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Elucidating the underlying genetic drivers of production traits in agricultural and
aquaculture species is critical to efforts to maximize farming efficiency. “Omics”
based methods (i.e., transcriptomics, genomics, proteomics, and metabolomics) are
increasingly being applied to gain unprecedented insight into the biology of many
aquaculture species. While the culture of penaeid shrimp has increased markedly,
the industry continues to be impeded in many regards by disease, reproductive
dysfunction, and a poor understanding of production traits. Extensive effort has been,
and continues to be, applied to develop critical genomic resources for many commercially
important penaeids. However, the industry application of these genomic resources,
and the translation of the knowledge derived from “omics” studies has not yet been
completely realized. Integration between the multiple “omics” resources now available
(i.e., genome assemblies, transcriptomes, linkage maps, optical maps, and proteomes)
will prove critical to unlocking the full utility of these otherwise independently developed
and isolated resources. Furthermore, emerging “omics” based techniques are now
available to address longstanding issues with completing keystone genome assemblies
(e.g., through long-read sequencing), and can provide cost-effective industrial scale
genotyping tools (e.g., through low density SNP chips and genotype-by-sequencing) to
undertake advanced selective breeding programs (i.e., genomic selection) and powerful
genome-wide association studies. In particular, this review highlights the status, utility
and suggested path forward for continued development, and improved use of “omics”
resources in penaeid aquaculture.

Keywords: penaeid shrimps, omics, advanced breeding, aquaculture, genome assembly, linkage mapping,
functional genomics, molecular markers
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BACKGROUND

The application of “omics” based technologies has provided
unprecedented insight into the genetic and functional biology
of livestock and crop species, and when integrated within
selective breeding programs, “omics” techniques have facilitated
significant and continued improvements in productivity
(Dekkers, 2012; Pérez-de-Castro et al, 2012). In particular,
“omics” approaches, including genomics, transcriptomics,
proteomics, and metabolomics, have been applied widely to
elucidate the molecular basis of performance traits (e.g., growth)
and overcome poorly understood biological impediments that
prevent efficient production (e.g., disease, reproductive failure,
and undesired carcass composition) (Rothschild and Plastow,
2008; Taylor et al., 2016). Harnessing genomic information
in Holstein Friesians (Bos taurus), for example, has led to a
doubling of the annual rate of improvement in milk production
(Garcia-Ruiz et al., 2016; Taylor et al., 2016), while in layer (egg
producing) chickens (Gallus gallus domesticus), 16 production
traits (i.e., egg size, egg color, and age of sexual maturity) have
all seen significant improvements through the application of
genomic breeding methodologies (Wolc et al., 2015; Meuwissen
et al.,, 2016). Numerous genetic tests, built upon genomic and
transcriptomic research, are now also available for use for
commercial applications (e.g., average daily gain, intramuscular
fat marbling, meat tenderness, congenital defect screening)
in livestock species (Dekkers, 2004). Through these “omics”
based tests it has been possible for many industries to vastly
improve the identification and selection of superior individuals
for breeding programs (Dekkers, 2012; Pérez-de-Castro et al.,
2012; Taylor et al., 2016).

The transformational effects that “omics” research has had
on the production of plant and livestock industries is widely
acknowledged (see reviews Agrawl and Narayan, 2015; Van
Emon, 2015; Taylor et al., 2016). As a result, similar efforts to
utilize “omics” techniques to improve farmed aquatic species is
anticipated to achieve significant improvements to aquaculture
production as well (Gjedrem and Rye, 2016). While most
terrestrial food production species have already undergone
decades of traditional selection, most aquaculture species have
only recently been domesticated, with few having been improved
through targeted selection programs. In stark contrast to
livestock industries, less than 10% of aquaculture production
is derived from improved lines (Gjedrem et al.,, 2012). While
the relatively young nature of aquaculture and the scale of the
industry has constrained “omics” resource development, this
also means the latent natural variation of many species and the
genetic potential for increased productivity remains unharnessed
(Mackay et al., 2009).

Of the aquatic taxa cultured for food worldwide, crustaceans
are the fourth most produced aquaculture commodity by weight
per year (6.9 million tons), behind finfish (49.8 million tons),
marine plants (27.3 million tons), and bivalves (19 million tons)
(FAO, 2016). Yet by economic value, crustaceans are the second
highest farmed seafood commodity with an annual production
value exceeding US$ 35 billion (i.e., ~$5,072 per ton), only
surpassed by finfish with an annual economic value of US$ 60
billion (i.e., ~$1,205 per ton) (FAO, 2016). While crustaceans

are diverse in species number, penaeid marine shrimp (Family;
Penaeidae) are the predominately cultured group, with an
annual production exceeding 4.8 million tons (FAO, 2017).
Of the species farmed, Pacific white-leg shrimp (Litopenaeus
vannamei) and black tiger shrimp (Penaeus monodon) are the
primary species cultured, accounting for 80% (~3.9 million
tons) and 15% (~0.7 million tons) of total penaeid shrimp
production, respectively. The remaining 5% (~0.25 million tons)
of production are cumulatively provided by kuruma shrimp
(Marsupenaeus japonicus), Chinese shrimp (Fenneropenaeus
chinensis), banana shrimp (Fenneropenaeus merguiensis), Indian
shrimp (Fenneropenaeus indicus), and blue shrimp (Litopenaeus
stylirostris).

The global penaeid aquaculture industry has demonstrated
remarkable growth, increasing in production from a meager
71 tons in the early 1980%, to 4.8 million tons in 2015
(FAO, 2017). Despite the industry’s impressive growth, it
has faced substantial challenges that still often constrain
production. Decades of unsustainable reliance on wild sourced
broodstock (for P. monodon in particular) (Benzie, 2009), a poor
understanding of the biological and genetic basis of production
traits (Dunham, 2011), a limited ability to maintain pedigree
traceability and a number of devastating global disease outbreaks
(Benzie, 2009; Lio-Po and Leano, 2016), have all impeded
industry development. Nevertheless, penaeid shrimp aquaculture
is perfectly placed to take advantage of the rapidly emerging suite
of “omics” techniques that now provide the capacity to explore
and address many of the key impediments faced by the industry
(Liu, 2007; Gjedrem and Rye, 2016). As such, in a similar manner
seen for agriculture, the field of penaeid “omics” is now rapidly
evolving, fuelled by industry demand for high quality stock,
decreased disease risk and improved productivity (Debnath et al.,
2016). Furthermore, improvements in breeding techniques and a
swell in industry critical mass through increasing centralization
of breeding programs (Benzie, 2009) have coalesced to drive
the development of critical “omics” resources for each of the
commercially important penaeid shrimp species (Abdelrahman
etal., 2017).

This review focuses on the “omics” tools, in particular
genomic, transcriptomic, and proteomic resources, that have
been developed for penaeids. Specifically, this includes a review of
the state of genome sequencing and mapping (linkage, physical,
and optical mapping), genomic marker development, functional
genomics (transcriptomics and proteomics), and trait mapping
studies for penaeid shrimp. This review also provides rationale
for the implementation of emerging research methods (e.g.,
long-read sequencing, high-throughput optical mapping and
genotype-by-sequencing), along with suggested approaches to
improve the accessibility and application of “omics” tools within
the global penaeid aquaculture industry.

SEQUENCING, ASSEMBLING, AND
MAPPING COMPLEX GENOMES

Whole-Genome Sequencing
Comprehensive and complete genomic assemblies are often
regarded as the keystone “omics” resource for a species due
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to the significant nucleotide position information they convey,
and the ability to leverage genomic data throughout a large
variety of further applications. For example, genome assemblies
provide a reference base for functional transcriptomic studies,
can aid in the positioning of genetic markers, and allow for
the examination and characterization of genomic regions of
commercial or biological interest. While genomic assemblies are
available for a number of aquaculture species [e.g., Oncorhynchus
mykiss (Berthelot et al., 2014); Oreochromis niloticus (Conte et al.,
2017); Lates calcarifer (Vij et al., 2016); Ictalurus punctatus (Liu
et al,, 2016); Salmo salar (Lien et al., 2016)], the comparatively
large size (~1.8 Gbp L. vannamei, ~2.2 Gbp P. monodon) and
the highly repetitive nature of penaeid genomes have presented
a significant challenge to their assembly (Huang et al., 2011;
Baranski et al.,, 2014; Yu et al, 2015). Likewise, the assembly
of penaeid genomes has been further impeded by their large
chromosome number (n = 44; Table 1) and higher levels of
genomic heterozygosity (Abdelrahman et al., 2017) than genomes
assemblies derived from inbred domesticated lines of livestock
species such as G. gallus (International Chicken Genome
Sequencing, 2004) or model organisms [e.g., Mus musculus
(Mouse Genome Sequencing, 2002)]. Despite a number of long
standing efforts by numerous research groups (Abdelrahman
et al,, 2017), no comprehensive genome assembly is available for
a penaeid shrimp.

