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Identifying protein complexes from protein-protein interaction networks (PPINs) is

important to understand the science of cellular organization and function. However,

PPINs produced by high-throughput studies have high false discovery rate and only

represent snapshot interaction information. Reconstructing higher quality PPINs is

essential for protein complex identification. Here we present a Multi-Level PPINs

reconstruction (MLPR) method for protein complexes detection. From existing PPINs, we

generated full combinations of every two proteins. These protein pairs are represented as

a vector which includes six different sources. Then the protein pairs with same vector are

mapped to the same fingerprint ID. A fingerprint similarity network is constructed next,

in which a vertex represents a protein pair fingerprint ID and each vertex is connected

to its top 10 similar fingerprints by edges. After random walking on the fingerprints

similarity network, each vertex got a score at the steady state. According to the score

of protein pairs, we considered the top ranked ones as reliable PPI and the score as the

weight of edge between two distinct proteins. Finally, we expanded clusters starting from

seeded vertexes based on the new weighted reliable PPINs. Applying our method on the

yeast PPINs, our algorithm achieved higher F-value in protein complexes detection than

the-state-of-the-art methods. The interactions in our reconstructed PPI network have

more significant biological relevance than the exiting PPI datasets, assessed by gene

ontology. In addition, the performance of existing popular protein complexes detection

methods are significantly improved on our reconstructed network.

Keywords: protein complex, PPI network, network reconstruction, PPI prediction, bioinformatics

1. INTRODUCTION

A protein complex is a group of associated polypeptide chains linked by noncovalent protein-
protein interactions (PPIs). Protein complexes play important roles in biological systems and
perform numerous biological functions, such as DNA transcription, mRNA translation, and
signal transduction. Hence, identifying protein complexes in an organism is critical in molecular
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biology. With the advances of high-throughput technologies,
many large-scale PPI networks have been constructed (Wan
et al., 2015; Huttlin et al., 2017). Based on PPI information,
in silico computational approaches have been developed to
detect protein complexes, which has proven to be an effective
approach to complement experimental methods for protein
complex detection (Chen et al., 2014).

Computational approaches have been developed to identify
protein complexes by searching densely connected regions in
a PPI network (Li et al., 2010). The PPI network consists
of nodes representing proteins and links representing physical
interactions between a pair of proteins. The existing PPI
netwoks are generally built using information gathered from
high-throughput techniques mentioned above, which have many
errors and missing information (Huttlin et al., 2017). It has a
high false positive rate and even a higher false negative rate
(Wan et al., 2015). Detecting protein complexes from these
protein interaction networks has been limited in accuracy due
to these false interactions. Many recent studies integrated other
functional information into the protein interaction networks
to accurate the PPINs for improving the performance of
protein complexes detection (Chen et al., 2014). For example,
a graph fragmentation algorithm incorporated microarray gene
expression profiles to help refine the putative complexes (Feng
et al., 2011). Zeng et al. (2016) presented a features fusion
method which used n-gram frequency method to extract features
based on protein sequence to improve the prediction. Jung et al.
(2010) presented a simultaneous protein interaction network,
which removed the mutually exclusive interactions based on
domain information. Xu et al. (2011) generated weighted PPI
networks based on semantic similarity of each protein pair in
the Gene Ontology (GO). CMC (clustering based on maximal
cliques) (Liu et al., 2009) used an iterative scoring method to
assign a weight to protein pairs, which indicated the reliability
of the interaction between the two proteins. Krogan et al. (2006)
assigned a reliability score to every protein pair by converting
multirelationships in the AP-MS data into binary interactions
for predicting protein complexes. All these existing methods
try to accurate the PPI network with some other biological
or topological evidence for protein complex identification.
However, these methods only resolve the false positives of PPINs
and only 1 or 2 PPI evidences are used in these processes.
Therefore, more effort needs to be devoted toward improving
the quality of the existing PPI networks for protein complexes
identification.

