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Studies of host genetic determinants of pathogen sequence variations can identify sites

of genomic conflicts, by highlighting variants that are implicated in immune response

on the host side and adaptive escape on the pathogen side. However, systematic

genetic differences in host and pathogen populations can lead to inflated type I (false

positive) and type II (false negative) error rates in genome-wide association analyses.

Here, we demonstrate through a simulation that correcting for both host and pathogen

stratification reduces spurious signals and increases power to detect real associations

in a variety of tested scenarios. We confirm the validity of the simulations by showing

comparable results in an analysis of paired human and HIV genomes.

Keywords: host-pathogen genomics, genome-wide association study, escape variants, population stratification,

simulation study

INTRODUCTION

Important inter-individual differences can be observed in human responses to infections, and
in recent years researchers have started to explore the genetic underpinning of this phenotypic
diversity (Prugnolle et al., 2005; Vannberg et al., 2011; Chapman andHill, 2012; Rausell and Telenti,
2014; McLaren and Carrington, 2015). A better understanding of host-pathogen interactions
at the genomic level could help explain pathogenesis, predict disease outcome or develop new
therapeutics or vaccines.

Multiple genome-wide association studies (GWAS) of clinical outcomes have identified human
genetic variants that play a modulating role in infectious diseases (Fumagalli et al., 2009; Thomas D.
L. et al., 2009; Rauch et al., 2010; Rockett et al., 2014). One of the most prominent examples is the
strong association between human leukocyte antigen (HLA) variation and HIV-1 control (Fellay
et al., 2007; Thomas R. et al., 2009; Apps et al., 2013). To further explore the potential impact of
human genetic diversity on infection, we recently proposed to integrate host and pathogen genomic
data in a single analytic framework (which we called genome-to-genome analysis, or G2G; Bartha
et al., 2013). Through a pilot study in an HIV-infected population, we demonstrated that it is
possible to detect the sites of genomic conflict between the host and the pathogen. Host restriction
factors can thus be uncovered by identifying the escape mutations that accumulate in the pathogen
genome in response to selection pressure exerted by host genetic variants.
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Systematic genetic differences in a study population, or
population stratification, can lead to inflated type I (false positive)
and type II (false negative) error rates (Wright, 1951; Serre et al.,
2008; Hinrichs et al., 2009). In standard GWAS, the association
analyses are corrected for stratification by adding host covariates,
such as principal components calculated from the host genomic
data, to themodel (Price et al., 2006; Bouaziz et al., 2011; Liu et al.,
2013; Abraham and Inouye, 2014; Tucker et al., 2014). However,
accounting for population structure becomes more challenging
in a G2G analysis, when these systematic differences can be
present in both the host and the pathogen populations.

In this paper, we explore the effects of population stratification
in G2G analyses. We first present a basic introduction to
the G2G framework and to the methods used for population
stratification correction. We then simulate host and pathogen
genetic variations using a broad array of parameters including
stratification on both sides, which allows us to pinpoint the
various effects of population stratification on different statistical
models. We finally test for associations between genome-wide
human genotypes and HIV-1 sequence diversity in a real-life
dataset. The simulation models, as well as all the steps for
analyzing the simulated dataset are implemented in R, and the
framework is available on GitHub.

MATERIALS AND METHODS

Genome-to-Genome Framework
In our G2G analysis, we use a regression model to search for
associations between host and pathogen genetic variation. Host
genetic variation is represented by a genotype data matrix with
n samples and p SNPs. Pathogen variation is represented by
a matrix with n samples and m binary variants. Then, if the
variation data corresponding to a single position of the pathogen
genome y with n observations is y = (y1, y2, . . . , yn)

⊤, the
regression model can be written as:

E(yj) = α +

p
∑

k=1

βkXjk, j = 1, . . . , n, (1)

where Xjk is the genotype for the j
th sample and the kth SNP, and

α is the intercept. βk is the coefficient value for the kth SNP; it
explains the association patterns between the pathogen variations
y and genotype data {Xjk, j = 1, . . . , n; k = 1, . . . , p}. Once all the
β coefficients are known, the association p-values are obtained
by testing the null hypothesis H0 :β = 0 against the alternative
hypothesis H1 :β 6= 0.