While genome sequencing efforts have seen dramatic
improvement through the development of high-throughput
sequencing, the task of resolving, and assembling the many
repetitive regions within the penaeid genome (~80%;
Abdelrahman et al., 2017) remains particularly challenging.
Short read second-generation sequencing methods (i.e., Illumina
HiSeq) involve the fragmentation of the genome into millions
of 50-300 bp fragments, through which most genome positional
based information is lost prior to sequencing. For non-complex
genomes, these short sequences can be reconstructed iteratively
into near complete chromosomal sections (contigs or scaffolds)
by identifying and overlaying sequences that partially overlap
each other. However, when short read sequencing methods are
applied to highly repetitive regions within the genome, 50-300
bp fragments are of insufficient length to span the repeat regions,
resulting in a break down in the iterative tiling approach. This
difficultly in building contiguous sequences is exacerbated by
diploid genomes with high levels of heterozygosity [e.g., Ciona
savignyi (Small et al., 2007)] as each multiple assembly paths
(each representing one chromosomal copy) cannot be resolved
and are either reported as two unique sequences or erroneously
joined adjacently to each other (Henson et al., 2012; Pryszcz
and Gabaldén, 2016). This effect is evident in the previous
short-read assembly by Yu et al. (2015) for L. vannamei, in
which a de-novo assembly of 80-100 bp fragments (at ~41x
coverage) resulted in highly fragmented assembly with 4,336,336
scaffolds and maximum scaffold size of only 38,588 bp (Table 1;
Yu et al., 2015). Likewise, early P. monodon assemblies of 250 bp
fragments (~68x coverage) have resulted in 1,168,065-3,064,940
contigs (averaging 1,510 bp in length), and with a maximum
contig size of 21,136-45,736 bp depending on the bioinformatics
approach used for assembly (Table 1; Montenegro et al., 2018).

Recently, a number of genome assemblies, including those of
the Peruvian scallop (Argopecten purpurtatus; Li et al., 2018) and
for the agricultural crop Capsicum annuum (bell-peppers; Hulse-
Kemp et al., 2018) have included sequencing data from the novel
10X Chromium platform (10X Genomics) in an effort to decrease
ambiguities during genome reconstruction. The preparation of
10X Chromium libraries involves individual barcoding of high-
molecular weight DNA fragments (up to 1 million unique
barcodes), prior to traditional short-read sequencing. Finally,
the 10X Genomics assembler, Supernova, generates an initial
global De Brujin graph before utilizing the individual barcoding
information to confirm that reads forming each contig are
physically linked, and where possible, barcoding information
is used to resolve uncertainties (branches, bubbles, and gaps)
along each assembled contig (Weisenfeld et al., 2017). However,
as Supernova in the first instance still relies upon an iterative
sequence-read overlapping approach, difficulties still persistent
in assembly of non-model species, or those with complex
genomes. For example, early observations from the generation of
a 10X Chromium assembly for P. monodon has seen Supernova
repeatedly fail to reach completion (Montenegro et al., 2018),
and suggests this approach may not be successful in resolving
the extremely high repetitiveness of penaeid genomes. However,
future improved versions of assembly algorithms may allow
increase utility of this method for complex non-model species.
Likewise, while the additional genome sequencing approach,
chromosome conformation capture (Hi-C or ChIP-seq), has been
used to improve genome assemblies for goat (Capra aegarus
hircus) (Bickhart et al., 2017) and maize (Zea mays) (Jiao et al.,
2017), but requires access to a draft genome which already
has a relatively large average size (100kb; Oddes et al., 2018)
for effective short read mapping and further improvement of
genome scaffolding (Forcato et al., 2017).

As with many species, the traditional genome assembly
methods that were initially employed for penaeids have
required subsequent amendment to overcome the current
difficulties of producing a comprehensive genome assembly.
In particular, third-generation sequencing technologies (i.e.,
Pacific Biosciences Sequel, Nanopore MinION) which generate
much longer sequencing reads (mean length over 10 kbp),
are increasingly being utilized to improve the accuracy and
completeness of genome assemblies in many plant and livestock
species [e.g., pineapple, Ananas comosus (Ming et al., 2015);
rice, Oryza sativa (Brozynska et al., 2016); and goat, C. a. hircus
(Bickhart etal., 2017)]. Even more so, recent improvements in the
sequencing chemistry, rate of throughput and accuracy of base
calling have allowed the more cost effective generation of large
volumes of long read data (e.g., 30-50x coverage, with an average
~10kb read length; Phillippy, 2017). As such, aquaculture species
are now looking toward long read sequencing technologies
(LRSTs) to resolve the assembly of repetitive and complex
genomes (i.e., Nile tilapia, barramundi, channel catfish, Atlantic
salmon) (Liu et al., 2016; Vij et al., 2016; Conte et al., 2017). LRSTs
have most notably helped to achieve a near chromosomal-scale
assembly of the large Atlantic salmon genome, which contains
complex remnants of three separate whole-genome duplication
events (Lien et al., 2016).
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Recently published details of the ongoing effort to complete
the L. vannamei have noted the contig N50 (minimum contig
length to cover 50% of the genome) has been reported
(Abdelrahman et al., 2017) to have increased from 547 to 660,000
bp and the total number of scaffolds decreased from 4,336,336
to 6,007 through the incorporation of Pac Bio sequencing
reads (Yu et al, 2015; Abdelrahman et al., 2017). Long read
sequencing approaches are currently also being employed in
assembly of the P. monodon genome with the aim to achieve
similar improvements in genome assembly quality as seen in
L. vannamei (Montenegro et al., 2018). Details have been released
on a current effort to assemble the F. chinensis genome (Xiang,
2016); however, beyond the scaffold N50 (154.2kb) and sequence
data generation (530 GB short read, 70 GB long read), the final
assembly quality metrics are currently unavailable to the public.
Likewise as both L. vannamei and P. monodon genomes are
yet to be published, the details of their final assembly quality
(genome completeness, scaffold size, average genome coverage),
given the technology now available, still remain to be seen. It
is likely the most successful assemblies will rely upon a “hybrid
assembly” approach, utilizing short-read sequencing to correct
the high error rate base-calling seen in long read sequencing,
prior to assembly of “corrected” long reads (Sedlazeck et al,
2018). In construction of a P. monodon genome, difficulties
have been encountered with obtaining sufficient high molecular
weight DNA from shrimp tissues while avoiding contamination
of DNA with polysaccharides that can interfere with long-
read sequencing devices (Montenegro et al., 2018), further
development of shrimp specific high molecular weight DNA
extraction protocols are required.

While genomic-survey sequencing has been conducted in
Kuruma shrimp (M. japonicus) at low coverage (33.23x short
read genome coverage; Lu et al., 2017), genome assemblies for
the Kuruma shrimp, or other commercially important penaeid
species such as the Indian shrimp (F. indicus) are still yet to be
undertaken. Additional penaeid assemblies are likely to follow
once the P. monodon, L. vannamei, or F. chinensis genomes
are available to be used for reference-guided genome assembly.
Release of fully annotated and integrated genome assemblies in
publicly accessible formats (e.g., as genome browsers in NCBI)
should be a primary focus of the penaeid “omics” research
community.

Linkage Mapping of Genetic Markers

Linkage maps are highly versatile genomic resources which
provide a wealth of genomic information and facilitate
the examination of the underlying genetic architecture of
commercially and biologically important traits. As such, the
development of linkage maps for penaeids (Table2) has
recently seen significant research effort with a number of
maps now available for P. monodon (Wilson et al., 2002;
Wuthisuthimethavee et al., 2005; Staelens et al., 2008; Baranski
et al., 2014), L. vannamei (Pérez et al., 2004; Alcivar-Warren
et al.,, 2007; Zhang et al., 2007; Du et al., 2010; Andriantahina
et al., 2013; Gongalves et al., 2014; Yu et al., 2015; Jones et al.,
2017a), M. japonicus (Li et al, 2003; Lu et al, 2016b), and
F. chinensis (Li Z. et al., 2006; Sun et al., 2008; Tian et al,,

2008; Liu et al., 2010; Wang et al., 2012; Zhang et al., 2013).
Linkage map construction involves the genetic analysis of family
groups (both parents and progeny), to allow the identification
of the recombination pattern of polymorphic markers, and in
turn, the calculation of a relative genomic position for each
marker. When markers are positioned accurately within discrete
linkage groups (with each group indicative of a chromosome),
the genomic map provides a robust method to validate and error
correct draft genome assemblies (Fierst, 2015), and also provides
critical tools for the study of trait and genome architecture
(as discussed in section Dissecting and Exploiting the Genetic
Variation Underlying Phenotypes).

Early versions of linkage maps for penaeid shrimps contained
a limited number of genetic markers (Table2) due to
the inherent difficulties in isolating informative polymorphic
markers (as discussed in section Development and Applications
of Polymorphic Markers). More recently, however, the linkage
maps available for penaeids have improved dramatically, as it has
now become possible to generate and simultaneously map the
position of thousands of polymorphic SNP markers (Baranski
et al,, 2014; Yu et al.,, 2015; Lu et al., 2016b; Jones et al., 2017a).
Linkage maps are now available that include between 3,959 and
9,298 markers and cover all 44 chromosomes of the penaeid
genome (Baranski et al., 2014; Yu et al,, 2015; Lu et al., 2016b;
Jones et al., 2017a). When compared to earlier maps (Wilson
etal., 2002; Li et al., 2003; Pérez et al., 2004; Wuthisuthimethavee
et al.,, 2005; Li Z. et al., 2006; Maneeruttanarungroj et al., 2006;
Alcivar-Warren et al., 2007; Zhang et al., 2007; Staelens et al.,
2008; Andriantahina et al., 2013; Gongalves et al., 2014) that
contained 27 to 451 markers, distributed across between 8 and 51
linkage groups, the increase in density of polymorphic markers
recently achieved has dramatically increased the applicability
of these resources (i.e., assisting genomic assembly, examining
the genetic architecture of traits, and undertaking comparative
mapping).

