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Genome-wide association studies (GWAS) have identified more than 170 single
nucleotide polymorphisms (SNPs) associated with the susceptibility to breast cancer.
Together, these SNPs explain 18% of the familial relative risk, which is estimated to
be nearly half of the total familial breast cancer risk that is collectively explained by
low-risk susceptibility alleles. An important aspect of this success has been the access
to large sample sizes through collaborative efforts within the Breast Cancer Association
Consortium (BCAC), but also collaborations between cancer association consortia.
Despite these achievements, however, understanding of each variant’s underlying
mechanism and how these SNPs predispose women to breast cancer remains limited
and represents a major challenge in the field, particularly since the vast majority of the
GWAS-identified SNPs are located in non-coding regions of the genome and are merely
tags for the causal variants. In recent years, fine-scale mapping studies followed by
functional evaluation of putative causal variants have begun to elucidate the biological
function of several GWAS-identified variants. In this review, we discuss the findings and
lessons learned from these post-GWAS analyses of 22 risk loci. Identifying the true causal
variants underlying breast cancer susceptibility and their function not only provides better
estimates of the explained familial relative risk thereby improving polygenetic risk scores
(PRSs), it also increases our understanding of the biological mechanisms responsible
for causing susceptibility to breast cancer. This will facilitate the identification of further
breast cancer risk alleles and the development of preventive medicine for those women
at increased risk for developing the disease.

Keywords: breast cancer, susceptibility loci, post-GWAS analysis, fine-scale mapping, functional analysis

INTRODUCTION

Breast cancer, the second deadliest cancer among women worldwide, is still the most frequently
diagnosed malignancy among females (Fitzmaurice et al., 2017). Different risk factors, related to
the development of breast cancer, have been identified with genetic predisposition playing a pivotal
role. About 10-15% of the women who develop breast cancer have a familial background of the
disease and several genes have been identified that increase breast cancer risk when mutated in the
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germline (Collaborative Group on Hormonal Factors in Breast
Cancer, 2001; Stratton and Rahman, 2008; Hollestelle et al.,
2010b). Moreover, a large amount of non-coding germline
variants have been identified that not only contribute to the breast
cancer risk observed in individuals with a familial background,
but also significantly in the general population (Lilyquist et al.,
2018).

Currently identified breast cancer susceptibility genes and
alleles can be stratified by their conferred risk in high, moderate
and low-penetrant categories. BRCAI and BRCA2 are the two
most commonly mutated high-penetrance genes and about 15—
20% of the familial breast cancer risk is attributable to germline
mutations in one of these two genes (Miki et al., 1994; Wooster
et al,, 1995; Stratton and Rahman, 2008). Although germline
mutations in PTEN, TP53, STK11, and CDH1 also confer a high
breast cancer risk, they are very rare and mostly found within the
context of the cancer syndromes they cause. Hence, mutations in
these genes explain no more than 1% of the familial breast cancer
risk (Stratton and Rahman, 2008). A more intermediate risk
of developing breast cancer is conferred by germline mutations
in the genes CHEK2, ATM, PALB2, and NBSI, which are, in
the general population, more prevalent than mutations in the
high risk breast cancer genes. Together they explain another
5% of the familial breast cancer risk (Meijers-Heijboer et al.,
2002; Vahteristo et al., 2002; Renwick et al., 2006; Steffen et al.,
2006; Rahman et al., 2007; Hollestelle et al., 2010b). Interestingly,
all high and moderate-risk genes identified so far have been
implicated in the DNA damage response pathway (Hollestelle
et al., 2010b).

Lastly, more than 170 low penetrant breast cancer
susceptibility alleles have been identified through large-
scale GWAS, which explain about 18% of the familial breast
cancer risk (Michailidou et al, 2017). The vast majority of
these GWAS-identified SNPs are, however, located outside
coding regions (www.genome.gov/gwastudies). It is therefore
not immediately obvious how these SNPs confer an increased
risk to develop breast cancer. Moreover, since a GWAS design
takes advantage of the linkage disequilibrium (LD) structure
of the human genome and thus includes only SNPs tagging a
particular locus, GWAS-identified SNPs usually do not represent
the causal risk variants. Post-GWAS analyses are therefore
imperative to identify the underlying causal SNP(s) and discern
their mechanism of action. Since these causal SNPs are expected
to display a stronger association with breast cancer risk than
the original GWAS-identified SNPs (Spencer et al.,, 2011), their
identification not only improves our estimates of the explained
familial breast cancer risk by these SNPs, it also improves
PRSs that aid in the identification of women at risk to develop
breast cancer. In this review, we summarize the findings from
post-GWAS analyses to date and discuss lessons learned with
respect to design of these studies and the results that they have
produced.