In this paper, we proposed aMulti-Level PPINs reconstruction
(MLPR) method to remove spurious protein interactions and
recover missing ones for protein complexes identification.
First, we generated all combinations of each two proteins
and represented each protein pair as a vector which included
17 features gathered from six sources (Gene Ontology, Gene
expression, Domain-Domain Interaction, String, AP-MS
experiment, PPI network properties). Second, protein pairs
with same vector are mapped to an ID which is called protein
pair fingerprint ID. Each fingerprint ID represents a set of
protein pairs which have same vector. Third, a fingerprint-
similarity network is constructed, in which a vertex represented

a fingerprint and an edge represented the similarity between
two distinct fingerprints. Forth, we performed a random walk
with restart algorithm on this fingerprints similarity network.
Some fingerprints of reliable protein interactions are given prior
probabilities 1. At the end of the iterations, every fingerprint
reached a steady state and got a probability. The protein pairs are
selected as reliable PPI whereby the corresponding fingerprints
probability from random walk algorithm. Finally, we expanded
clusters starting from seeded vertexes based on the new weighted
reliable PPINs for identifying protein complexes. Figure 1 shows
the flowchart of our method.

2. METHODS

For a given organism, the proposed protein complex
identification approach contains two steps. The first step is
to reconstruct a high quality PPI network by removing spurious
interactions and recover missing ones. The second step is to
expand clusters starting from seeded vertexes based on the new
weighted reliable PPINs for identifying protein complexes. Here,
we first describe Multi-Level PPINs reconstruction approach
for getting reliable PPI and then present the detailed protein
complexes identification method on the new reliable PPINs.

2.1. Reconstruction of a PPI Network by
Random Walking on the Protein Pair
Fingerprints Similarity Network
Existing PPI datasets are transferred to a protein pair fingerprint
similarity network for getting reliable PPI (Figure 2). We first
generated all combinations of each two proteins in the existing
networks (Level 1) and represented each protein pair as a vector
which included n features gathered from m sources (Level 2).
Consequently, protein pairs represented by same vector were
mapped to same fingerprint ID. A fingerprint similarity network
is constructed, in which a vertex represents a protein pair
fingerprint ID and each vertex is connected to its top t similar
fingerprints by edges (Level 3). Then we performed a random
walk with restart algorithm on this fingerprints similar network.
Some fingerprints of reliable protein interactions are given prior
probabilities 1. At the end of the iterations, every fingerprint
reached a steady state and got a probability. The steady state
probability of each fingerprint is the probability of corresponding
protein pairs to be a reliable PPI. The top ranked protein pairs are
selected as reliable PPI. The details are described below.

2.1.1. Protein Pairs With PPI Evidences
Following our previous method (Xu et al., 2013), our approach
is to characterize each protein pair using PPI evidences from
multiple sources. The multiple sources include Domain-Domain
interaction (D), molecular function (MF) of GO, biological
processes (BP) of GO, cellular components (CC) of GO, gene
co-expression (CE), STRING (S), TAP-MS (TAP), existing
PPI database (EPPI), as well as the proteins’ corresponding
topological properties in the existing PPI networks (CD). These
features are listed below.
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FIGURE 1 | The working flow of our method.

FIGURE 2 | High-level reconstructed network. The first level is the existing PPI networks. The second level is the protein pairs annotated with six sources. The third

level is the protein pair fingerprints similarity network.

2.1.1.1. Gene ontology annotations
GO (Ashburner et al., 2000) is a framework for the model of
biology that defines concepts used to describe gene function, and
relationships between these concepts. It contains three aspects
that hold terms defining the basic concepts of molecular function
(MF), biological processes (BP), and cellular components (CC),
respectively. GO terms are arranged in directed acyclic graphs.

GO slims are cut-down versions of the GO ontologies containing
a subset of the terms in the whole GO. They give a broad
overview of the ontology content without the detail of the
specific fine grained terms. GO slims give a comprehensive
description of proteins biological attributes. A protein pair has
a high probability of being a PPI pair when they have similar
GO annotations. We used two different types of measures to
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calculate the similarity of GO annotations for a protein pair.
One type (Type I) uses the semantic similarity measure of Lord
et al. (2003). It is based on the hypothesis that a term is more
informative if it and its descendants have fewer annotated genes
or proteins in an ontology. The other type (Type II) is based on
organism-specific GO Slims. Given a protein pair, the similarity
value is defined as 1 if two proteins shared at least 1 common GO
Slim term after removing trivial root GO terms; otherwise, the
value is 0. The GO website was accessed in September 2011 to
retrieve GO annotations and GO Slim terms for yeast. A total of
six features were defined by combining the two similarity types
and the three aspects (MF,mf ,BP, bp,CC, cc).