Simulation Study
Generation of Host Genetic Data (SNPs)
Our simulation design is based on the Balding Nicholas Model
(Balding and Nichols, 1995), which provides a framework
for estimating the probabilities of observed genotypes, taking
into account population structure and variance in allele
frequency estimates. For simulating stratification between host
subpopulations, we start with drawing an ancestral allele
frequency Rf for each SNP from the uniform distribution

on [0.1,0.9]. To generate a SNP stratified between two
subpopulations we use a specified FST (Wright, 1951; Holsinger
and Bruce, 2009) for drawing two alternate allele frequencies AP1

f

and AP2
f from a β distribution with parameters:

B(
Rf (1− Fst)

Fst
,
(1− Rf )(1− Fst)

Fst
) (2)

This distribution has mean Rf and variance FstRf (1− Rf ). Then,

for a population P1 with an alternate allele frequency of AP1
f
, the

genotypes 0 (homozygous for reference allele), 1 (heterozygous)
or 2 (homozygous for alternate allele) are assigned to each
sample with probabilities (1− AP1

f
)2, 2AP1

f
(1− AP1

f
) and (AP1

f
)2,

respectively. For an unstratified SNP, the genotypes 0, 1, and 2
are assigned with probabilities (1 − Rf )

2, 2Rf (1 − Rf ), and R2
f
,

respectively.

Generation of Pathogen Variables
To create a binary variable of value 0 (absence) or 1 (presence)
for each pathogen variant, we start by generating the background
random variations represented by a binary vector, Ybg . We draw
the parameter Rf from a uniform distribution, which defines
the ancestral mutation rate for a given position on the pathogen
genome. For variables that are not stratified between groups A
and B, Ybg is generated from a binomial distribution with Rf

being the probability of mutation. For variables that are stratified
between A and B, we use a specified FST to obtain two alternate
mutation frequencies AA

f and AB
f . These alternate frequencies are

then used as probabilities for generating Ybg , in groups A or B,
from a binomial distribution.

In a second step, we add associations between a selected set of
binary pathogen variants and host SNPs. We start by generating
a binary vector, Yca, using the logistic function given as:

pca =
1

1+ e−θ(x)
− 0.5 (3)

Here, θ(x) = x β, with x representing a vector of genotypes for all
samples and β representing the association coefficient. The vector
of probabilities pca is then used to generate Yca from a binomial
distribution. Using Ybg and Yca, the final pathogen variations are
generated as:

Y =

{

0 Ybg = Yca = 0,

1 otherwise
(4)

Therefore, a sample can have a value of 1 for a given pathogen
variant in the presence of background variation (Ybg = 1), causal
variation (Yca = 1), or both (Yca = Ybg = 1). This strategy
allows for the generation of a matrix of binary pathogen variants
that includes background variation as well as variants associated
with host SNPs.

Joint Analysis of Human and HIV Genetic
Variation
Study Participants
Human and viral genomic variation data from 1,668 participants
in the Swiss HIV Cohort Study (Ledergerber et al., 1994) were
included in the analysis.
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Human Genotype Data
Human genome-wide genotyping data were generated in the
context of previous studies. SNPs were excluded on the basis of
per-individual missingness (>3%), genotype missingness (>1%),
and marked deviation from Hardy-Weinberg equilibrium
(p<1×10−7). Genotype imputation was performed on the
Sanger imputation server, using EAGLE2 (Loh et al., 2016) for
pre-phasing and PBWT (Durbin, 2014) with the 1000 Genomes
Phase 3 reference panel (The 1000 Genomes Project Consortium,
2015). Imputed variants were filtered based on imputation INFO
score (<0.8).

HIV Sequence Data
Partial retroviral sequence data were obtained as part of routine
clinical testing for resistance against antiretroviral drugs. The
complete PR and 50% of the RT region were sequenced from
pretreatment plasma samples. We defined an amino acid residue
as variable if at least 10 study samples carried an alternative allele.
Per position, separate binary variables were generated for each
alternate amino acid, indicating the presence or absence of that
allele in a given sample.