GWAS-IDENTIFIED SNPs

Since 2007, when one of the first large GWASs for breast cancer
was published, multiple GWASs have been performed in order
to identify those SNPs associated with the development of breast

cancer (Easton et al., 2007; Hunter et al.,, 2007; Stacey et al.,
2007, 2008; Gold et al., 2008; Ahmed et al., 2009; Thomas et al.,
2009; Zheng et al., 2009; Turnbull et al., 2010; Cai et al,, 2011a,
2014; Fletcher et al., 2011; Haiman et al., 2011; Ghoussaini et al.,
2012; Kim et al., 2012; Long et al.,, 2012; Siddiq et al., 2012;
Garcia-Closas et al., 2013; Michailidou et al., 2013, 2015, 2017;
Purrington et al., 2014; Couch et al, 2016; Han et al, 2016;
Milne et al., 2017). To date, 172 SNPs have been identified that
associate with breast cancer risk. One of the major driving forces
behind this success is the establishment of large international
research consortia such as BCAC, which facilitated large sample
sizes for breast cancer GWAS. Additionally, the cooperation
between different large association consortia for breast, ovarian,
prostate, lung and colon cancer (i.e., BCAC, CIMBA, OCAC,
PRACTICAL, GAME-ON), which led to the development of the
iCOGS array and the OncoArray has also been critical. In this
respect, the iCOGS array facilitated the identification of 41 and 15
new breast cancer susceptibility loci, while the latest OncoArray
facilitated identification of another 65 (Michailidou et al., 2013,
2015, 2017). Although the latest GWAS on the OncoArray has
identified the most novel risk loci to date, the GWAS-identified
variants were responsible for only 4% of familial breast cancer
risk, suggesting that increasing samples sizes are allowing the
identification of SNPs that confer smaller risks (Michailidou
et al., 2017). Up to now, GWAS-identified SNPs collectively
explain 18% of the familial breast cancer risk, but it is estimated
that this is only 44% of the familial breast cancer risk that can
be explained by all imputable SNPs combined (Michailidou et al.,
2017). Identification of those SNPs as breast cancer susceptibility
alleles will require even larger GWAS sample sizes, but also
enrichment of phenotypes associated with breast cancer risk,
as SNPs underlying ER-negative breast cancer are currently
underrepresented.

In this respect, GWAS has also shown that estrogen receptor
(ER)-positive and ER-negative breast cancer share a common
etiology as well as a partly distinct etiology. Twenty loci were
identified to associate specifically with ER-negative breast cancer,
where a further 105 SNPs also associate with overall breast cancer
(Milne et al., 2017). Furthermore, there is a common shared
etiology for ER-negative breast cancer and breast cancers arising
in BRCAI mutation carriers as well as overall breast cancer and
breast cancer in BRCA2 mutation carriers (Lilyquist et al., 2018).

Although the risks associated with single GWAS-identified
SNPs are low, combining these SNPs in PRSs has shown to
be useful for identifying women at high risk for developing
breast cancer. In fact, based on a 77-SNP PRS developed by
Mavaddat et al. 1% of women with the highest PRS have an
estimated 3.4-fold higher risk of developing breast cancer as
compared with the women in the middle quintile (Mavaddat
et al,, 2015). Moreover, PRSs were shown to be particularly
useful for risk prediction within carriers of BRCA1, BRCA2, and
CHEK?2 germline mutations as well as in addition to clinical risk
prediction models (Dite et al., 2016; Kuchenbaecker et al., 2017;
Muranen et al., 2017).

In summary, GWAS has allowed the research community
to be very successful in the identification of risk loci that are
associated with genetic predisposition to breast cancer. To date,
more than 170 low-risk breast cancer susceptibility alleles have
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been identified. Unfortunately, for the vast majority of the
GWAS-identified risk loci, the causal variant(s), target gene(s)
and their functional mechanism(s) have not yet been elucidated
(Fachal and Dunning, 2015). Despite the development of tools
and strategies for fine-scale mapping and functional analyses,
the effort is still huge to characterize each GWAS-identified risk
locus and reveal its underlying biology in breast tumorigenesis
(Edwards et al., 2013; Fachal and Dunning, 2015; Spain and
Barrett, 2015). However, for those 22 breast cancer risk that have
been analyzed in more detail, this has provided already significant
insight into the, sometimes complex, mechanisms underlying
breast cancer susceptibility (Table 1) (Meyer et al., 2008, 2013;
Udler et al., 2009, 2010a; Ahmadiyeh et al., 2010; Stacey et al.,
2010; Beesley et al., 2011; Cai et al., 2011b; Bojesen et al., 2013;
French et al., 2013; Ghoussaini et al., 2014, 2016; Quigley et al.,
2014; Darabi et al., 2015, 2016; Glubb et al., 2015; Guo et al., 2015;
Linetal, 2015; Orr et al., 2015; Dunning et al., 2016; Hamdi et al.,
2016; Horne et al., 2016; Lawrenson et al., 2016; Shi et al., 2016;
Sun et al.,, 2016; Wyszynski et al., 2016; Zeng et al., 2016; Betts
et al,, 2017; Helbig et al., 2017; Michailidou et al., 2017).

FINE-SCALE MAPPING OF
GWAS-IDENTIFIED LOCI

GWAS-identified SNPs usually do not represent the causal risk
variants. These are merely tags to a locus associated with risk for
developing the disease. However, because each causal variant is
located in a region containing an independent set of correlated
highly associated variants (iCHAV) (Edwards et al., 2013), fine-
scale mapping of GWAS-identified loci in large sample sizes is
required in order to identify the causal variant from a background
of non-functional highly correlated neighboring SNPs.