As such, the construction of linkage maps has provided
a number of interesting insights into the genomic structure
of penaeids. For example, Baranski et al. (2014) constructed
maps for P. monodon in which the female-specific map was
substantially shorter than the male-specific map (2,917 vs.
4,059 cM). Alternatively, in L. vannamei, Pérez et al. (2004)
and Zhang et al. (2007) both obtained longer maps for
females than males (4,134 vs. 3,221 cM, and 2,771 vs. 2,116 cM,
respectively), indicating that there may be higher recombination
in males. In the absence of obvious karyotype size and number
differences between male and female shrimp (You et al,, 2010),
the observed differences in map lengths suggests that sex-
biased recombination occurs in penaeids, but may occur in
a species dependent manner (Baranski et al., 2014). Further
detailed map construction is required to validate and understand
this difference in recombination between sexes, along with
identification of genomic recombination hotspots. Patterns of
recombination, specifically in areas of the genome containing
genes of commercial importance, may affect the accuracy of
and impact derived from genome-informed selection programs
(Meuwissen et al., 2001; Habier et al., 2007; Goddard, 2009).
Construction of linkage disequilibrium unit (LDU) or haplotype
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block maps have been required to obtain an understanding
of recombination across each chromosome of the genome of
livestock and crop species (Habier et al.,, 2007; Amaral et al,
2008). However, given previous constraints generating dense
linkage maps, no LDU or haplotype information is currently
available for penaeid shrimp, but as advanced selection programs
begin to be implemented in the industry generating haplotype
maps should be a significant focus of future studies. Alternatively,
haplotype information has been generated through either long
or short-read (10x Genomics or Illumina) whole genome
resequencing studies (multiple individuals at 5-10x coverage per
individual) in many species including cattle (Daetwyler et al.,
2014). However as sequence derived haplotype maps rely upon
the availability of error-free genome assemblies, this approach is
not currently feasible for penaeids.

To date, comprehensive comparative genomics studies
examining genome synteny/divergence, chromosomal evolution,
and structuring between penaeid species has been limited.
Excluding the L. vannemai map published by Yu et al. (2015),
integration of linkage maps with the fragmented genome
sequence data has yet to be completed. Furthermore, novel
marker sets have been developed and utilized for most maps
available, with few maps [i.e., Maneeruttanarungroj et al. (2006)
building upon Wilson et al. (2002), and Jones et al. (2017a)
building upon Du et al. (2010), and Ciobanu et al. (2010)]
having integrated previous mapping resources into the updated
maps. Jones et al. (2017a) has undertaken early comparisons
of genomic synteny between P. monodon and L. vannamei
[along with other L. vannamei maps (Du et al., 2010; Yu et al,,
2015)], predominately observing conservation of chromosomal
organization. However, due to only a small number of common
markers (275 SNPs) between both maps (Baranski et al., 2014;
Jones et al., 2017a), it was not possible to thoroughly investigate
chromosomal rearrangement, gene order, or differences in
recombination (e.g., sex biased, genomic hotspots). While a
substantial amount of research effort has been applied to date on
developing maps (Table 2), further integration between linkage
maps would provide an opportunity to rapidly increase map
density for each species. A number of previous maps are
not easily accessible, despite, in some cases, providing access
points at the time of publication (e.g., Wilson et al, 2002;
Maneeruttanarungroj et al., 2006). Ensuring long-term access to
mapping resources is critical to maximize the use of previous
resources and also enable detailed comparative genomic studies
to be undertaken.

To extend the utility of linkage maps and provide the ability
to understand the fine scale genomic drivers of commercial
traits (e.g., genome-wide association, multifactorial association)
it is necessary to increase marker density contained in maps for
many species. Maps available for P. monodon (Baranski et al.,
2014) and L. vannamei (Yu et al.,, 2015), have average inter-
marker distances between 0.9 and 0.7 cM, respectively, across
different map iterations. While this is a significant advance from
earlier published maps, 1cM equates to an estimated physical
genome distance of ~400-600 Kb for penaeids [P. monodon 395
Kb/cM (Baranski et al., 2014); L. vannamei; 598.89 Kb/cM; (Yu
et al., 2015), M. japonicus 657.89 Kb/cM (Lu et al., 2016b)],

and presents a significant challenge when looking to characterize
potential genes or genomic regions underlying findings of trait
association studies. The linkage map available for M. japonicus
(Lu et al, 2016b) achieved the highest map density with
an average inter-marker distance of 0.39 cM, representing an
estimated physical distance between markers of ~230-257 Kb
(Yu et al,, 2015; Lu et al., 2016b). However it should be noted,
only 41 linkage groups were reported in this map, rather than 44
observed in other penaeid species (Table 2).

To increase the density and decrease the interval between
markers, a number of strategies can be applied. Further
genotyping of families, and individuals in each family will
provide additional observations of informative meiotic
recombination events or integrate unplaced (i.e., orphaned)
markers into existing maps (Fierst, 2015). Current maps have
either had relatively few individuals from each family, yet many
families included [e.g., 8-33 individuals per family from 49
families (Jones et al., 2017a)], or include many individuals from
a smaller number of families [e.g., 100 progeny from one family
(Lu et al., 2016b)], with both approaches restricting the number
of informative meiotic events available for placement of each
marker on the map (Jones et al., 2017a).

Likewise, incorporating additional genotyped individuals will
assist in teasing apart the positioning and order of “binned”
markers (those co-segregating to a single map location) (Fierst,
2015). In the L. vannamei linkage map by Jones et al. (2017a)
4,817 markers were mapped to 1,752 unique locations (bins),
with an average of 2.75 markers per location. It is likely maps
by Baranski et al. (2014), Yu et al. (2015), and Lu et al. (2016b)
have observed the same effect, however, it is uncommon that
the proportion of “binned” markers is discussed, with Jones
et al. (2017a) being the only publication to provide details of
both average (0.97cM) and “non-zero” average inter-marker
distance (2.67cM). The discrepancy between total mapped
markers and unique locations should be clearly reported with
all linkage maps, as determining distribution of unique locations
is important to integration of genome sequence information
(Fierst, 2015), understanding of the power and resolution
available to study commercial traits, as well as in reducing bias
(from uneven marker distribution) in the calculation of genomic
estimates of breeding value (Mathew et al., 2018). Utilizing
increasingly cost effective genotyping strategies (e.g., genotype
by sequencing; see section Dissecting and Exploiting the Genetic
Variation Underlying Phenotypes) will facilitate a large number
of individuals/families to be genotyped and aid efforts to achieve
fine grain marker placement.

The anchoring of long-read sequences produced through
ongoing genome assemblies can be used to tease apart the
location of markers placed in unordered bins (Fierst, 2015).
However, to integrate linkage maps with genome assemblies,
markers are required to be sufficiently close together to place
multiple markers on each genomic scaffold. It has been indicated
that linkage maps have been integrated within genomic assembly
strategies for L. vannamei (Yu et al., 2015; Xiang, 2016), however,
an integrated resource has yet to be released in an accessible
format. Once completed, these integrated mapping resources will
provide an intermediate point for comparison between otherwise
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disparate maps generated through different genotyping assays or
with different marker types, and will provide a vital resource for
comparative genomic studies and quantitative trait mapping.

Physical and Optical Genome Mapping
While linkage mapping and LRSTs promise to provide a
significant increase in the quality of genome assemblies for
penaeids, it is still difficult to produce a chromosome level
assembly through the addition of these methods alone (Fierst,
2015; Howe and Wood, 2015). The generation of physical
map information provides an additional approach for genome
scaffolding alongside linkage maps and LRSTs (Fierst, 2015).
Bacterial artificial chromosome (BAC) based physical mapping
has been utilized previously in the genome assemblies of
Drosophila (Myers et al., 2000), domestic cattle (Bos taurus)
(Zimin et al., 2009), and barramundi (Lates calcarifer) (Vij et al.,
2016), to aid in anchoring short scaffolds and improve the
overall assembly quality and accuracy. BACs require the ligation
of long fragments of DNA (200 kbp) into bacterial plasmids,
after which colonies could be individually screened. Fragments
are then reisolated and sequenced individually by either long
or short read sequencing, with the overall aim to reduce the
complexity of the sequence reassembly process. However, due
to the high cost and difficulty in isolating sufficient unique BAC
fragments, there is only two partial BAC-end libraries available
for L. vannamei (Zhang X. et al., 2010; Zhao et al., 2012), one
partial Fosmid library for P. monodon (random physical sheared
~40kb library; Huang et al., 2011) and one small insert BAC
library for Kuruma shrimp (Koyama et al, 2010). While Yu
et al. (2015) have mapped the available BAC-end library to the
L. vannamei linkage map, providing a valuable resource for fine
trait mapping in QTL studies (See section Quantitative Trait
Loci Mapping), it is unclear to what degree this data has aided
assembly quality (Yu et al., 2015; Xiang, 2016).