2.1.1.2. Gene coexpression
The corresponding genes of the proteins in a protein complex are
expected to be coexpressed (i.e., activated and repressed under
the same conditions) (Jansen et al., 2003; Bhardwaj and Lu, 2005;
Li et al., 2006). To capture gene coexpression information of a
protein pair, we defined a feature by using many microarray data
series available in Gene Expression Omnibus (Edgar et al., 2002).
For that we downloaded a total of 161 microarray data series
for yeast (using platform PL90), consisting of 2,015 samples,
from Gene Expression Omnibus (accessed September 2011).
The expression measures were log transformed, and a Pearson
correlation coefficient was computed as a feature (CE) for each
protein pair.

2.1.1.3. Domain-domain interaction
A protein domain is a conserved part of a given protein sequence
and structure that can evolve, function and exist independently
of the rest of the protein chain. Many proteins consist of several
structural domains. Domains often suggest the propensity for the
proteins to interact or form a functional unit, such as protein
complex. So we used one feature to capture Domain-Domain
interaction (DDI) information for a protein pair. The domains
(Pfam) of yeast proteins were downloaded from UniProtKB
(Apweiler et al., 2004). The Domain-Domain interaction (DDI)
information were downloaded from InterDom (Ng et al., 2003),
in which each DDI pair is assigned a confidence score. And the
value of a DDI feature (D) for a protein pair was set as the sum of
the confidence scores of all possible DDI pairs between them.

2.1.1.4. STRING evidence
STRING (Jensen et al., 2009) is a database of known and
predicted protein-protein interactions. The interactions include
direct (physical) and indirect (functional) associations; they
stem from computational prediction, from knowledge transfer
between organisms, and from interactions aggregated from other
(primary) databases. So it is an essential source for our work. To
indicate the confidence of PPI, a score is assigned by STRING for
each protein pair. We used that score as the feature (S) to capture
STRING-predicted evidence of PPI information.

2.1.1.5. AP-MS experiments
The high-throughput AP-MS experiments have generated a
large amount of bait-prey data, posing great challenges on the
computational analysis of such data for inferring true interactions
and protein complexes. Many computational methods have been

developed to detect true protein complexes from AP-MS data.
These methods typically convert the co-complex relationships
in the AP-MS data into binary PPIs. They proposed different
measurements to assign a reliability score to every protein pair.
The higher the scores are, the more reliable of the candidate
PPIs. These scores of PPIs are powerful information for protein
complexes detection. Here we downloaded the candidate PPIs
with reliable score form Krogan core (TAP1) and extended
(TAP2) data (Krogan et al., 2006), Hart (TAP3) (Hart et al., 2007),
Gavin (TAP4) (Gavin et al., 2006), and Collins (TAP5) (Collins
et al., 2007). We used those scores directly as TAP features.

2.1.1.6. PPI network properties
Not every interaction pair is presented in accurated PPI
networks. We used two types of evidence to capture existing
PPI network information. Type I is the direct information from
existing PPI data. If one pair is recorded in one exiting PPI
data, its EPPI value is equal to 1, otherwise, the value was 0. We
downloaded yeast protein interaction data from DIP (Xenarios
et al., 2002) and BioGRID (Stark et al., 2006) as this Type I
features. Type II is the indirect information from PPI network
topology. We consider a protein pair to have a higher probability
of being a PPI pair if they have many common neighbors in a
PPI network. We use the Czekanowski-Dice distance (Brun et al.,
2003; Chen et al., 2006) (CD-distance) based on DIP to capture
such information (CD).