In order to fulfill successful fine-scale mapping, a complete
list of all SNPs, including the causal variants, should be available
for the risk locus of interest. Direct sequencing of the risk
locus would be a good approach for achieving this, however, it
is an expensive method. Particularly since successful fine-scale
mapping requires sufficient statistical power and thus sample
sizes up to 4-fold to that of the original GWAS (Udler et al.,
2010b). In this respect, the 1000 genome project containing
whole genome sequencing data of 2,504 individuals from 26
populations is a valuable resource (Auton et al., 2015; Zheng-
Bradley and Flicek, 2017). A second prerequisite for successful
fine-scale mapping is large sample sizes, which are usually only
achieved within large consortia such as BCAC. Therefore, both
the iCOGS array as well as the OncoArray, in addition toa GWAS
backbone, additionally contained numerous SNPs for fine-scale
mapping of previously GWAS-identified risk loci (Michailidou
etal, 2013, 2017).

Once a dense set of SNPs for a given GWAS-identified risk
locus has been genotyped statistical analyses are applied to reduce
the number of candidate causal SNPs. Interestingly, it seems
to be a common theme among GWAS-identified loci that the
underlying risk is conferred by more than one iCHAV. For breast
cancer risk loci at 1p11.2, 2933, 4q24, 5p12, 5p15.33, 5q11.2,
6q25.1, 8924, 9931.2, 10921, 10926, 11q13, and 12p11 multiple

iCHAVs have been identified ranging from two to a maximum
of five iCHAVs at 6q25.1 and 8q24 (Table 1) (Bojesen et al.,
2013; French et al., 2013; Meyer et al., 2013; Darabi et al., 2015;
Glubb et al,, 2015; Guo et al,, 2015; Lin et al.,, 2015; Orr et al.,
2015; Dunning et al., 2016; Ghoussaini et al., 2016; Horne et al.,
2016; Shi et al., 2016; Zeng et al., 2016). For this reason, the first
step in the fine-scale mapping process is establishing how many
iCHAVSs are present at a particular GWAS-identified risk locus
using forward conditional regression analysis (Edwards et al.,
2013). Then for each iCHAYV, the SNP displaying the strongest
association with breast cancer risk is identified. Based on this
SNP, other SNPs within the same iCHAV are excluded from
being candidate causal variants when the likelihood ratio for that
SNP is smaller than 1:100 in comparison with the SNP showing
the strongest association (Udler et al., 2010b). The reduction in
candidate causal variants that is achieved during this process not
only depends on sample size, but also the LD structure of the
GWAS-identified locus.

Importantly, the majority of GWAS-identified risk loci
were discovered in populations of European ancestry. Because
the LD structure of the European ancestry population shows
larger LD blocks containing more highly correlated SNPs than
Asian or African ancestry populations, this offers an advantage
in GWAS studies since less tagging SNPs are needed to
achieve genome-wide coverage. However, for fine-scale mapping
this is disadvantageous since the large number of highly
correlated variants within an iCHAV may not allow sufficient
reduction of candidate causal variants (Edwards et al., 2013).
Therefore, fine-scale mapping in additional populations besides
the European ancestry population (ie., Asian and African
ancestry populations) can be an effective strategy to reduce
the number of candidate causal variants from iCHAVs located
at GWAS-identified regions and add validity to the remaining
candidate causal SNPs (Stacey et al., 2010; Edwards et al., 2013).
Requirements for success are sufficient sample sizes for all
populations, different correlation patterns between the studied
populations and the risk association must be detectable in
the additional populations, which usually depends on the risk
allele frequency in these populations (Edwards et al., 2013).
Unfortunately, the LD structure at the GWAS-identified risk loci
is not always favorable and multiple highly correlated candidate
causal variants remain. In this respect, analysis of the haplotypes
that are present in a particular population and evaluation of their
association with breast cancer risk may provide another strategy
for exclusion of non-causal SNPs within an iCHAV (Chatterjee
et al., 2009).

The purpose of fine-scale mapping is to identify the number
of iCHAVs underlying GWAS-identified risk loci and reducing
the number of candidate causal variants in these iCHAVs to
a minimum. In practice, this reduction does not directly lead
to identification of the single causal variant responsible for
this risk due to several of the reasons described above. Either
way, whether only one, a few or many candidate causal SNPs
remain, in the next phase the candidate causal variants need
to be validated or further reduced by elucidating the functional
mechanism through which these variants operate. First, overlap
between the candidate causal variants and regulatory sequences
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such as transcription factor (TF) binding sites, histone marks
or regions of open chromatin is evaluated in silico. In addition,
expression quantitative trait loci (eQTL) studies are performed in
order to identify the genes that are deregulated by the candidate
causal variants. The hypotheses for the functional mechanisms
by which the candidate causal SNPs confer breast cancer risk are
then further tested by molecular experiments in in-vitro model
systems.