In the study of many other species (Howe and Wood,
2015; Vij et al, 2016; Bickhart et al., 2017), the physical
mapping information that BACs provide has instead been
replaced by modern methods of fluorescent in situ hybridisation
(FISH) and optical mapping. Through these methods, gene-
specific fluorescent probes are developed to enable the direct
visualization of a gene’s location on a chromosome. By utilizing
a combination of multiple probes it is possible to measure the
physical distances between genes, validating gene order and
distances established from linkage maps and genome assemblies.
For example, physical maps can be utilized to identify and correct
regions of whole genome assemblies which have ambiguously
assembled regions (i.e., repeat regions, unknown gap lengths,
chimeric scaffolds), or have included misassembles (i.e., false
joins, inversions, repeat collapsing) (Fierst, 2015; Howe and
Wood, 2015). In several cases, due to the length of optical
mapping fragments, it is possible to reconstruct reference
sequences of entire chromosomes (Howe and Wood, 2015). Yet
like BACs, the development of FISH-based optical maps has
been limited within aquaculture species, with no optical maps
available for penaeids. This is a result of their initial high cost, low
throughput, and relatively limited data generation. Currently,
only proof of concept studies have been completed with FISH

methods on penaeid species, with a single chromosome-specific
FISH probe developed for F. chinensis (Huan et al., 2010) and four
TAACC repeat specific FISH probes developed for L. vannamei
(Alcivar-Warren et al., 2006).

While the high cost of initial manual optical mapping
techniques has prevented their widespread use, optical mapping
techniques are being increasingly refined to assist with the
assembly of complex and repetitive genomes. The automation
of optical mapping technology has led to the development of
a number of commercial platforms, such as Irys (BioNano
Genomics) and Opgen (Argus) which can deliver high-
throughput physical map data at reduced costs (Howe and Wood,
2015; Sharp and Udall, 2016). High-throughput optical mapping
provides a physical fingerprint of each DNA molecule, through
the fluorescent labeling of multiple restriction sites or “nick sites”
along large linear DNA fragments (20 Kbp to 3 Mbp in length;
Sharp and Udall, 2016). With the inherent difficulties observed
in constructing a complete chromosomal-scale genome assembly
for penaeids, integrating physical mapping information into the
assembly process will prove critical to resolving repetitive regions
and producing a successful final draft assembly. Given the diverse
range of genomic resources (i.e., linkage maps, optical mapping,
short, and long range sequencing) now available to address
complex assemblies, a completed peneaid genome assembly is
likely to be achieved quite soon.

DEVELOPMENT AND APPLICATIONS OF
POLYMORPHIC MARKERS

The Replacement of Traditional Genomic

Markers

A large amount of research effort over the past three decades
has been dedicated to developing a diverse range of traditional
genomic markers (i.e., allozymes, microsatellites, AFLP, RFLP
markers) for many penaeid species. Their development has
increasingly provided the tools to assess wild source populations,
manage family lines, and undertake cursory broad-brush
assessment of the heritability and genetic architecture of traits.
However, many of these markers exhibit caveats which have
been reviewed extensively by Benzie (1998, 2009) and Wang
et al. (2004). Ultimately, due to high development costs for each
marker, the increasing complexity of breeding programs (Jerry
et al., 2004; Sellars et al., 2014) and an inability to tease apart
complex polygenic production traits, these markers have rapidly
fallen out of favor in penaeid research programs and have seen
a reduced application within industry. Instead the traditional
marker sets described above, are being replaced by powerful and
low cost modern marker panels, overcoming the many shortfalls
of traditional marker sets.

Modern Genomic Markers and Solid State

Arrays for Breeding Programs

Single nucleotide polymorphisms (SNPs) are the most abundant
polymorphic markers contained within genomes and are
fundamental to modern genomic studies. Large genome
sequencing and resequencing projects have identified over 9
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million SNPs in the cattle (B. taurus) genome (Xu Y. et al,
2017) and 7 million SNPs in chickens (G. gallus) (Rubin
et al, 2010). Within aquaculture species, over 9.7 million
SNPs were identified in Atlantic salmon (Salmo salar) through
whole genome sequencing of 20 individuals (Yanez et al,
2016). Similarly in the channel catfish (Ictalurus punctatus)
and barramundi (Lates calcarifer), 8.6 and 5.6 million SNPs
were identified through genome re-sequencing of 1,213 and 61
individuals, respectively (Vij et al., 2016; Zeng et al., 2017).
In addition to SNP discovery, commercial genotyping arrays
containing 50,000 to >500,000 markers have been developed as
tools for the study and management of many primary production
species, including cattle [BovineSNP50 assay (Matukumalli et al.,
2009)], sheep [Ovis aries; OvineSNP50 Bead Chip (McEwan and
Consortium, 2009); OvineSNP600 Bead Chip (Anderson, 2014)],
and wheat [Triticum spp.; Axiom HD (820K) wheat genotyping
array (Winfield et al, 2015)], as well as aquaculture species,
including catfish [250K array (Liu et al., 2014), 690K array (Zeng
et al, 2017)] and Atlantic salmon [~130K array (Houston et al.,
2014)]. While a number of genome sequencing programs are
underway for penaeids species (Yu et al., 2014, 2015; Xiang,
2016), they have yet to develop genotyping arrays of greater than
10,000 markers.

The development and use of high density genotyping arrays
for penaeids has been impeded by a number of factors. Most
critically, the fundamental genomic resources (high quality
genomic assemblies and genomic re-sequencing data) that
underpin the development of these high density arrays are not
currently as refined as they need to be for penaeid species.
With the exception of recent work by Yu et al. (2015), and Lu
et al. (2016b) which utilized genotype-by-sequencing approaches
(section Genotype by Sequencing as a Low Cost Approach) to
produce 114,829 and 28,981 SNPs, studies have largely aimed
to generate SNP markers through whole transcriptome studies
(Baranski et al.,, 2014; Yu et al., 2014; Jones et al., 2017a).
While this is an effective approach for marker discovery, it
also requires costly additional genotyping of samples across
the discovered SNPs to validate their performance. To date,
only two studies have produced validated SNP genotyping
arrays; Baranski et al. (Baranski et al., 2014) for P. monodon,
and Jones et al. (Jones et al., 2017a) for L. vannamei (now
sold commercially as the Infinium ShrimpLD-24 v1.0 Bead
Chip). These arrays present a significant advancement for
these two penaeid industries, containing 6,000 and 6,400
SNPs respectively. As both arrays are based on type-1 SNPs
(i.e., genic, rather than intergenic), many of the SNPs have
been annotated with putative genes (62 and 47% respectively)
providing a significant resource for future studies. Likewise,
both studies have also confirmed the distribution of markers
through linkage mapping, providing the foundations for further
trait mapping studies (Robinson et al., 2014; Khatkar et al,
2017b). Markers selected for both arrays represent only a small
fraction of the total markers identified (Baranski et al., 2014;
Jones et al., 2017a), with 473,600 and 234,452 SNP identified,
respectively. This represents a significant pool of markers that
could be utilized in ongoing studies to increase array density if
required.

While it is evident that the modern high density genotyping
arrays are powerful tools, and their development marks a step
forward for penaeid aquaculture, the cost of genotyping (~AU$
40-100 per individual) on the platforms selected (Illumina I-
Select and Bead chip arrays) remains generally too high for large-
scale routine use by the penaeid aquaculture industry. Instead,
for species where these high density arrays have been successfully
implemented (most notably in agriculture and Atlantic salmon),
the price of genotyping has been reduced by increased demand
from centralized, cooperative, or national breeding programs
which have the advanced technical expertise to utilize the data
obtained. The price impediment has been further circumvented
by removing the farm by farm requirement for genotyping high
numbers of broodstock in each subsequent generation (Thodesen
and Gjedrem, 2006; Janssen et al., 2018). In many cases these
shrimp breeding programs, are operated by private enterprises
that have a either specialized focus on production of seedstock
(centralized nucleus) or operate a fully integrated production
model (seedstock production through to harvest), however,
some government or collaboratively funded programs do exist
(Benzie, 2009). In private enterprise operations, the utilization
of genotyping resources is reliant upon obtaining an increase
in the achievable sale price of seedstock through achieving
improved selection practices, as seedstock are marketed upon
predicted improved grow-out performance (Janssen et al,
2017). Nevertheless, cost of genotyping has to be outweighed
by increased economic returns achieved. Without centralized
or highly concentrated breeding in place for all species and
countries, and until a point when genotyping arrays can be
delivered at a more industry accessible price, the use of these
genotyping resources will remain confined to a research setting
(Robledo et al., 2017). A number of sophisticated and large
scale breeding programs are now underway for L. vannamei
and P. monodon and hold the most promise for high density
solid-state genotyping resources to be fully utilized (Castillo-
Judrez et al., 2015; Li et al., 2016; Campos-Montes et al., 2017).
Early DNA parentage arrays for penaeid shrimp were largely
based on microsatellite DNA markers (Alcivar-Warren et al,,
2003; Jerry et al., 2004, 2006), however, with the advent of next-
generation sequencing it has been possible to more easily isolate
SNPs. Consequently, parentage testing SNP arrays have now been
developed for P. monodon as an intermediate step to industry
application of cost-prohibitive high-density SNP genotyping
(Sellars et al., 2014). While these ultra-low density arrays,
containing 63 and 59 SNPs each, or 122 SNPs as a combined array
(Sellars et al., 2014), lack the number of markers required for
advanced genomic applications (e.g., genomic selection, GWAS,
QTL mapping, and calculating genomic relationship matrixes),
they do provide increased power and utility over traditional
genomic markers for pedigree assignment (see section Applying
Markers for Breeding Population Management) (Henshall et al.,
2014). The development of a similar range of SNP arrays is
currently feasible for all other commercially important species as
extensive transcriptome data has been made publically available
for M. japonicus, F. chinensis, F. merguiensis, F. indicus, and
L. stylirostris. Furthermore, for these species which lack any
modern genotyping tools, replicating a low density array could
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provide a cost effective approach for guided farm management
and improvement of shrimp production (Vandeputte and
Haffray, 2014). Ultimately in the selection of a genotyping
method for commercial applications the time required for sample
processing, genotyping, and data analysis needs to be considered,
particularly given the window between pre-selection of candidate
broodstock at harvest, and final breeding selection and spawning
is short (often less than 3-6 months). Genotyping technologies
such as the Illumnia Bead Chip or Sequenom I-plex systems that
can achieve both high-throughput and short turnaround times
are currently most conducive to rapid decision making required
in shrimp breeding.