Association Analyses
We used logistic regression to test for associations between host
SNPs and HIV amino acid variants. All models were run with
plink (Purcell et al., 2007), assuming an additive genetic model.
To assess the effect of stratification correction, we used four
different approaches. First, we tested for associations without any
correction for stratification. Second, we adjusted the model for
covariates capturing host stratification. Third, we adjusted the
model for covariates capturing pathogen stratification. Fourth,
we used both host and pathogen covariates in the model. This
resulted in four distinct sets of association results. To account for
multiple testing, we used a Bonferroni adjusted alpha threshold.

RESULTS

Simulation Analysis
Our simulation study includes paired host and pathogen data
from 5000 samples. The hosts are stratified between two
subpopulations P1 and P2 of 2500 samples each and the
pathogens are stratified between two groups, A and B of 2500
samples each. To generate spurious signal, we created unequal
groups of paired host and pathogen. Within P1, 1500 samples
are infected by strain A and 1000 by strain B. Within P2,
1000 samples are infected by strain A and 1500 are infected
by strain B. Genomic variation data include 50,300 host single
nucleotide polymorphisms (SNPs) and 400 pathogen variants.
The parameters used to generate host SNPs and pathogen
variants are presented in Tables 1, 2, respectively. The first
column of the tables (“Quantity”) gives the number of host SNPs
or pathogen variant. The second column (“Causal association”)
specifies the presence or absence of association between pathogen
variants and host SNPs. For host SNPs, it also specifies the
strength of the causal relationship (value of the β coefficient),
as well as the corresponding associated pathogen variant (line
reference for Table 2). The columns 3 (“Major stratification”)

TABLE 1 | Host SNPs parameters.

Quantity Causal

associations

Major stratification

(FST ) fvarP1 > fvarP2

Minor stratification

(FST ) fvarA > fvarB

40,000 Absent Non Stratified Non Stratified

10,000 Absent 0.2 Non Stratified

100 Absent 0.2 0.005

100 Present (Table 2,

L3) β = 0.3

Non Stratified Non Stratified

100 Present (Table 2,

L4) β = 0.3

0.2 0.016

Stratification defined by fvarP1 > fvarP2 implies that host subpopulation P1 has higher

SNP frequency than host subpopulation P2. Stratification defined by fvar (A) > fvar (B)

implies that the samples infected by group A (in P1 or P2) has higher SNP frequency

than the samples infected by group B.

TABLE 2 | Pathogen variants parameters.

Quantity Causal

associations

Major stratification

(FST ) fvarA > fvarB

Minor stratification

(FST ) fvarP1 > fvarP2

100 Absent 0.2 Non Stratified

100 Absent 0.2 0.005

100 Present Non Stratified Non Stratified

100 Present 0.2 0.01

Stratification defined by fvarA > fvarB implies that pathogen strain A has higher pathogen

variation frequency than pathogen strain B. Stratification defined by fvar (P1) > fvar (P2)

implies that the pathogen genomes (A and B) from host population P1 exhibit a higher

mutation rate than the pathogen genomes from P2.

and 4 (“Minor stratification”) represent the two possible levels
of stratification and specify the strength of stratification through
Wright’s F-statistics values (FST). These two columns also show
which subpopulation has the highest/lowest variation frequency.
More details on the simulation setup are provided in the
Materials and Methods section.

We used logistic regression to test for association between
each host SNP and pathogen variant (20,120,000 tests in total).
To correct for host stratification, we used the top 5 principal
components of the human genotyping data, and to correct for
pathogen stratification, we used the group marker as covariates.
The significance was assessed using the Bonferroni threshold
of 2.49 × 10−9. The results are presented in the next three
subsections: [1] “No spurious signals;” [2] “False positives,”
where the only observed signals are due to stratification;
[3] “Power gain,” where real association signals are weakened by
stratification. The input parameters to reproduce similar datasets
using the G2G-Simulator as well as the exact simulated dataset
detailed in this section is available on GitHub and zenodo (details
under the section “Availability of Data and Material”).