IN-SILICO PREDICTION OF FUNCTIONAL
MECHANISMS

The vast majority of GWAS-identified SNPs are not protein-
coding and are located in intronic or intragenic regions, or even
in gene deserts (www.genome.gov/gwastudies). Their underlying
causal variants usually have a regulatory role by modulating
the expression of target genes or non-coding RNAs (ncRNAs).
Therefore, causal variants usually coincide with regulatory
regions associated with open chromatin, TF binding sites, sites of
histone modification or chromatin interactions (Table 1) (Meyer
et al., 2008, 2013; Stacey et al., 2010; Udler et al., 2010a; Beesley
et al,, 2011; Cai et al., 2011a; Bojesen et al., 2013; French et al.,
2013; Ghoussaini et al., 2014, 2016; Quigley et al., 2014; Darabi
et al,, 2015, 2016; Glubb et al, 2015; Guo et al,, 2015; Lin
et al,, 2015; Orr et al,, 2015; Dunning et al., 2016; Hamdi et al.,
2016; Lawrenson et al., 2016; Shi et al., 2016; Sun et al., 2016;
Wyszynski et al., 2016; Zeng et al,, 2016; Betts et al., 2017;
Helbig et al, 2017; Michailidou et al., 2017). Mining public
data for these regulatory features can be an effective way to
narrow down the list of candidate causal variants after fine-scale
mapping. Furthermore, to determine which candidate causal
SNPs affect gene expression, eQTLs can be evaluated. Besides
narrowing down the list of candidate causal variants, these in
silico predictions, additionally, provide clues about the functional
mechanisms involved, which will guide the design of molecular
experiments.

Regulatory Features

A wealth of data is publically available regarding regulatory
features throughout the genome. Via ENCODE (https://www.
encodeproject.org/), data on locations of open chromatin, TF
binding sites, DNA methylation, RNA expression and histone
modifications can be retrieved (Djebali et al.,, 2012; ENCODE
Project Consortium, 2012; Neph et al, 2012; Sanyal et al,
2012; Thurman et al,, 2012). The NIH Roadmap Epigenomics
project  (http://www.roadmapepigenomics.org/) contains
data on locations of open chromatin, DNA methylation and
histone modifications (Kundaje et al., 2015; Zhou et al., 2015).
In addition, Nuclear Receptor Cistrome (http://cistrome.
org/NR_Cistrome/index.html) also has information on TF
binding locations. Using FunctiSNP (http://www.bioconductor.
org/packages/release/bioc/html/FunciSNP.html), RegulomeDB
(http://www.regulomedb.org/) and HaploReg (http://archive.
broadinstitute.org/mammals/haploreg/haploreg.php) these
sources of information can be mined allowing the prediction
of putative regulatory regions (PREs) within an iCHAV (Boyle

et al., 2012; Coetzee et al., 2012; Ward and Kellis, 2012). The
long range chromatin interactions that these PREs may establish
can subsequently be assessed via GWAS3D (http://jjwanglab.
org/gwas3d) and the 3D Genome Browser (http://promoter.bx.
psu.edu/hi-¢/) providing clues about the target genes or ncRNAs
that could be deregulated (Li et al., 2013a; Yardimci and Noble,
2017).

Interestingly, several regulatory features appear to be enriched
among GWAS-identified breast cancer risk loci, such as TF
binding sites for ERa, FOXA1, GATA3, E2F1, and TCF7L2,
but also H3K4Mel histone marks as well as regions of open
chromatin marked by DNAse I hypersensitivity sites (DHSSs)
(Cowper-Sal lari et al., 2012; Michailidou et al., 2017). It is
important to keep in mind, however, that despite of the wealth
of data available, these data sources harbor information for only
a fraction of the TFs present in the human proteome. This means
that other regulatory features, which we are currently unable
to evaluate, may also play an important role in mediating the
susceptibility to breast cancer. Moreover, TFs, as well as histone
marks and chromatin interactions, are highly tissue specific and
it will therefore be crucial to evaluate these regulatory features
in the proper tissue type or cell line to prevent either false
positive or false negative associations. In order to obtain a more
comprehensive understanding of the mechanisms underlying
breast cancer predisposition, we thus need cistrome data on more
TFs from more tissue types.

Still, mining of the currently available data has facilitated the
identification of causal variants and/or functional mechanisms
for several of the identified GWAS-identified loci (Meyer et al.,
2008, 2013; Udler et al., 2010a; French et al., 2013; Ghoussaini
et al,, 2014, 2016; Quigley et al., 2014; Darabi et al., 2015; Glubb
et al.,, 2015; Guo et al,, 2015; Orr et al,, 2015; Dunning et al.,
2016; Hamdi et al., 2016; Lawrenson et al., 2016; Shi et al., 2016;
Zeng et al., 2016; Helbig et al., 2017; Michailidou et al., 2017).
Combining information on regulatory features from candidate
causal variants with eQTLs will further narrow down the list of
candidate variants, identify target genes and provide a starting
point for subsequent in-vitro molecular experiments.