Genotype by Sequencing as a Low Cost
Approach

The regular use of solid state genotyping arrays across
thousands of individuals within commercial settings is currently
out of reach for the majority of the penaeid aquaculture
industry. Nevertheless, the advent of a number of novel
genotype-by-sequencing (GBS) approaches (e.g., double digest
restriction site associated DNA, ddRAD; Diversity Arrays
Technology Sequencing, DArT-Seq; specific-locus amplified
fragment sequencing, SLAF) holds promise to rapidly provide
a genotyping platform for less than AU$ 40 per individual. The
particular advantage of GBS approaches is the ability to discover
and genotype markers (“de-novo marker discovery”), without
requiring reference to existing genomic information (genomic
sequence, transcriptomes). A number of GBS approaches (SLAF-
tag, RAD, and DART-Seq) have been utilized in the study
of penaeid species, with 25,140 and 23,049 markers obtained
separately for L. vannamei (Yu et al., 2015; Wang et al., 2017),
and 28,981 markers obtained for M. japonicus (Lu et al., 2016b).
While these markers have been applied to generate linkage maps
(Yu et al., 2015; Lu et al., 2016b), undertake QTL mapping (Yu
et al,, 2015; Lu et al,, 2016b), and estimate genomic prediction
accuracy (Wang et al., 2017), they have yet to be further utilized
within the industry for routine genotyping applications. Further
refinement of GBS protocols along with integration of targeted
fragment capture technology [e.g., Bates Probes (Ali et al,
2016), Molecular Inversion Probes (Niedzicka et al., 2016)] can
deliver arrays with 1,000-10,000 markers for under AU$ 20 per
individual.

The first GBS-based targeted fragment capture technology
SNP assay (containing ~5,000 markers) for a penaeid species
is in final stages of development (Guppy et al., 2018), and
aims to provide the P. monodon industry the first cost-effective
opportunity to undertake genomic selection. Furthermore, as
with solid state sequencing platforms, GBS-based assays can be
used to undertake genomic relationship calculations and examine
the genome structure and architecture of traits (Zenger et al.,
2017). With the development and use of GBS arrays becoming
more frequent in aquaculture as a low cost alternative to solid
state arrays (Holman et al., 2017; Robledo et al., 2017), it is likely
that similar marker panels with tailored density and composition
of markers will be developed for other penaeid species (Wang
etal., 2017).

The utility of GBS for aquaculture species is reviewed in detail
by Robledo et al. (2017), and for genomics more broadly in
Andrews et al. (2016). While there are many benefits of GBS
based genotyping in terms of flexible design, and improved
accessibility through lower cost, it must be noted that, when
compared to solid state arrays (Illumina I-select and bead chip
arrays or Affymetrix Axiom Arrays), the genotype data obtained
can be of lower quality (e.g., null alleles, read-depth dependant
genotype accuracy, high missing data) if not filtered through
appropriate quality control measures (Andrews et al., 2016). To
account for this, custom pipelines [e.g., STACKS (Catchen et al.,
2013), TASSEL (Glaubitz et al., 2014), DARTR (Bernd et al.,
2018)] are being continuously refined and will provide valuable
software resources to more effectively utilize data generated
by this genotyping method. Likewise, as the generation of
genotyping assays through GBS approaches is still an emerging
area of research, the process of providing functional and validated
assays is currently more complex than solid-state arrays.

Applying Markers for Breeding Population

Management

Managing a sufficiently large and diverse core population of
breeding individuals has always been a significant challenge
for the shrimp industry and there has not been a cost-
effective method to recover pedigree data on-farm. Programs
relying on the separate rearing of family lines have been
overshadowed by high infrastructure costs and an inability
to hold sufficient numbers from each family line to make
effective selection decisions. In addition, by raising individuals in
separate rearing tanks, or ponds, farmers inadvertently introduce
confounding environmental effects to any comparative estimates
of performance between rearing systems (Sonesson and @degard,
2016). Furthermore, it is not possible to maintain genealogical
traceability with external tags as shrimp molt as they grow,
and are too small in size (~2mm) prior to stocking into
commercial ponds for feasible use of internal tags (visible implant
elastomer or passive integrated transponders). Overlooking
accurate tracking of pedigree has on a number of occasions led
to poor management strategies being employed, and inbreeding
being observed within penaeid farms (Garcia et al., 1994; Wolfus
et al,, 1997; Xu et al., 2001; Moss et al., 2007; Dixon et al., 2008;
Knibb et al., 2014).

Nevertheless, as access to genomic markers has increased,
breeding programs have been provided with the tools (i.e., genetic
pedigree assignment and genetic diversity assessment) to assist
in farm management. While these resources have improved
substantially, industry use for penaeids has been inconsistent.
The cost of genotyping (high-density solid state arrays), lack of
genotyping power (microsatellites), or a combination of both
factors, have been the primary impediments to wider spread use
of many existing marker sets (Vandeputte and Haffray, 2014).
Importantly, however, both low-density solid state arrays and
GBS assays provide the penaeid industry with a cost-accessible
and powerful set of tools for real world application. For instance,
as demonstrated by Henshall et al. (2012, 2014), proportions
of communally reared families can be determined from pooled
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samples (i.e., DNA pooling of multiple individuals) that have
been genotyped with low density SNP arrays (Sellars et al,
2014). Both low-cost genotyping and DNA pooling form an
important progression for the industry as they allow phenotypic
data from commercial ponds to be linked back to broodstock
families without the need to physically track pedigree or
undertake isolated rearing of individual families. By doing so, the
confounding effects of variable rearing conditions upon estimates
of performance can be reduced (Kinghorn et al.,, 2010). When
phenotypic information is combined with individual genetic
pedigree assignment of progeny, superior broodstock can be
selected to produce improved subsequent generations (Henshall
etal., 2014), as well as estimate genotype-by-environment (GxE)
interactions and their effect on individual performance under
commercial rearing conditions.

Furthermore, with dense marker sets now available (Jones
et al, 2017ab; Guppy et al, 2018) it is also possible
to rebuild deep pedigrees and examine the hidden cryptic
relatedness between individuals (Jones et al., 2017b; Khatkar,
2017). Genomic relatedness matrixes (GRMs) can be generated
which quantify the extent of the genome shared between
individuals. This methodology characterizes the true relatedness
between individuals more accurately than traditional pedigree or
parentage assignment (Hayes et al., 2009). In particular, when
applied to breeding programs with complex and cryptic family
lines, GRMs are able to minimize inbreeding through careful
selection and allocation of mate pairings (Nielsen et al., 2011;
Jones et al., 2017b; Khatkar, 2017; Toro et al., 2017; Zenger
et al,, 2017). The transition to higher density marker panels
(i.e., >3,000 SNPs) will increase the ability to definitively assign
parentage of communally reared individuals, particularly as more
polymorphic markers provide a higher capacity to determine
relationships between inherently related individuals produced
over multiple generations of breeding. GBS assays rather than low
density solid state arrays may prove to be more versatile as they
maintain an accessible genotyping cost, while providing required
genotyping power (Robledo et al., 2017).

An alternative approach to increase marker density is
genotype imputation. Imputation relies upon genotyping a
small reference panel of individuals at high-density (e.g., 1,000
individuals) to generate robust allele frequency estimates. Once
paired with genetic linkage information, the genotypes of high-
density markers can be inferred within a second set of individuals
(e.g., 10,000 individuals) genotyped with a low-density assay
(Li et al, 2009). This approach, while statistically intensive,
has proved effective for genotyping in breeding programs of
terrestrial species (Pryce et al., 2014), and has been proposed to
improve the cost effectiveness of large scale salmon genotyping
(Tsai et al., 2017). Extensive modeling of the accuracy of imputed
genotypes has been undertaken in terrestrial species (Hozé
et al., 2013), but the accuracy of imputation is underpinned by
factors including reference population size along with the size
of chromosomal fragments (haplotype or haplotype blocks) that
are co-inherited (Garcia-Ruiz et al., 2015). Currently there is
a poor understanding of length and rate of rearrangement (or
recombination) of haplotypes within the penaeid genome (See

section Linkage Mapping of Genetic Markers), impeding the
current utilization of imputation for penaeid shrimp.

FUNCTIONAL GENOMICS

Examining the physiology, immunology, and genetics of
penaeids at the transcriptional and translational level provides
direct insight into the functional role of molecular mechanisms
in the overall productivity of penaeid species, along with many
other traits of biological and commercial interest (e.g., disease
resistance, pigmentation, nutrition, reproduction). A number
of methods are commonly employed to undertake this work,
progressing from individual “gene by gene” characterisation
(e.g., RT-qPCR, Sanger sequencing) through to profiling
all transcriptionally active genomic elements simultaneously
(i.e., RNA-seq). Proteomic analysis methods have traditionally
focussed on characterisation and quantification of a small
number of proteins (e.g., 2D gel separation), though more
recent approaches can successfully characterize and quantify
the complete constituency of the proteome (e.g., liquid
chromatography coupled with mass spectrometry). As with
other fields, functional genomics has been revolutionized by
advances in next generation sequencing, mass spectrometry, and
bioinformatics approaches.