As described above, each protein pair Pi is represented as a
vector,Vpi which consists of a domain componentDpi, molecular
function in GO terms and GO Slims componentsMFpi andmfpi,
biological process in GO terms and GO Slims components
BPpi and bppi, cellular component in GO terms and GO Slims
components CCpi and ccpi, gene co-expression component CEpi,
STRING component Spi, PPI reliable score based on TAP-MS
from Krogan core, Krogan extended, Hart, Gavin, and Collins
components TAP1pi, TAP2pi, TAP3pi, TAP4pi, and TAP5pi,
existing PPI databases BioGRID and DIP components EPPI1pi,
EPPI2pi, and PPI topological in DIP component CDpi, i.e., Vpi =

(Dpi,MFpi,mfpi,BPpi, bppi,CCpi, ccpi,CEpi, Spi,TAP1pi,TAP2pi,
TAP3pi,TAP4pi,TAP5pi,EPPI1pi,EPPI2pi,CDpi).MFpi,BPpi,CCpi

are boolean vectors and the others are numeric vectors.

2.1.2. Protein Pair Fingerprints Similarity Network
A PPI network is constructed from existing PPI knowledge by
considering individual proteins as nodes and the existence of a
physical interaction between a pair of proteins as a link. Based
on the nodes in these existing PPI networks, full combinations
of every two nodes are generated. These generated protein pairs
are represented by the vectors as described above. For reducing
computational complexity, the protein pairs with same vector
are mapped to the same fingerprint ID. So each fingerprint
represents a set of protein pairs and it is also represented by
the corresponding vector. Then a fingerprint similarity network
Fsim = (Vsim,Esim) is constructed, in which a vertex v in vertex set
Vsim represents a fingerprint fi and an edge (fi, fg) in edge set Esim
represents a connection between two distinct fingerprints fi and
fj. To construct Fsim, we define the fingerprints pairwise similarity
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matrixMij between any two fingerprints fi and fj as follows:

Mij = 1−
dist(fi, fj)−minv∈Vsimdist(fi, fj)

maxv∈Vsimdist(fi, fj)−minv∈Vsimdist(fi, fj)
, (1)

where dist(fi, fj) is the Euclidean distance. A high value in Mij

indicates that the two fingerprints fi and fj share the similar PPI
evidences and thus likely belong to same category (PPI or non-
PPI). For each fingerprint fi ∈ Vsim, we connect it with another
fingerprint if their similarities are among top T similar ones to
fingerprint fi.

2.1.3. Walking on the Protein Pair Similarity Network
With the above resulting protein pair fingerprints similarity
network Fsim = (Vsim,Esim), we can then perform a random walk
with restart algorithm to detect the likely reliable PPI fingerprints
and unreliable PPI fingerprints as below.

We first initialize the prior probabilities of fingerprints. The
fingerprint is considered as reliable PPI fingerprint if it is
from at least two accurated PPI database and above half PPI
evidence components are non-zero. The other fingerprints are
considered as unknown fingerprints. Let R0 and U0 denote the
prior probability vector of the reliable and unknown fingerprints,
respectively. In R0, the prior probabilities of reliable fingerprints
are assigned an equal probability+1. This is equivalent to letting
the random walk begin from each of reliable PPI fingerprints
with equal probability. In U0, the prior probabilities of unknown
fingerprints are assigned 0 and their posterior probabilities will
be decided in step 2. We represent the overall prior probability
vector for the fingerprints similarity network as F0 = (R0,U0)

T .
After initialing the prior probabilities for reliable and

unknown examples above, we score all the remaining unknown
fingerprints in the network by transmission. We propose to do
flow propagation for this and adopt the RandomWalk algorithm
(Lovász et al., 1993) to our network Fsim. The prior influence
flows of reliable fingerprints are distributed to their neighbors,
which continue to spread the influence flows to other nodes
iteratively. Here, we used a variant of the random walk in which
we additionally allow the restart of the walk in every step at one
node with probability. Formally, the random walk with restart is
defined as:

Fr = (1− α)MijFr−1 + αF0, (r ≥ 2), (2)

where F0 is the initial probability vector, Fr is the probability
vector at step r, F1 = F0,Mij is row-normalized adjacency matrix
of the graph. In this work we set parameter to 0.8, as recommend
in Li and Patra (2010). At the end of the iterations, the prior
information held by every vertex in the network will reach a
steady state as proven by Lovász et al. (1993). This is determined
by the probability difference between Fr and Fr−1, represented as
Dif = |Fr − Fr−1|(measured by L1 norm). When Dif fell below

10−6, a steady stage has been reached and the iterative process is
terminated.