eQTLs

eQTLs are variants that control gene expression levels and are
therefore found in regulatory regions in the genome. Evidence for
a candidate causal variant to be associated with gene expression
can be obtained from eQTL studies. In an eQTL study, the
presence of a correlation between expression levels of potential
target genes and the genotypes of the candidate causal variants
is evaluated in an unbiased manner. Two types of eQTL studies
are generally distinguished based on the distance of the gene
from the candidate SNP. In cis-eQTL studies, the target genes
being evaluated are in close proximity to the candidate causal
variant, usually within 1 to 2 megabases. For trans-eQTL studies,
all genes outside this region, thus also on other chromosomes,
are subjected to evaluation (Cheung and Spielman, 2009). Far
more genes are thus tested for correlation with candidate causal
variants in trans-eQTL analyses than cis-eQTL analyses and,
consequently, trans-eQTL studies require far more statistical
power than cis-eQTL studies. It is therefore that in most of
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the post-GWAS analyses only cis-eQTL analysis is performed.
Moreover, besides gene expression, eQTLs can also influence
the expression of ncRNAs, mRNA stability, differences in allelic
expression and differential isoform expression (Ge et al., 2009;
Lalonde et al., 2011; Pai et al., 2012; Kumar et al., 2013).

SNPs that are located in regulatory regions of genome show a
higher tissue specificity and it is therefore no surprise that eQTLs
in GWAS-identified regions also display high tissue specificity
(Dimas et al.,, 2009; Fu et al, 2012). Consequently, choice of
tissue type in an eQTL study is critical to prevent false positive
or false negative associations. The most obvious choice is the
target tissue under investigation. For breast cancer, this can be
either normal breast tissue or breast tumor tissue. In this respect,
the cancer genome atlas (TCGA; https://cancergenome.nih.gov/),
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC; http://www.ebi.ac.uk/ega/) and Genotype Tissue
Expression (GTEx; https://gtexportal.org/home/) are valuable
resources (Cancer Genome Atlas Network, 2012; Curtis et al.,
2012; Battle et al., 2017). However, eQTL studies in breast
cancer tissue are confounded by the presence of copy number
variation, somatic mutations and differential methylation that
influence gene expression levels. Therefore, eQTLs are ideally
evaluated in normal breast tissue. Unfortunately, availability of
both genotyping and gene expression data for normal breast
tissue is limited as compared with breast tumor tissue, resulting in
lower statistical power in eQTL analyses. Alternatively, for breast
tumor analyses, gene expression data could also be adjusted for
somatic CNVs and methylation variation (Li et al.,, 2013b). In
addition, it should also be considered that the tumor micro-
environment plays an important role in the development of
breast cancer and that expression levels deregulated in stroma or
immune cells might also be relevant.

It is important to treat the identification of eQTLs with some
caution. False positives and false negatives could be a result from
choosing the incorrect tissue type. In six post-GWAS studies
to date an eQTL association was observed and an attempt was
made to validate these results with luciferase reporter assays
(Meyer et al., 2008; French et al., 2013; Ghoussaini et al., 2014,
2016; Dunning et al., 2016; Lawrenson et al., 2016). For GWAS-
identified risk loci at 2q35 and 5p12, luciferase reporter assays
did not confirm the eQTL association, whilst this was the case
for eQTL associations at 6q25.1, 10926, 11q13, and 19q13.1
(Table 1). In addition, when evaluating cis-eQTLs, false negative
results could also imply that more distant eQTLs are involved.
Moreover, since causal variants from different iCHAVs within
a GWAS-identified region can influence the same target gene
(Bojesen et al.,, 2013; French et al., 2013; Glubb et al., 2015;
Dunning et al., 2016; Lawrenson et al., 2016), eQTLs may remain
undetected. For example, in the post-GWAS study by Glubb et al.
at the 5q11.2 locus, PRE-A downregulated MAP3K1, whereas
PRE-B1 and PRE-C upregulated MAP3KI expression although
no eQTL associations were identified (Glubb et al.,, 2015).
Similarly, Lawrenson et al. studied the GWAS-identified breast
cancer risk locus at 19p13.1 and noticed PRE-A downregulating
ANKLE] and PRE-C upregulating ANKLEI expression, while
no eQTL association was detected. Interestingly, at this same
locus three PREs regulating ABHDS all upregulated its expression

and consistent with this 13 eQTL associations were detected
of which one was allele-specific (Lawrenson et al., 2016). Thus,
absence of an association does not necessarily imply trans-eQTL
associations. For the above reasons, additional in vitro molecular
experiments are necessary to confirm the results from eQTL
studies, but also from the in silico predictions of regulatory
features and chromatin interactions.

A recently developed tool that is also of interest to predict
target genes from GWAS-identified breast cancer risk loci is
INQUISIT (integrated expression quantitative trait and in silico
prediction of GWAS targets) which combines both regulatory
features and eQTL data from publically available resources
(Michailidou et al., 2017). Interestingly, INQUISIT predicted
target genes for 128 out of 142 GWAS-identified breast cancer
risk loci and among the 689 target genes a strong enrichment
was observed for breast cancer drivers. Furthermore, pathway
analysis of these genes revealed involvement of fibroblast
growth factor, platelet-derived growth factor and Wnt signaling
pathways to be involved in genetic predisposition to breast cancer
as well as the ERK1/2 cascade, immune response and cell cycle
pathways (Michailidou et al., 2017). However, the expression of
breast cancer driver genes is not necessarily deregulated in the
same direction by the germline variants as by somatic mutations.
For example, MAP3K1 is upregulated and CCNDI and TERT
are downregulated in the germline. This is in contrast with
breast tumors, where MAP3K1 is downregulated and CCND1I and
TERT are upregulated by somatic mutations (Bojesen et al., 2013;
French et al., 2013; Glubb et al., 2015).