Expressed Sequence Tag Sequencing and

cDNA Microarray Development

Prior to the advent of high-throughput next-generation
sequencing, and in the absence of a complete genomic sequence
for penaeids, expressed sequence tag (EST) discovery and
annotation was the focus of functional genomics studies for a
significant period of time, with a substantial investment made in
developing resources for research and commercial applications.
Driven by the economic handicap that reproductive dysfunction
and disease events have had upon the industry, these two areas
have seen the majority of research effort applied.

In particular, EST studies have been conducted to identify
potential genes of interest related to male (Leelatanawit et al.,
2008, 2009) and female (Yamano and Unuma, 2006; Preechaphol
et al., 2007, 2010) reproductive functions. Likewise, comparisons
of EST libraries between challenged individuals (i.e., exposed
to stress and pathogens), and non-challenged individuals, have
allowed the identification of genes with putative roles in virally-
induced immune response (Gross et al,, 2001; Rojtinnakorn
et al, 2002; Shen et al, 2004; Clavero-Salas et al, 2007;
Dong and Xiang, 2007; Leu et al., 2007; Pongsomboon et al.,
2008b; Maralit et al., 2014) and bacterial resistance (Bartlett
et al, 2002; Supungul et al., 2002, 2004; de Lorgeril et al.,
2005; Somboonwiwat et al., 2006). While these studies were
effective in the initial discovery of a small number of penaeid
genes (Table 3), alone they provide an incomplete view of
the transcriptionally active genes in each biological situation
investigated. Furthermore, additional complexity reduction steps
[e.g., suppressive subtraction hybridisation (Leelatanawit et al.,
2008; Preechaphol et al, 2010)] were required to avoid
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redundant repeat sequencing of highly expressed genes such as
thrombospondin from ovary libraries, or 40S ribosomal proteins
from gill libraries (Clavero-Salas et al., 2007; Preechaphol et al.,
2007). Without these additional steps, studies such as those
by Clavero-Salas et al. (2007) contained 69% redundancy in
sequencing, limiting the novel gene sequences obtained.

Through substantial investment in collaborative research
programs, large scale multi-tissue and multi-life-stage studies
have also been conducted with the aim of obtaining the complete
transcriptional profile for penaeid species. A large number of
novel ESTs have been identified in P. monodon (Tassanakajon
et al., 2006), L. vannamei (O’Leary et al., 2006; Robalino et al.,
2007), and F. chinensis (Dong and Xiang, 2007; Xiang et al.,
2008), yet due to the small sequence length of each EST transcript
(100-300 bp), the characterisation of transcriptional profile of
these penaeids through classical sequence homology approaches
has proved difficult. Many of these studies have been reviewed
at length by Leu et al. (2011), with only an additional 20,318
EST tags deposited into the NCBI EST database since (was
196,248 in 2011, now 216,566 as of 8th May 2018; 709 for
P. indicus, 5,609 for L. vannamei, 14,000 for P. monodon). While
the number of ESTs is small in comparison to those generated
for humans (>8 million) or Atlantic salmon (>500,000), valuable
insight into genes involved in processes such as reproduction
of penaeids has been obtained, with over 500 reproduction-
related genes identified in L. vannamei and P. monodon
(Leu et al., 2011).

Large sets of ESTs have been incorporated into a number
of custom high throughput microarrays, which are able
to provide relative expression profiles for 1,000s of genes
simultaneously (Karoonuthaisiri et al., 2009; Wongsurawat et al.,
2010; Leelatanawit et al., 2011). In particular, microarrays are
now available for the study of reproductive function [ReproArray
(Karoonuthaisiri et al., 2009; Wongsurawat et al, 2010),
UniShrimpChip (Leelatanawit et al., 2011, 2017; Uawisetwathana
et al., 2011)] and disease response within penaeids (Dhar et al.,
2003; Wang et al., 2006; Wongpanya et al., 2007; Pongsomboon
etal., 2008a,2011; Veloso et al., 2011; Shi et al., 2016). While these
studies have provided novel insight into functional genomics
of penaeids (see review by Aoki et al., 2011), they provide
limited novel sequence information and therefore limit the
ability to differentiate between biologically significant isoforms or
genetic variants. As such, high-throughput whole transcriptome
sequencing approaches are instead becoming the preferred
method to study the RNA profile of penaeids, due to their
ability to simultaneously provide differential gene expression and
sequence data.

Transcriptome Profiling With Next

Generation Sequencing

With the decreasing price of sequencing, improvements in
library preparation, and bioinformatic techniques, it is possible
to analyse complete ¢cDNA libraries without the need for
any complexity simplification steps. In particular, without the
requirement to clone and individually sequence cDNA fragments
(as is needed with EST sequencing), the ability to produce

complete transcriptome profiles has increased dramatically (Li
et al., 2012; Ghaffari et al., 2014; Santos et al., 2014; Huerlimann
etal., 2018). It is now possible to isolate upwards of 50,000 genes,
including rare variants in a single study (Table 3).

Like EST and microarray studies, the primary focus of
transcriptomics studies has been immunology, disease resistance
and reproductive biology. Screening experimentally challenged,
or opportunistically sampled shrimp with infections, has resulted
in the identification of a number of differentially expressed
genes in L. vannamei (Chen et al., 2013; Sookruksawong et al.,
2013; Xue et al., 2013; Zeng et al., 2013), F. chinensis (Li
et al., 2013), P. monodon (Soonthornchai et al., 2016), and
F. merguiensis (Powell et al., 2016). Through implementation
of whole transcriptome sequencing, it has been possible to gain
extensive insight into the host-virus interaction underpinning
mass mortality events and has allowed researchers to develop
potential methods to counter infectious disease events (Sellars
et al,, 2011; Li et al., 2013). Comparison between the immune
response invoked by different viral pathogens has highlighted
common innate immune pathways that may be useful for
future selection of individuals based on broad spectrum immune
response (Sookruksawong et al., 2013; Tassanakajon et al., 2013;
Gao et al., 2015).

With the comparative ease of generating transcriptome
profiles, a number of studies have not only isolated the molecular
pathways responsible for tolerance to commonly observed
environmental stressors such as nitrite (Guo et al., 2013) and
ammonia (Lu et al., 2016a), but have also investigated their effect
on productivity. For example, many genes and pathways linked to
immune response (e.g., chitinase, peritrophin, thrombospondin,
and peaeidin) and growth (linoleic acid metabolism) were
identified by (Lu et al, 2016a) to be suppressed when
investigating the effect of ammonia exposure in L. vannamei.
Further research, linking environmental stressors (i.e., pH,
salinity, and temperature) with studies on viral immunology,
will provide a more complete understanding of the role that
environmentally induced immune suppression plays in mass
mortality disease events and decreased productivity.

Likewise, reproductive studies comparing male and female
transcriptome profiles, along with various reproductive stages
within sexes, has yielded novel insight into the molecular
and genetic mechanisms underpinning maturation and sex
determination of L. vannamei (Peng et al., 2015), F. merguiensis
(Powell et al., 2015), and P. monodon (Rotllant et al., 2015;
Goodall, 2017). As these studies are able to reconstruct complete
(or near complete) RNA transcripts, it has been possible to
analyse comprehensive gene pathways (Peng et al, 2015).
Through the characterisation of functional gene regions it has
been possible to deduce key gene to gene interactions and
regulatory pathways for reproduction and maturation of male
and female penaeids (Peng et al., 2015). For P. monodon, studies
such as those undertaken by Rotllant et al. (2015) provide
substantial opportunity to combat reproductive dysfunction in
captive bred stocks (Arnold et al., 2013; Coman et al.,, 2013;
Marsden et al., 2013). In particular, through differential gene
expression analysis of whole-transcriptome data, genes related
to fatty acid and steroid metabolism were found to have altered
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expression patterns when compared between wild sourced and
domesticated stock (Rotllant et al., 2015). Similarly, exploration
of the effects variable ovarian arachidonic acid content has on a
number of key ovarian development pathways, revealed distinct
differences between domesticated individuals (Goodall, 2017).
Both studies provide a strong case for continued research into
the informed improvement of reproductive maturation diets
and may help the industry overcome commonly poor breeding
performance (Rotllant et al., 2015; Goodall, 2017).

Interestingly, while functional genomics studies have
also investigated the mechanisms involved in embryonic
development (Li et al., 2012; Sellars et al., 2015) and molting
(Gao et al.,, 2015), little whole transcriptome research has focused
explicitly on muscle growth (Nguyen et al., 2016), to date being
limited to confirmation of conserved growth genes, potentially
overlooking important shrimp specific genes related to growth.
Likewise, differential gene expression analysis undertaken by
Dai et al. (2017) found expression of 383 genes relating to cell
proliferation, growth, and energy and nutrient metabolism,
showed distinct differences between selected lines with high and
low feed efficiency, however only 57% (220) of these differentially
expressed genes were annotated. Further research investment is
required to gain an enhanced understanding of the functional
genomic elements that dictate superior or inferior performance
for both of these key economic traits.