According to the posterior probabilities of U0, we further
select some likely reliable PPI fingerprints. Protein pair sets
corresponding to the selected fingerprints, each protein pair gets

a score. The high rank protein pairs are considered as the reliable
ones.

2.2. Identifying Protein Complex From the
New Reliable PPINs
Motivated by previous methods (Li et al., 2008; Xu et al., 2011),
we also expanded clusters starting from seeded vertexes. While
the weighted vertexes and selecting seed are based on our new
reliable PPI network. As mentioned above, the reliable score of
PPI is the weight of the edge between two proteins. We define
the weight of each vertex to be the sum of the weights of its
incident edges. After all vertexes are assignedweights, we also sort
the vertexes in non-increasing order by their weights and store
them in a queue Sq (vertexes of the same weight are ordered in
terms of their degrees). Here, we also pick the highest weighted
vertexes as the seeds. Our procedure proceeds as follows.We pick
the first vertex in the queue Sq and use it as a seed to grow a
new cluster. Once the cluster is completed, all vertexes in the
cluster are removed from the queue Sq and we pick the first vertex
remaining in the queue Sq as the seed for the next cluster.

We also used Evk to measure how strongly a vertex v is
connected to a subgraph K: the interaction probability Evk of a
vertex v to a subgraph K, where v /∈ K, is defined by

Evk =
evk

wk
, (3)

where evk is the sum of the weights of edges between the vertex
v and K, and wk is the sum of weights of edges in K. A cluster
K is extended by adding vertexes recursively from its neighbors
according to the priority. The priority of a neighbor v of K is
determined by the value Evk.

Let Tin be a threshold ranging between 0 and 1, let d be
a positive integer, and let K be a subgraph. SP is the shortest
path. A vertex v /∈ K is added to the cluster if the following
two conditions are satisfied (where K + v denotes the subgraph
induced by K and v):

1.Evk ≥ Tin; and

2.The(SP(K + v) ≤ d)

Only when the candidate vertex v is satisfied the conditions, can
it be added to the cluster. Once the new vertex v is added to the
cluster, the cluster is updated.

3. RESULTS

3.1. Experimental Data
We downloaded 7,018 yeast proteins from the Saccharomyces
Genome Database (Cherry et al., 1998) and generated 24.6
million protein pairs. We also downloaded yeast protein
interaction data fromDIP (Xenarios et al., 2002), BioGRID (Stark
et al., 2006), Krogan core and extended data (Krogan et al., 2006),
Hart (Hart et al., 2007), Gavin (Gavin et al., 2006) and Collins
(Collins et al., 2007) to evaluate our method. The details of these
datasets are shown in Table 1. The yeast protein complex data
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were downloaded from a public repository (http://wodaklab.org/
cyc2008/) with a total of 408 manually accurated heteromeric
protein complexes. After filtering out complexes composed of a
single or a pair of proteins, the final benchmark set contains a
total of 231 protein complexes.

3.2. Performance Evaluation
We applied three approaches (Min et al., 2009) to evaluate
the experimental performance. Equation (4) calculates the
neighborhood affinity score NA(p, b) between a predicted cluster
p ∈ P and a real complex b ∈ B, where P is the set of predicted
complexes by a computational method and B is the set of positive
ones in the benchmark.

NA(p, b) =

∣

∣Vp
⋂

Vb

∣

∣

2

∣

∣Vp

∣

∣ × |Vb|
. (4)

In Equation (4),
∣

∣Vp

∣

∣ is the number of proteins in the predicted
complex and |Vb| is the number of proteins in the real complex.
If NA(p, b) ≥ ω, a real complex and a predicted complex
are considered to be matching (ω is usually set as 0.20 or
0.25) (Bhowmick and Seah, 2016). After all real complexes and
predicted clusters have their best match calculated according to
theirNA scores, precision, recall, and F-value are applied to assess
the methods:

Ncp =
∣

∣{p|p ∈ P, ∃b ∈ B,NA(p, b) ≥ ω}
∣

∣ , (5)

Ncb =
∣

∣{b|b ∈ B, ∃p ∈ P,NA(p, b) ≥ ω}
∣

∣ , (6)

Precision =
Ncp

|P|
,Recall =

Ncb

|B|
, (7)

F-value = 2× Precision× Recall/(Precision+ Recall). (8)

Ncp is the number of predicted complexes that match at least one
real complex, andNcb is the number of real complexes that match
at least one predicted complex (Bhowmick and Seah, 2016).