IN-VITRO FUNCTIONAL EXPERIMENTS

After in silico prediction of regulatory features and the
identification of putative target genes, results should be validated
by molecular experiments and the working hypotheses of the
mechanistic model should be tested. The model system for
these molecular experiments are commonly normal breast or
breast cancer cell lines. This is because cell lines can easily be
maintained and manipulated. Furthermore, they represent an
unlimited source of cells and are generally well characterized
(Hollestelle et al., 2010a). The advantage of breast cancer cell
lines is that many are available with different characteristics,
however, as with eQTL analysis, CNVs, somatic mutations and
methylation may be confounding the results of the experiments.
Furthermore, for studying the effects of germline variants in
breast cancer predisposition and considering that these are likely
early events in tumorigenesis, normal breast cell lines seem the
obvious choice. Currently two normal breast cell lines have been
used in post-GWAS analysis, MCF10A and Bre-80 (Darabi et al.,
2015; Glubb et al., 2015; Dunning et al., 2016; Ghoussaini et al.,
2016; Lawrenson et al., 2016; Betts et al., 2017; Helbig et al., 2017).
Both normal breast cell lines are, however, ER-negative which
may not be the best model system for studying candidate causal
variants in iCHAVs that are only associated with ER-positive
breast cancer. Because of tissue specificity the compromise would
therefore be to at least use one normal breast cancer cell line and
two breast cancer cell lines, one ER-positive and one ER-negative.
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Chip Assays and EMSA

In order to validate the in silico predictions of regulatory
functions, such as TF binding to a candidate causal SNP or PRE,
but also its allele-specific binding, two different techniques can be
used. The first is a chromatin immunoprecipitation (ChIP) assay
in which antibodies are used to enrich DNA fragments bound
by one specific protein. The ChIP is subsequently followed by
either sequencing, a qPCR or an allele-specific PCR to identify
where a particular TF binds and whether this is allele-specific
(Collas, 2010). The second is an electrophoretic mobility shift
assay (EMSA) in which a protein or protein extract is mixed
with a particular DNA fragment and incubated to allow binding.
This mixture is subsequently separated by gel electrophoresis
and compared to the length of the probe without protein. When
protein binds to the DNA fragment, this results in an upward shift
of the gel band. Although this does not provide any clue about the
proteins involved in binding the DNA fragment, this assay can be
adapted to a super shift assay by adding antibodies against TFs of
interest to the protein-DNA mixtures (Hellman and Fried, 2007).
The advantage of ChIP assays is that they produce reliable
results for assessing allele-specific binding of TF, in contrast
to EMSAs. However, ChIP assays are relatively expensive and
the resolution for determining the binding site is low (Edwards
et al.,, 2013). In the post-GWAS analysis at 6q25.1 by Dunning
et al. both EMSAs and ChIP assays were performed (Table 1).
In this study, a total of five iCHAV's were identified containing
26 candidate causal variants using fine-scale mapping. In silico
analyses showed that 19 of these candidate causal variants were
located in DHSSs. Then, using EMSAs, 11 of these 19 variants
were shown to alter the binding affinity of TFs in vitro. In the
end, the TF identity for four of these candidate causal variants
could be established and they appeared to be GATA3, CTCFE, and
MYC. With ChIP, the authors then confirmed GATA3 binding to
iCHAV3 SNP rs851982. Moreover, CTCF binding was enriched
at the common allele of iCHAV4 rs1361024, suggesting allele-
specific binding of CTCF at this locus (Dunning et al., 2016).

3C and ChlA-PET

To validate in silico predictions of chromatin interactions or to
confirm results from eQTL studies, molecular experiments such
as chromatin confirmation capture (3C) can be performed. Using
3G, loci that are physically associated through chromatin loops
are ligated together and these ligation products can subsequently
be quantified using qPCR (Dekker et al., 2002). In addition,
the ligation products can also be sequenced. This way, allele-
specific chromatin interactions can be identified. For validating
specific chromatin interactions, 3C is a very suitable technique as
shown by its wide use in post-GWAS studies (Table 1). However,
there are of course also some disadvantages to 3C. One of these
is that the background is high at short distances between the
two interacting loci. Consequently the two loci under evaluation
should be further than 10kb apart (Monteiro and Freedman,
2013). For instance, in the post-GWAS study at the 19p13 region
by Lawrenson et al, only five from the 13 candidate causal
variants could be evaluated due to the close proximity of these
variants to their target gene, ANKLEI (Lawrenson et al., 2016).
Usually, this however does not present a problem, since three

quarters of distal PREs influences a gene that is not the nearest
one (Sanyal et al., 2012).