As with earlier EST studies, functional annotation of
data from transcriptome studies through classical sequence
homology approaches has been difficult. Predominately, shrimp
transcriptome studies are able to annotate between 20 and 50%
of transcripts with Kyoto Encyclopedia Genes and Genomes
(KEGG), Gene Ontology (GO), or NCBI databases (Table 3). As
these database have inadequate penaeid sequence information,
along with poor characterized sequence information from close
relatives (Decapods, or Arthropoda), they hold limited utility in
characterizing shrimp or crustacean specific transcripts which
may be of high importance for traits such as disease resistance,
reproduction, or growth (Huerlimann et al, 2018). Short-
read based RNA sequencing (e.g., Illumina Hi-Seq) is high-
throughput and relatively inexpensive, and as such has been the
most widely applied method for recent penaeid transcriptomics
studies. However, reconstructing full-length transcripts during
transcriptome assembly is often problematic, with misassembles
commonly observed, as well as poor representation of many
alternatively spliced isoforms. In contrast, emerging long-read
RNA sequencing methods (e.g., Pacific Bioscience Iso-Seq- or
Nanopore Direct RNA sequencing) can sequence individual
full-length RNA fragments and may provide increased insight
into isoform diversity particular in non-model species (Kim
et al., 2017; Xiaoxian et al., 2017). Further studies incorporating
epigenomics methodologies such as whole genome bisulphite
sequencing and DNA methylation analysis will also provide
insight into regulation of RNA expression, however to date this
research has been limited to development of a reduced cost
methodology (He et al., 2015).

It is not possible to apply whole- transcriptome sequencing
approaches on a commercially relevant scale (1000s of
individuals). As such, a concerted effort needs to be applied

to utilize existing data to develop commercially applicable
transcriptomics tools for Penaeids. Unlike the extensive number
available for livestock species there has been no commercially
available tests developed from the transcriptomics research
completed, despite the significant of number studies on penaeids
to date (Table 3).

Proteomics

Proteomics techniques have been applied across a range of
aquaculture species (reviewed in Rodrigues et al., 2012), often
with a focus on environmental toxicology. Within penaeid
shrimp, proteomic analyses have been focused on understanding
the effects of nutrition (Silvestre et al., 2010; Qiao et al., 2011),
immunity (Robalino et al., 2009), viral infection (Chongsatja
et al., 2007; Rattanarojpong et al, 2007; Wang et al., 2007;
Bourchookarn et al., 2008; Robalino et al., 2009; Chai et al., 2010;
Kulkarni et al., 2014; Li et al., 2014; Chen et al., 2016), bacterial
infection (Wu et al., 2007; Somboonwiwat et al., 2010; Zhang
J. et al., 2010; Chaikeeratisak et al., 2012), and environmental
stress (Jiang et al., 2009; Fan et al.,, 2013, 2016; Xu C. et al.,
2017). In much the same way as transcriptomics, these proteomic
studies examine differentially expressed proteins from shrimp
tissues under various pathogenic or environmental stressors
compared with those under normal states. The most widely
applied proteomics workflows to date have utilized a range of gel-
based separations often over 2-dimensions (2D) that separates
proteins by isoelectric point then by size. This is followed
by image analysis, proteolytic digestion and identification
of differentially expressed protein spots using various mass
spectrometry (MS) or tandem mass spectrometry (MS/MS)
techniques (Table 4). Although technically demanding, 2D gels
are capable of identifying large numbers of unique protein
spots, as well as determining post-translational modifications
such as glycosylation and phosphorylation. However, quantifying
differential changes in protein abundance in 2D requires
specialized software, highly technical skills and establishment
of appropriate intensity thresholds to prevent over or under
estimations due to electrophoretic artifacts. This may allow the
detection of several hundred protein spots, but vastly reduces
the successful quantification or identification of proteins to
between 10 and 50 proteins (Table4). When successful, 2D
gels have identified a small numbers of proteins that are
likely to have functional significance under relevant culture or
stress conditions, with some studies confirming as functional
importance through complementary techniques (e.g., RNAj;
Robalino et al., 2009).

Further methodological advances now allow analysis of
complex mixtures of soluble proteins without the need for
difficulties of running 2D gels and subsequently characterizing
each protein spot. By coupling liquid chromatography (LC) with
MS/MS in an approached termed shotgun proteomics, databases
of known proteins can then be utilized to identify peptide mass
fingerprints. Shotgun proteomics has yet to be applied widely
to the study of penaeid shrimp, but holds potential to rapidly
improve protein identification and functional characterisation.
Of the only two examples to date in shrimp (Wu et al., 2007;
Xu C. et al,, 2017), the first applied two proteomic approaches,

Frontiers in Genetics | www.frontiersin.org

15

August 2018 | Volume 9 | Article 282


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

The State of “Omics” Research for Farmed Penaeids

Guppy et al.

4Bl Jo swp 40 ‘ebueyoxs uoned buoss ‘XOS “Anewooads

SSBW Wepue] ‘S/S Aipewoijoads ssew ‘Syy [UoBZIUOI/UORAI0SaP 18SE| PaISISSe-XLBW ‘| TV “Aydeiborewoyo pinbiy “O7 ‘sbej Auiye pepoo-adojos! ‘| oI “Aiiewo.10ads SSew UWLIojSURI] J8LiN0 ‘SN 4 ‘uoneziuol Aeidsosjose ‘1S3

uredq
SIN/SIN IS3-OT10UBU ‘SIN/SIN (Mleysele) spueld snuig
6002 “[e 10 en 4OL IdTVIN "SINLL IdTVIN - suejoid g | ueflo [eipseolied SUON Sljeaioq 1eoueg
9002 ‘sepAN pue 887 SW/SIN JOL-IaTVIN 071 s1eb dg 65¢ suejoid g5 uefio-A uone|qe Xeisaig Sielee| SnujoIB208)
SW/SW-O10ueu
/102 “le1w® "o nx XOS ‘Buliegel oueqos! D4l 8 supl0Jd €66 seaJouedoledaH Aguies  jeweruueA sneeusdoyr]
SW/SW-40L/40L-IdTVIN
/002 “"[e 1@ NAA XDS 10 1vD! 2k sueloid BZY wnijeyyds Jenonng ASSM uopouow sneeusd  SOIL08}0I4 UnBIoys
010z “[e1e 1 Bueyz SIW/S-IST-O10oueu sjeb g A suieloid G sjods 0L ueBlio ploydwA wn.ejinbue oLgIA SISuBUIYO o
0402 “e 1o reyd S H401/40L- IV SIeb ag I8 suiejoud |8 sjods 009-08S seaJouedoledoH ASSM siIsusuIyo o
¥10C "1 SW/SIN 4OL-IaTVIA SIeb dg 14 sujoid gg s30ds 085 sephoowsH ASSM SIsusuIyO o
6002 e 10 Buep SIN/SIN-IST-D1 s1eb az /9 suploid €8 s10ds 079029 seaJouedoredaH $S0.1S OIXOdAH SIsuBUIYO o
2002 “'fe 1o Buem SIN/SIN-IS3-OT10ueU sjeb gz /2 suieyoid £G sjods 00G yoewols ASSM loweuuRA ]
£00¢
“[e }o Buodloreueyey SIN/SIN-IST-OT10ueu sjeb gz 8t suiejoid 0z sjods 00g< silo AHA jeweuuen
€102 e 1o ueq SW H401/40L-IaTVIA SIeb az [013) sujoid Og sjods GG/ sejfooweH $s8.1s P00 jeweuuen
910z “|e 1o ueq SIN 40L/40L-IaTVIA SIeb ag /8 suploid /¢ s1ods €16 seaJouedoredsH SS811S P|0D JowreuueA ]
seaJouedoredaH squey 8saulyD
102 “le 18 celD SW/4OL-IavIN sieb ag 82 6¢  suljoid ol siods 00v-02e sejfooweH pue 3 UIWENA jeweuuen
600¢ “[e 18 ouleqoy paquosep 10N VA, suiejoid /g sjods pu Si[liS} ASSM joweuueA ]
2002 “'e 1o elfesbuoyn SIN/SIN-IST-OTT0ueu sjeb gz ze sujoid 0z s10ds 007-02€ sepfoowieH ASL jeweuuen
9102 “[e 18 Usyo SIN/SIN-IS3-OT10uBu 0c suejoid O s30ds 005~ Si[liS} ASSM joweuueA ]
8002 SI/SN-IS3-OT10uBU
“[e 1o uiexooyoinog ‘SIN 4OL-IaTVIN ee suiejoid 9z siods 0gy-0./€ uebio proydwA AHA uopouow o
710T “[e 18 lureMiny SI/SN-IS3-O7T0ueU sjeb ag 4 suiejoid /| sjods 00g< Yoewois ASSM uopouow o
01L0g
“'Ie 18 FEMIMUOOQUIOS SIN/SIN-IST-O10ueU S| g 12 sueloid gz sjods pu se1k00WeH 1Meniey oLgin uopouow o
¢l0c
e 10 Mesneseaeyd SIN/SIN-IST-D10uRU S|l g /2 suejoid 0z syods 000 |~ ueblo ploydwAi Kenrey oLqiA uopouow o
0102 “[e 10 aasanIS SW/SW-IS3-0710ueu 391d de 6 sueyoud g sjods 682 ydwAjowsH sonolquy uopouow o SIN/SIN-O1 de
passaidx3y
sooualajey enbiuyoe) pejieleq  Ajenuaseyia paunuap| suieloid onssi|  paulwexa Jo}oe4 sal0adg anbiuyoay

'seIpn}s olwosjoid pieeuad e|ge|ieA. AjUuaLNd Jo Alewwng |  379V.L

16 August 2018 | Volume 9 | Article 282

Frontiers in Genetics | www.frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Guppy et al.