No Spurious Signal
A total of 17,060,100 association tests fall into this category.
For host-pathogen variant pairs with no association (N =

17,060,000), the median p-value is 0.5 regardless of the correction
applied. For the 100 pairs of host SNPs (line 4, Table 1) and
pathogen variants (line 3, Table 2) that are associated, we
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observe similar p-values irrespectively of the type of stratification
correction, with median p-values ranging between 5.3×10−7and
6.7×10−7 for the four different approaches of correction. So, in
the absence of spurious signals, correcting for any population
structure has negligible effect on the association results. The
Manhattan plots of the corresponding tests are available in the
online supplementary materials (http://www.oliviernaret.com/
g2g-sim-visualizer) by selecting “No spurious signal.”

False Positives
Here, we study the effects of stratification correction on false
positive signals, through two scenarios, with different levels of
stratification complexity.

Scenario 1, optimal correction: This scenario presents
association tests between 10,000 host SNPs (l.2 Table 1) and
100 pathogen variants (l.1 Table 2) resulting in 1,000,000 tests
(Figure 1A). The top half of the figure represents host SNPs
frequencies in the two populations. Host SNPs are stratified
between P1 and P2 with higher SNP frequency in P1, represented
by more “+” signs under P1 than in P2. The bottom half of
the figure represents pathogen variants frequencies in the two
strains. Pathogen variants are stratified between A and B with
higher variant frequency in A than B (Figure 1B, more “+” signs
under A than B). Since there are more samples in P1 infected by
pathogen group A and more samples in P2 infected by pathogen
group B, it creates a correlation structure between host and
pathogen populations, producing false positive signals. Figure 1B
shows that, in the absence of correction for stratification, 0.5%
of association results (N = 5,944) are false positive. However,
both host or pathogen covariates are able to fully capture host or
pathogen stratification. Therefore, using host covariate, pathogen
covariate, or both, allows for a proper control of false positive
signals, restoring a median p-value of 0.5. Details of this scenario
are available in the online supplementary materials by selecting
“Optimal host and pathogen correction.”

Scenario 2, suboptimal correction: This scenario is
represented in Figure 1C, with 39,900 tests between 200 host
SNPs (line 3 and 5 of Table 1) and 200 pathogen variants (line 2
and 4 of Table 2). 100 tests are on pairs in a causal relation and
will be discussed in the next section. Host SNPs are stratified at
two levels: major stratification between P1 and P2 and minor
stratification between hosts infected by the two pathogen groups
(resulting in higher allele frequencies for hosts infected by
pathogen A, regardless of population, (Figure 1D, additional
“.” for host populations infected by A). Pathogen variants are
also stratified at two levels: major stratification between A and B
and minor stratification between pathogens present in the two
host populations (resulting in higher pathogen allele frequencies
in P1, regardless of the pathogen group, Figure 1D, additional
“.” for pathogen groups within P1). False positive associations
between host SNPs and pathogen variants can here result from:
[A] major stratification on both sides (similar to scenario 1,
above); [B] the correlation structure between major and minor
stratification; and [C] the correlation structure between minor
stratification on both sides. Figure 1D shows that not adjusting
for stratification produces 9.8% (N = 2,954) of false positive
associations with a median p-value of 5.7 × 10−3. Because

the minor stratification is too weak to be entirely captured by
principal components, using host covariate cannot entirely
correct for stratification and leaves 1.4% (N = 409) of false
positive associations with a median p-value of 1.9 × 10−1.
Similarly, using only the pathogen covariate does not capture
the minor stratification and leaves 0.07% (N = 23) of false
positive associations with a median p-value of 3.4 × 10−1.
Finally, including both covariates allows for a proper control
and restores a median p-value of 0.5. Therefore, correcting for
both host and pathogen stratification prevents false positive
associations. Details of this scenario are available in the online
supplementary materials by selecting “Suboptimal host and
pathogen correction.”

Power Gain
This scenario presents association tests between 100 pairs
of associated host SNPs and pathogen variants. The causal
association is represented by the “arrow” sign from host to
pathogen (Figure 2A).