Another technique that is important to mention in this respect
is chromatin-interaction analysis by paired-end tag sequencing
(ChIA-PET). This is an adaptation of the original 3C technique
allowing the detection of chromatin interactions bound by a
specific protein, using an antibody (Fullwood et al, 2009).
Usually, ChIA-PET experiments are not specifically performed
for each separate post-GWAS study. Because the data is genome-
wide, it is usually mined from databases containing interactomes
for the most common TFs and histone marks such as ER,
CTCE RNA polymerase IT and H3K4Me2. As with the publically
available data from cistromes, as discussed earlier, having ChIA-
PET data from more cell types and more TFs will improve upon
the value of these data for the research community.

Luciferase Reporter Assays and
CRISPR/Cas9 Genome Editing

By now, having compiled all in silico data and data from
molecular experiments, a working hypothesis should be
established of how the candidate causal variants confer breast
cancer risk. This model includes which candidate causal variant
via what TF can modulate gene expression of that particular gene
via chromatin interaction. The last step is then usually to conduct
luciferase reporter assays in order to confirm this hypothesis and
assess what impact the candidate causal variants have on the
promoter of that target gene, either enhancing or repressive.

In luciferase reporter assays, PREs are cloned into a reporter
construct that expresses the luciferase cDONA when the promoter
of interest is activated (Gould and Subramani, 1988; Williams
etal., 1989; Fan and Wood, 2007). It is common to first establish a
baseline for luciferase expression from the wild-type PREs. After
that, PREs containing the risk allele or risk haplotype for one or
more candidate causal variants are assessed, usually per PRE or
per iCHAV. Depending on the levels of luciferase expression after
introduction of the risk allele(s), an enhancing or repressive effect
can be determined. Moreover, by varying the size of the PREs in
subsequent experiments the boundaries of the PRE can be better
defined. As discussed before, again the choice of cell type is also
relevant here as well as the choice of promoter to use.

For most of the post-GWAS breast cancer risk loci,
luciferase reporter assays were performed to confirm the working
hypothesis for the functional model (Table 1) (Meyer et al., 2008;
Beesley et al., 2011; Cai et al., 2011b; Bojesen et al., 2013; French
et al.,, 2013; Ghoussaini et al., 2014, 2016; Darabi et al., 2015;
Orr et al.,, 2015; Dunning et al., 2016; Lawrenson et al., 2016;
Betts et al., 2017; Helbig et al., 2017; Michailidou et al., 2017).
However, at the 2q35 locus in the study by Ghoussaini et al., the
PRE did not influence IGFBP5 expression despite positive 3C and
eQTL results (Ghoussaini et al., 2014). Similarly, at 5q12, the risk
allele of a candidate causal variant had no effect on expression
of predicted target genes FGF10 and MRPS30 (Ghoussaini et al.,
2016).

An alternative method to study the effects of a (candidate
causal variant in a) PRE is the Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR)/CRISPR associated (Cas)9
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gene editing system, which was first discovered in bacteria
(Wiedenheft et al., 2012). Using CRISPR/Cas9 it has now
become possible to, reliably and efficiently, introduce precise
mutations in the human genome (Jinek et al., 2012). This gene
editing technique makes use of a guide RNA (gRNA) that is
complementary to the genomic region to be edited and a Cas9
enzyme that is guided by the gRNA to generate a double strand
break (DSB) at this genomic region. The generated DSB can
subsequently be repaired by either the non-homologous end
joining pathway, which generally produces random insertions or
deletions or by the homologous recombination repair pathway
when a homology arm with the mutation of interest is co-
transfected into the cells (Salsman and Dellaire, 2017). The
latter pathway is able to generate specifically targeted mutations.
At the 19pl13.1 breast cancer locus this technique was used
to generate a 57 base pair deletion containing the candidate
causal SNP rs56069439. Lawrenson et al. showed a reduced
ANKLEI, but not ABHD8 or BABAMI1 expression as a result
of this deletion (Lawrenson et al., 2016). A modified version
of the Cas9 enzyme was used in the post-GWAS study by
Betts et al. to silence PRE1 at 11ql3, resulting in reduced
CUPID1, CUPID2 and CCNDI expression (Betts et al., 2017).
This nuclease-deficient Cas9 (dCas9) enzyme binds the target
genomic region, but does not cleave the DNA. By fusion
of dCas9 to various effector domains, CRISPR/Cas9 can be
modified to a gene silencing or activation tool (Dominguez et al.,
2016).

Interestingly, an average PRE has been predicted to regulate
two or three different target genes (Sanyal et al., 2012). From the
post-GWAS studies to date, evidence has now been presented
for this at only 4 out of the 22 GWAS-identified breast cancer
risk loci: 6q25.1, 10q21, 11q13, 19p13.1 (French et al, 2013;
Darabi et al., 2015; Dunning et al., 2016; Lawrenson et al., 2016;
Betts et al., 2017), which might suggest that maybe not all target
genes have been identified yet at every locus investigated so far.
Also considering the GWAS-identified breast cancer risk loci for
which no post-GWAS analysis has been performed yet, there is
still much work ahead.

