
will greatly improve. In addition, it is more reasonable
for this unbalanced dataset to evaluate the F1-score than
using the ACC evaluation. From Table 1, it is easy to
find, the F1-score of IRWNRLPI is higher than those of
other methods, especially RWR and LPBNI. Our IRWNRLPI
results show prediction accuracy (PRE) of 0.7187, which is
approximately 21, 95, and 94% higher than LPI-ETSLP, RWR
and LPBNI, separately, much higher than RPISeq-RF and
RPISeq-SVM results. The sensibility (SEN) is 0.5960, it is
68, 44, 98, and 104% higher than RWR, LPBNI, RPISeq-RF,
and RPISeq-SVM, separately. This results further demonstrate
that IRWNRLPI performs better in forecasting lncRNA-protein
associations.

Case Study
To evaluate the capability of the prediction method more
comprehensively, we use IRWNRLPI to forecast potential
lncRNA-protein interactions in view of the known associations
of “Mus musculus” in the NPInter v3.0 dataset. The top 10
lncRNA-protein interactions are displayed in Table 2, and finally
the data is centrally checked and fully verified in the “Mus
musculus”. Moreover, we describe their ranking of in other
methods, and it is not difficult to see from Table 2 that some of
them do not get a high rank in the prediction of other models,
which can lead that some new discoveries may be neglected
by corresponding models. On the contrary, our model can find
and confirm the interactions of these lncRNAs with proteins,
and the corresponding genes are displayed in Table 2. The loss
function of massive lncRNAs expressed in mouse embryonic cells
is studied to show the influence on gene expression. Studies
have indicated lncRNA regulates the impact of tumor cells on
blood vessels, which can affect the mechanism of tumorous
growth. In our forecast outcomes, NONMMUG002214-Q13185,
NONMMUG013483-A2AC19 and NONMMUG015351-Q88974
are forecasted to have associations in the top 10 results of
these methods, which are studied by Guttman et al. (2009).
In terms of outcomes, IRWNRLPI is obviously superior in
forecasting potential lncRNA-protein associations to other
methods.

DISCUSSION

LncRNA involves a variety of important cellular regulatory
processes andmany disease progression processes, particularly in
the development of various cancers. In general, most lncRNAs
play their function by interacting with the corresponding
RNA-binding proteins. Therefore, predicting the new lncRNA-
protein associations is conducive to the research of lncRNA.
Nevertheless, lncRNA-protein interactions experiments will cost
a lot of materials, human and financial resources. Therefore, the
utilization of computational methods to forecast lncRNA-protein
associations arouses widespread concern. In our work, to obtain
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TABLE 2 | Top 10 novel interactions predicted by IRWNRLPI and their ranks in the prediction of other methods.

lncRNA Protein Confirmed? IRWNRLPI LPI-ETSLP RWR LPBNI RPISeq-RF RPISeq-SVM

NONMMUG002214 Q13185 Confirmed 1 10 37 43 31 129

NONMMUT013483 A2AC19 Confirmed 2 36 39 3 178 49

NONMMUT015351 O88974 Confirmed 3 33 36 41 60 133

NONMMUT030867 Q9NQR1 Confirmed 4 37 38 2 173 137

NONMMUT045923 P83916 Confirmed 5 8 4 1 66 119

NONMMUT009968 Q8VCQ4 Confirmed 6 1 27 15 70 114

NONMMUT035343 Q9CQJ4 Confirmed 7 6 28 10 26 127

NONMMUT035346 H0YJU4 Confirmed 8 7 3 6 136 91

NONMMUT078379 Q8CGG4 Confirmed 9 17 20 12 51 144

NONMMUT040640 Q8CHK4 Confirmed 10 9 32 28 32 162

better prediction results, we introduce the idea of integrating
algorithm and present the IRWNRLPI method, which integrates
two prediction methods, random walk and neighborhood
regularized logistic matrix factorization, to forecast lncRNA-
protein interactions. IRWNRLPI bases only on experimentally
validated lncRNA-protein associations, which avoids dependence
on negative sample datasets. We conduct a more comprehensive
evaluation of IRWNRLPI, test our model in the NPInter v2.0
dataset, and compare it with other four methods. In the LOOCV
experiment, the AUC value of IRWNRLPI is 0.9150, indicating
that IRWNRLPI performs well in the forecast of lncRNA-protein
correlations. And IRWNRLPI obtains the AUPR value of 0.7138,
which states clearly the responsibility of this method. In addition,
we use the “Mus musculus” dataset as a case study to test
IRWNRLPI and investigate the practical capability of thismethod
in forecasting unknown lncRNA-protein associations. Case study
shows that IRWNRLPI is able to forecast other new lncRNA-
protein interactions. With the continuous progress of science
and technology, more and more lncRNA-protein interactions
will be found, and then the accuracy of IRWNRLPI prediction
will also increase. In conclusion, IRWNRLPI is an efficient
model of predicting potential lncRNA-protein associations, and
we also hope that IRWNRLPI can be used in a wider range of
studies.

The excellent and reliable predictive performance of
IRWNRLPI is mainly attributable to the following factors.
Firstly, unlike the traditional machine learning methods,
IRWNRLPI uses semi-supervised learning to derive unknown
information primarily through known associations and
their similarities, so it does not need negative samples.
Secondly, our model provides a high level of importance
for the nearest neighbors, thus avoiding noise information.
Thirdly, IRWNRLPI is a model based on an integrated idea,

and the integration model gets better results than a single
model.

Of course, IRWNRLPI also needs to be improved for the
following reasons. First of all, the proposed model relies heavily
on the known correlation data, but the number of current known
lncRNA-protein associations is still very limited. As the number
of experimentally validated associations increasing in future, the
prediction accuracy of our method will improve. Furthermore,
when the training sample changes, the prediction effect will be
unstable. In addition, further consideration should be given on
how to choose the value of the model parameters more properly.
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