For this scenario, the host SNPs (l.5 Table 1) are stratified
at two levels: major stratification between P1 and P2 (with
higher allele frequencies in P2 than P1), and minor stratification
between hosts infected by the two pathogen groups, resulting in
higher allele frequencies for hosts infected by pathogen B.

To generate the pathogen variants (l.4 Table 2) for this
scenario we used equation 3 and 4, described in section
“Materials and Methods.” This requires the host SNPs, binary
background variations for the pathogen (Ybg) and another
set of binary pathogen variations, causally associated with the
SNPs (Yca). The pathogen background variations or Ybg are
generated randomly, with stratification at two levels: major
stratification between A and B (with higher pathogen allele
frequencies in A than in B), and minor stratification between
pathogens present in the two host populations, resulting in
higher pathogen allele frequencies in P1. This distribution of
pathogen background variation, along with the distribution
of host variations, results into a negative correlation between
host and pathogens because of two reasons. First, because
the host population with a lower alternate allele frequency
has pathogen genomes with a higher mutation rate, and vice
versa. Second, because P1 and P2 infected by pathogen group
B (lower mutation frequency) have a slightly higher alternate
allele frequency than P1 and P2 infected by A (higher mutation
frequency).

To generate the causal associations or Yca, we used equation
3 in section Generation Pathogen Variables. This makes Yca

positively correlated with the host SNPs as the samples with fewer
SNPs also have lower mutation rates in Yca. Using these positively
correlated Yca and negatively correlated Ybg for generating
the final pathogen variations (equation 4, section Generation
Pathogen Variables), nullifies the correlation structure due to
stratification. This results in host and pathogen datasets in
which causal associations are hidden under random noise due to
stratification.

In Figure 2B, without correction the median p-value is 0.11
with 16% of significant associations. Correcting the model using
host covariates decreased the median p-value to 3.6 × 10−4
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FIGURE 1 | False positive signal. (A) Simulated host and pathogen variant frequency distribution for case 1. (B) P-value boxplot for case 1. (C) Simulated host and

pathogen variant frequency distribution for case 2. (D) P-value boxplot for case 2.

FIGURE 2 | Power gain. (A) Simulated data structure for stratified host and pathogen data with true associations. (B) P-value boxplot for stratified host and pathogen

data with true associations.

(20% of significant associations), while adjusting the model using
pathogen covariate decreased the median p-value to 4.1 × 10−5

(21% of significant associations). Finally, adjusting the model
using both host and pathogen covariates decreased the mean p-
value to 8.3 × 10−7, with 29% of significant associations. These

results show that correcting for stratification on both host and
pathogen sides reduces the number of false negative signals.
The mean p-value from the model corrected for both host and
pathogen stratification is comparable to what we observed in the
case with association and no stratification (mean p-value of 6.7×
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FIGURE 3 | Population structures in HIV data. (A) Principal component plot for host data (first and second axis) (B). Phylogenetic principal component plot for the HIV

virus data (first and second axis) (C). Pearson correlation between first five host principal components and first three HIV virus phylogenetic principal components.

10−7), with an expected minimal power loss due to stratification
of associated SNPs. Details of this scenario are available in the
online supplementary materials by selecting “Power gain.”

Joint Analysis of Human and HIV Genetic
Variation
To compare the results of our simulations to real-life data, we
accessed human and viral genomic data collected from 1,668
HIV-1 infected individuals participating in the Swiss HIV Cohort

Study. We purposely selected a heterogeneous sample to ensure
human and viral stratification. The principal component analyses
showed diversity in terms of ethnicity, with 88% Caucasians, 5%
Asians, and 4% Africans (Figure 3A); and of HIV-1 subtypes,
with 81% of subtype B and 15% of subtype C infections
(Figure 3B).

The human genome-wide data consisted of 5,600,166 SNPs,
obtained after quality control, imputation, and filtering. Binary
HIV amino acid variants (N = 403) were obtained from sequence
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FIGURE 4 | Allelic distribution of host SNP rs4913471 and HIV amino acid variant at position 67 in the protease region. (A) Genotypes of rs4913471 plotted on first

two host principal components. (B) Presence or absence of amino acid variant at position 67 in the protease region plotted on first two host principal components.

data in the protease (N = 155, 40 amino acid positions) and
reverse transcriptase (N = 248, 82 amino acid positions).