3.2.1. P-Value (Functional Homogeneity)
The statistical significance of the occurrence of a protein cluster
(predicted protein complex) with respect to given functional
annotation can be computed by the following hypergeometric

TABLE 1 | The basic statistical information of different datasets.

PPI networks Number of proteins Number of interactions

BioGRID 5,640 59,748

Collins 1,622 9,074

DIP 4,928 17,201

Gavin 1,430 6,531

KroganCore 2,708 7,123

KroganExtended 3,672 14,317

distribution in Equation (9) (Li et al., 2010):

P − value = 1−

k−1
∑

i=0

(

|F|

i

) (

|V| − |F|
|C| − i

)

(

|V|
|C|

) . (9)

where a predicted complexC contains k proteins in the functional
group F and the whole PPI network contains |V| proteins. The
functional homogeneity of a predicted complex is the smallest P-
value over all the possible functional groups. A predicted complex
with a low functional homogeneity indicates it is enriched by
proteins from the same function group and it is thus likely to be
true protein complex.

3.3. Evaluation of Reconstructed PPINs
From the Saccharomyces Genome Database (Cherry et al., 1998),
we generated 24.6 million protein pairs (all combinations of
each two proteins). Each protein pair is represented as a vector
which includes 17 features from six sources. The protein pairs
with same vector are mapped to the same fingerprint ID. A
total of 1,200,147 fingerprints are generated. So a fingerprint
represented a set of protein pairs and is also considered as
the same vector with the corresponding protein pairs. For each
fingerprint, the top ten similar fingerprints have edges linked
to it. The random walking algorithm is then performed on the
fingerprints similarity network. The fingerprints prior probability
is set to 1 if their TAP3 or TAP5 value is equal to 1 (recorded
in Krogan core or Collins datasets) and more than half PPI
evidence components are non-zero. After randomwalking on the
fingerprints similarity network, each fingerprint has a posterior
probability.

TABLE 2 | The relevance of Protein pairs in different datasets.

CC BP MF

TOP6000 0.995667 0.994168 0.812531

TOP7000 0.991143 0.992 0.798143

TOP8000 0.98588 0.989379 0.786205

TOP9000 0.977005 0.985892 0.782048

TOP10000 0.9651 0.9779 0.778

TOP11000 0.956455 0.970909 0.773364

TOP12000 0.951083 0.967 0.757

TOP13000 0.942385 0.958692 0.742077

TOP14000 0.933286 0.949429 0.728571

TOP15000 0.9256 0.941133 0.7178

TOP16000 0.917625 0.933063 0.710625

BioGRID 0.782369 0.816847 0.593902

Collins 0.96793 0.971126 0.73672

DIP 0.791407 0.740771 0.541248

Gavin 0.904942 0.897901 0.656148

KroganCore 0.83083 0.834901 0.603959

KroganExtended 0.783614 0.802542 0.579613
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According to this fingerprints’ posterior probability, each
protein pair has a corresponding score, in which the score
measures the possibility or confidence of a pair to be reliable PPI.
We then ranked the pairs by the scores, and those high ranked
ones were considered to be reliable PPI pairs.

To evaluate our reconstructed PPI network, we performed
a statistical analysis for our predicted PPIs based on GO
annotations. We compared different edge groups for the

FIGURE 3 | The performance of our MLPR method on our reconstructed

PPINs.

FIGURE 4 | The performance of our MLPR method on our reconstructed

PPINs.

FIGURE 5 | The performances comparison between our method and other

five methods on Krogan core dataset.

functional relevance between nodes connected by an edge.
The hypothesis is that if our algorithm reduces noise in the
PPI network, the edges in our networks are functionally more
relevant than other networks. Since interacting proteins are likely
involved in similar biological processes, they are expected to
have similar functional annotations in gene ontology. Therefore,

FIGURE 6 | The performances comparison between our method and other

five methods on BioGRID dataset.