Although the majority of the post-GWAS studies have
followed this general pipeline for elucidating the functional
mechanisms, one important step is still missing. Namely,
evaluating of the tumorgenicity of the causal variants and the
target genes in in vitro and in-vivo model systems, such as
normal breast cancer cells or mice. Discovery of the genome-
editing technique CRISPR/Cas9 has greatly enhanced our
capabilities for taking this next step. Not only, because of the
precision of this gene editing tool, but also because it allows
for simultaneous genome-edits (Cho et al, 2013). However,
there are certainly some challenges on this path and simply
showing that the target gene is tumorigenic in an in vitro
or in vivo model system is not sufficient, as it does not tie
the germline variant to breast tumorgenicity. More subtle gene
editing is necessary, and the question remains, whether this
will always give a phenotype, since cancer risks conferred by
these germline variants is low. This will probably be one of the
biggest issues besides choosing the appropriate model system or
animal.

DISCUSSION

In addition to the more than 170 GWAS-identified loci associated
with breast cancer risk, 22 of these loci have been studied in more
detail by post-GWAS analysis (Table 1). So far, the functional
mechanism that candidate causal variants seem to make use of
are mainly on the transcriptional level and deregulating target
genes. In addition, the target genes involved do not seem to be
specifically involved in DNA damage repair, like for high- and
moderate-penetrant breast cancer risk genes, instead, somatic
breast cancer drivers also appear to be enriched (Michailidou
et al.,, 2017). Furthermore, the mechanisms that these causal
variants use to confer breast cancer risk, are probably more
complex than we anticipated, with often several iCHAVs at a
GWAS-identified locus and some of them being able to regulate
multiple target genes or ncRNAs (Table 1). Although we are
not even half way this challenge, the availability of data on
regulatory features, chromatin interactions and gene expression
as well as the development of bioinformatics tools is definitely
accelerating the process. However, in the future we could still
benefit from more cistrome and interactome data on more TFs
and on different cell types, especially normal breast cells. To
facilitate more effective fine-scale mapping, more and larger case-
control studies from African ancestry are necessary to benefit
from the more structured LD in this population. Finally, we could
also benefit from more paired genotype and gene expression data
from normal breast samples for eQTL analysis as well as a variety
of different normal breast epithelial cell-type models.

Regarding the GWAS-identified loci itself, it is obvious that
more lower-risk variants predisposing to breast cancer risk still
exist (Michailidou et al., 2017), however, again, larger sample
sizes, especially for ER-negative breast cancer, as well as new
statistical models to asses GWAS SNPs tagging causal variants
with lower allele frequencies and smaller effect sizes are necessary
(Fachal and Dunning, 2015). Interestingly, at the same time
researchers are making use of alternative methods to identify
novel breast cancer risk loci, which are mostly based on the
same regulatory features that are also involved in exerting their
biological function. Some of these features are gene expression,
methylation and TF binding (Shenker et al., 2013; Xu et al., 2013;
Anjum et al., 2014; Severi et al., 2014; van Veldhoven et al., 2015;
Ambatipudi et al., 2017; Hoffman et al., 2017; Liu et al., 2017;
Wu et al,, 2018). In fact, the risk allele at 4q21 identified by
Hamdi et al. was not discovered from GWAS, but from mapping
SNPs associated with allele-specific gene expression in cancer-
related pathway genes. The SNPs which were discovered in one
dataset then act as proxies for allele specific expression and were
evaluated for association with breast cancer risk in a second large
GWAS study. Because the number of SNPs evaluated is reduced
significantly as compared with GWAS, these type of analyses
have more power and could thus identify lower risk alleles
(Hamdi et al., 2016). These studies are called transcriptome-
, epigenome- and phenome-wide association studies (TWAS,
EWAS, and PheWAS) for gene expression features, methylation
features and phenotypic features respectively. Interestingly, in the
largest breast cancer TWAS to date, the expression levels of 48
genes were shown to be associated with breast cancer risk, of
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which 14 were novel and 34 were associated with known loci.
However, 23 of these 34 genes were not previously identified
as targets of GWAS-identified risk loci (Wu et al., 2018). This
demonstrates that these types of studies are capable of identifying
novel breast cancer risk loci, as well as validating previous
GWAS-identified loci. EWASs, however, have not yet been very
successful in identifying breast cancer risk loci associated with
epigenetic changes, which is most likely a result of small sample
sizes in these studies (Johansson and Flanagan, 2017). Finally, a
recent PheWAS on multiple cancers, including breast cancer, has
shown that using trait-specific PRS instead of single variants leads
to improvement of the trait prediction power (Fritsche et al.,
2018). In addition to these approaches, pathway-based analyses
created to identify SNP-SNP interactions also open new avenues
for identifying novel breast cancer risk SNPs and their interactors
(Wang et al,, 2017).

In this review, we have discussed the findings and lessons
learned from post-GWAS analyses of 22 GWAS-identified risk
loci. Identifying the true causal variants underlying breast cancer
susceptibility provides better estimates of the explained familial
relative risk thereby improving polygenetic risk scores (PRSs).
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