We searched for associations between individual SNPs and
amino acid variants using logistic regression. To correct for
population stratification on the human side, we included the top
five principal components of the genotyping data in the models.
The principal component plot in Figure 4A shows the clustering
of study samples with European, Asian and African reference
samples from the HapMap dataset.

To correct for pathogen stratification, we included the top
three phylogenetic principal components (pPCs) (Liam, 2009)
calculated using a phylogenetic tree built from the assembled
HIV sequence data. Phylogenetic principal components
control for phylogenetic covariance while producing PCA-like
ordination. Figure 3B shows that the HIV genomes clustered
mainly into two large groups (the first pPC explained 30% of the
variation), on the first two pPC axes. We also computed Pearson
correlation between the top five host principal components
and the top three viral pPCs. Figure 3C shows only a weak
correlation between host PCs and HIV pPCs, suggesting a
need to correct for both to efficiently handle human and viral
stratification.

Similar to what we did in the simulation study, we
compared the association p-values obtained with four

correction approaches. Upon correction for both host and
pathogen stratification, we observed multiple highly significant
associations between SNPs in the major histocompatibility
complex (MHC) region of chromosome 6 and HIV amino acid
variants. After correction for multiple testing (p < 2.2× 10−11),
significant associations were observed with 9 positions in the
HIV proteome (5 in the protease (PR) region and 4 in the
reverse transcriptase (RT) region). The strongest association was
between rs2844527 and RT position 135 (p = 3.4 × 10−35). The
top associated SNP for each HIV position is listed in Table 3. We
replicated the associations, detected by Bartha et al. (2013), for
the protease position 35 (associated SNPs in complete LD with
rs2523577), 93 (associated SNPs in complete LD with rs2263323)
and the reverse transcriptase position 135 (associated SNPs in
high LD with rs1050502 with r2 = 0.7). In addition, we found
new associations between SNPs in the MHC region and multiple
other positions in the protease and the reverse transcriptase
regions.

As expected, correcting for population stratification at the
human and/or viral levels led to an improvement in association
p-values for known associated variants (“true positives”). For
example, the p-value for the association between rs9266628 in
the MHC region and HIV position 135 (presence or absence
of amino acid residue I) in the reverse transcriptase region was
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TABLE 3 | HIV G2G associations.

HIV Gene Position (amino acid

residue)

SNP (Chromosome: bp) P-value

PR 35(E) rs2596477 (6:31327723) 8.503e-28

35(D) rs17199328 (6:31322395) 4.083e-25

12(T) rs75344417 (6:31429439) 1.559e-15

12(A) rs116855165 (6:31059097) 1.266e-11

37(N) rs2596477 (6:31327723) 3.370e-14

93(I) rs9378249 (6:31327701) 1.953e-13

93(L) rs9378249 (6:31327701) 1.953e-13

67(Y) rs9391775 (6:31427948) 3.394e-12

RT 135(I) rs2844527 (6:31367636) 3.444e-35

135(T) rs79556279 (6:31329846) 1.114e-29

165(T) rs2442724 (6:31319907) 1.557e-13

165(I) rs92647589 (6:31248434) 1.919e-12

123(E) rs114773933 (6:31148349) 1.917e-12

138(A) rs114073761 (6:31336749) 1.929e-11

Strongest associations between amino acid variants and SNPs. The first three columns

of the table give HIV genes, amino acid positions and the host SNP ids.

5.2×10−18 with no correction for stratification, 1.1×10−18 with
correcting for host stratification only, 5.9×10−19 with correcting
for pathogen stratification only, and 3.7× 10−20 with correction
for both host and pathogen stratification.