FIGURE 7 | The performances comparison between our method and other

five methods on Gavin dataset.

FIGURE 8 | The performances comparison between our method and other

five methods on Krogan extended dataset.
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we measure the functional relevance between any pair of genes
that are connected by an edge using the semantic similarity
between the GO terms annotated with the proteins, using a
popular method (Lord et al., 2003). Experimental results show
that the proportion of PPIs in one network whose similarity is
above 0.5 in three branches of GO (BP, CC, MF) (Table 2). As
the number of selected PPI increases, the relevance decreases
slightly. But they are still higher than PPI in BioGRID, DIP,
Gavin, Krogancore, and Kroganextened datasets. The relevence
of top 9,000 PPI is even higher than that of Collins. All these
indicate that our method get a higher quality network for protein
complexes detection.

We also evaluated our method based on different size
reconstructed networks. The Tin is set to 0.6 for our experiments.
Figure 3 shows the trend of our method’s performances when
selecting different network sizes. Generally, the recall rate
increases when the number of predicted PPI pairs increases. The
precision rate slightly decreases as the network size increases.
While the F-value goes up with the network size increases and
reaches its peak around 13,000.

We compared our method with the existing popular protein
complexes detection methods including COACH (Min et al.,
2009), CMC (Liu et al., 2009), MCODE (Bader and Hogue, 2003),
Clusterone (Nepusz et al., 2015), and MCL (Van Dongen, 2000)
on different networks. The parameters of these methods are set
to default values as mentioned in their original papers. They are
implemented on the existing PPI networks DIP (Xenarios et al.,
2002), BioGRID (Stark et al., 2006), Gavin (Gavin et al., 2006),
Collins (Collins et al., 2007), and Krogan core and extended
(Krogan et al., 2006) respectively. As shown in Figures 4–9, our
method MLPR achieved higher F-value than other methods on
the six PPI networks. We also achieved higher Recall on DIP,
Gavin, Collins, Krogan core, and extended PPI networks except
on BioGRID. But we achieved a higher Precision than other
methods on BioGRID. All this indicates that ourmethod enhance
the performance of protein complexes detection algorithms.

Besides comparing our method with others on the six existing
PPI network, we also employed COACH, CMC, MCODE,
Clusterone, and MCL on our reconstructed PPI network.

FIGURE 9 | The performances comparison between our method and other

five methods on Collins dataset.

Figures 10–12 show the trend of methods’ performance when
selected different size networks that reconstructed with the
top 6,000–16,000 predicted reliable PPI pairs. The recall rate
increases when the number of predicted PPI pairs increases.
MCODE reached its peak around 9,000. The precision rate
decreases as the network size increases. While the F-value

FIGURE 10 | The F-value of our method and other five methods on our

reconstructed networks.

FIGURE 11 | The precision of our method and other five methods on our

reconstructed networks.

FIGURE 12 | The recall of our method and other five methods on our

reconstructed networks.
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FIGURE 13 | The false positive protein complexes which have low P-value and high local density.

increases at the beginning then goes down after reaching a peak.
The increasing of F-value indicates that there are more true
positive PPIs added to the network. The researchers can select
different sizes of networks for various methods. The F-value of
our method is higher than all the other methods when the size of
network is larger than 10,000.

Although some of our predicted complexes did not match
any complexes in the benchmark complex set, we found that
the predicted complexes have high biological significance and
high local density as shown in Figure 13. They could be true
complexes that are not discovered.

4. CONCLUSIONS

In this paper, we presented a Mutil-level PPINs reconstruction
method (MLPR) for protein complex detection. Our method
does not use the negative data, but only utilize the noisy existed
database and incorporate more PPI evidences to reconstruct
higher quality network. We mapped existing noisy data to
multi-level networks and used the new level fingerprints
similarity network to get high quality PPIs. Then we expanded
the clusters from seed vertexes based on the reconstructed

PPINs. The evaluation of our method indicates that our
method achieved a higher F-value than other methods. In
addition, our reconstructed PPI network significantly improves
the performance of protein complex identification algorithms.
Future work includes evaluation of individual features. We also
plan to transfer our method to other link prediction research.
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