Conversely, several false positive associations (type I errors)
could be identified. For example, the p-value for the association
between rs4913471 on chromosome 12 and HIV position 67
(presence or absence of amino acid residue T) in the protease
region was 1.5 × 10−16 with no correction for stratification,
3.2× 10−7 with correcting for host stratification only, 4.5× 10−5

with correcting for pathogen stratification only, and 3 × 10−4

with correcting for both host and pathogen stratification. To
show the absence of true association, we plotted the distribution
of genotypes for rs4913471 as well as the distribution of 1 s
and 0 s for the HIV amino acid, over the host principal
components (Figure 4). Ethnicity correlates with both the SNP
allele frequency (4A) and the presence or absence of the amino
acid residue (4B), making this a classical case of false positive
association due to stratification.

The summary statistics of this G2G analysis for all positions
presented on Table 3 are available under the section “Availability
of Data and Material.”

DISCUSSION

Genome-to-genome (G2G) association analyses can help dissect
complex interactions between host and pathogen by integrating
their respective genomic variation in a single model. The allele
frequency distribution of genetic variants is not uniform in
populations, resulting in systematic differences (“stratification”)
upon sampling of host and pathogen populations. Such
population stratification, if not accounted for properly, can lead
to false positive association signals as well as false negative results.
We here performed a comprehensive analysis to understand the

various aspects of population stratification correction in a G2G
framework.

Our simulation study demonstrated three main points that
characterize the stratification correction effects. First, in the
absence of stratification, the inclusion of covariates to correct
for potential stratification only has a negligible impact on the
results. Second, the existence of stratification on both sides
produces false positive signals, which can be best minimized by
including covariates that summarize both host and pathogen
stratification. Third, population stratification can weaken true
association signals, resulting in false negative results. In this case,
correcting for stratification increases power and facilitates the
identification of true associations.

We also presented a framework to properly correct for
pathogen stratification by using pPCs, derived from the pathogen
phylogenetic tree, as covariates. In our joint analysis of human
and HIV genetic variation, we corrected for stratification
using pPCs for HIV and principal components from the
human genotyping data. We identified strong association signals
between several SNPs in the MHC region and amino acid
variants in the HIV proteome. Several of them were reported
in a previous HIV G2G analysis, which was performed in a
very homogeneous human population and only corrected for
population stratification on the viral side. Our G2G analysis of
HIV did not identify new association, but confirmed the known
HLA associations (Bartha et al., 2013; McLaren and Carrington,
2015). However, because of the extensive LD in the MHC region,
determining a causal effect of the indexed SNPs will require
elaborate population genetics, molecular genetics and functional
assays.

We here propose to include principal components and
phylogenetic principal components as covariates in the
regression models to correct for host and pathogen stratification,
respectively. An alternative approach would be to use mixed
models, in which genetic relatedness matrices are obtained for
both host and pathogen and used to correct for population
stratification. Building on such an approach, Wang et al (Wang
et al., 2018) recently proposed a two-way mixed effects model
designed to simultaneously detect genetic variants on pairs of
host and pathogen genomes that are associated with a phenotypic
outcome. In addition to modeling the marginal effects, they also
modeled the joint effects of host and pathogen variants on the
phenotype. However, in contrast to our approach, where we
search for associations between pathogen variant (dependent
variable) and host variant (independent variable) independently
of any clinical trait, the strategy proposed by Wang et al. is not
designed to detect host-pathogen associations when neither host
nor pathogen variants associate strongly with a phenotype.

Our proposed strategy involves the use of all pathogen
variants at every step of the G2G analysis pipeline. However, this
approach is suboptimal in a number of cases: [A] it can lead to
overcorrection and loss of power if a single host SNP is associated
with multiple correlated pathogen variants that are captured
by one of the top principal components; [B] it increases the
computational overhead and multiple testing burden if strain-
defining pathogen variants, which are perfectly collinear with
phylogeny, are included in the regression analyses. Additional
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steps could be envisioned to overcome these problems, including
a correlation-based pruning of pathogen variants in the first case
and the targeted removal of variants that are strongly correlated
with phylogenetic PCs or strain types in the second case.

CONCLUSIONS

In summary, we show that correcting for both host and
pathogen stratification is necessary for unbiased G2G analysis.
We also provide a framework that can adjust for stratification
in the absence of reliable categorical labels, by exploiting host
and pathogen genetic information. Our simulation design is
implemented in R and available via GitHub.
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