The State of “Omics” Research for Farmed Penaeids

[sub-cellular fractionation and a cleavable isotope-coded affinity
tag (1CAT)], each followed by peptide identification with matrix-
assisted laser desorption/ionization tandem time of flight mass
spectrometry (MALDI-TOF/TOF-MS/MS) to examine WSSV-
infected shrimp. Once critical filtering and error rate calculations
were performed, a total of 429 proteins were identified with
a high degree of confidence. In addition, iCAT labeling was
applied to assessing changes in protein abundance over a time
series post-infection. The second used 8-plex isobaric tags
for relative and absolute quantification (iTRAQ), followed by
nano LC-MS/MS analysis to identify and quantify differently
expressed proteins in the hepatopancreas of L vannamei exposed
to low salinity (Xu C. et al, 2017). A total of 529 proteins
were identified, of which 84 were statistically different between
treatments. Both these studies represent an approximate 10-fold
improvement in protein identifications over previous techniques
(Table 4). Tissues that contain highly abundant proteins, such as
hemocyanin contained within crustacean hemolymph, remain an
obstacle to global scale identification of proteins using shotgun
proteomics, but applications in other tissues or using protein
labels await investigation.

The potential of shotgun proteomics has been demonstrated
in other crustaceans, with studies of neuropeptide signaling
pathways controlling molting in crabs successfully identified
543 proteins from the Y organ in the land crab Geocarcinus
lateralis (Lee and Mykles, 2006) and 142 from Cancer borealis
(Ma et al., 2009). These studies culminated in the proposition of
a novel mechanism by which molt inhibiting hormone and nitric
oxide synthase activates a signaling cascade of phosphoproteins
that regulate molting and reproductive development (Lee and
Mykles, 2006). A gel-free proteomic workflow using LC-ESI-
MS/MS study revealed the identity of 62 proteins differentially
expressed in hepatopancreas of prawn Macrobachium rosenbergii
after exposure to the insecticide chlordecone (Lafontaine et al.,
2017). Similar studies in penaeid shrimp could be employed to
better understand the occurrence of reproductive dysfunction in
domesticated shrimp stocks, in particular in P. monodon.

Recently, the combination of molecular weight cut-off
during sample preparation (Wisniewski et al, 2009) and
unbiased MS analysis, called sequential window acquisition of
all theoretical fragment ion spectra (SWATH), has provided
a method to simultaneously detect and quantify thousands
of proteins, without labeling or previous knowledge of the
precursor peptide ions (Gillet et al, 2012; Chapman et al,
2014). As its name denotes, SWATH independently collects
information based on time windows enabling detection of
low-level ions rather than only selecting the most intense
compounds in the sample as normally occurs with information
dependent acquisition MS modes. Additionally, protein
abundance quantified using SWATH has been shown to
correlate with RNAseq transcriptomic data, as well as identify
clinically relevant cancer biomarkers (Gao et al., 2017). SWATH
information can also be combined with the more traditional
multiple reaction monitoring mass spectrometry (MRM-MS)
methods for protein quantification. MRM-MS is a double-level
specificity tool to quantify specific targets in complex samples
using existing knowledge of peptide m/z and fragment ion m/z

transitions (Liebler and Zimmerman, 2013). The abundance of
targets of interest is often assessed by three peptides and three
transitions. Quantification of proteins employing MRM-MS has
been successfully applied for the quantification of allergens in
penaeids including P. monodon and other crustaceans (Korte
et al., 2016) as well as for the detection of antibiotics in shrimp
muscle (Tyagi et al., 2008).

As for most “omics” research, data accessibility through
publicly available repositories is key to maintaining research
quality and building upon past work. Examples of this include
ProteomeXchange  (http://www.proteomexchange.org)  or
the PRoteomics IDEntifications (PRIDE) database. These
repositories contain curated MS spectral profiles that are
standards compliant and facilitate peptide identification
from existing proteomics data. High quality species-specific
transcriptomes greatly improve peptide fragment and protein
identification within proteomics workflows, even if that protein
has no known function. While the penaeid research community
may be dissuaded from publically releasing data due to the
investment in data generation and perceived value, without
concerted data sharing efforts, large proportions of data will
become duplicated, while inevitably remaining poorly utilized
due to incomplete characterisation of proteins and peptides.

For the purposes of this review, we have not included
classical protein or gene function studies of small numbers
of individual proteins through expression of recombinant
proteins, pulldown assays, transient knockdown or western
blotting. Complementary techniques such as targeted gene
knockdown (RNAi and CRISPR), gene regulation (Methyl-
seq, ChIPseq), protein-protein interactions (protein expression,
pulldown assays), in situ hybridization, western blotting, cell
culture and fluorescence microscopy can each aid in elucidating
novel gene functions in shrimp. Overlaying and comparing
results with those obtained in complementary metabolomics
studies will also provide improved insight into functional
response pathways to commercially relevant environmental
stressors (Schock et al., 2013; Li et al., 2017) and diseases (Huynh
et al., 2018).

DISSECTING AND EXPLOITING THE
GENETIC VARIATION UNDERLYING
PHENOTYPES

One of the primary drivers behind integrating genomics research
into food production industries is to gain an understanding of
the relationship between genetic variation and phenotypes of
commercially important traits (Abdelrahman et al., 2017). In
particular, through quantitative trait locus (QTL) mapping, and
genome-wide association studies (GWAS), it may be possible to
identify the number, location and effect size of genetic elements
(i.e., genes, loci, and regions) that are linked with the observed
phenotypic variation of a trait (Mackay et al, 2009). At a
fundamental level, these studies provide novel insight into the
genetic basis and architecture of traits, and when findings are
compared across species, they allow the study of evolutionary
processes underpinning trait characteristics. Furthermore, on an
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applied level, identifying markers that are highly predictive for a
superior or inferior phenotype is fundamental to improving the
selection of elite individuals for breeding programs (Thorgaard
et al., 2006). Recently, breeding programs for many agricultural
species have utilized genome-wide estimated of performance
(genomic breeding values), within the framework of genomic
selection programs, to rapidly improve both simple and complex
traits (Meuwissen et al., 2001, 2016). Similar efforts are to
implement genomic selection underway for shrimp [P. monodon
(Khatkar et al.,, 2017a), L. vannamei (Wang et al., 2016, 2017)],
and promise to bring a substantial breeding improvements to the
industry (Zenger et al., 2017).

Quantitative Trait Loci Mapping

As the availability of genomic resources for penaeid species has
until recently been somewhat limited, the ability to undertake
robust QTL studies has also been restricted. Early QTL studies
examining penaeid production traits were limited in their power
and ability to accurately isolate QTL effects (Alcivar-Warren
etal, 2007; Du et al., 2010; Wang et al., 2012; Zhang et al., 2013).
In particular, studies have been limited by incomplete genome
coverage, along with the inclusion of insufficient individuals
to ascertain precise QTL locations, or detect QTL of moderate
or small effects. For instance, maps constructed and utilized
by Wang et al. (2012) covered only 63% of the genome, and
contained few markers (average of 5.1-5.4) per linkage group. At
this resolution, it is possible to identify linkage groups that may
contain QTL of interest, but isolating specific genes, or genomic
regions, is generally not possible due to the large physical distance
between markers (Alcivar-Warren et al.,, 2007; Andriantahina
et al., 2013; Zhang et al., 2013). For instance Lyons et al. (2007),
following on from research by Li Y. et al. (2006) and Li Z.
et al. (2006), located a growth-related gene (EVOVL-like gene)
through characterizing the region surrounding a growth-related
QTL in M. japonicus. However, it remains unclear if this finding is
indicative of the true genetic factor driving phenotypic variation,
or if the association occurs through the co-localisation of a
number of growth related genes in penaeids as suggested by
Andriantahina et al. (2013).

Recently, a small number of QTL studies have been
undertaken with vastly improved marker densities (3,959-4,626
SNPs), providing an improved ability to dissect the underlying
genetic variation of traits. Robinson et al. (2014) utilized a
SNP-based linkage map developed by Baranski et al. (2014) to
investigate differences in survival time post-WSSV infection in
P. monodon. Likewise, Yu et al. (2015) and Lu et al. (2016b)
identified QTLs associated with growth in L. vannamei, and
growth and high-temperature tolerance in M. japonicus. Unlike
Robinson et al. (2014) both Yu et al. (2015) and Lu et al.
(2016b) did not look to characterize the regions surrounding the
identified QTLs, furthermore Lu et al. (2016b) did not compare
findings with earlier growth QTLs observed by Li Y. et al. (2006).
As such, while these studies provide the fundamental insight
into the genetic architecture of these traits, they fall short of
providing the opportunity to apply the findings to improve
the selection of broodstock. Integration of dense linkage maps,
transcriptome datasets, and genomic assemblies will facilitate the

characterisation of QTLs and further extend the utility of the
research findings and should be required for publication of future
penaeid QTL studies.

Genome-Wide Association Studies

In the quantitative study of traits, the commonly excepted
paradigm has largely shifted away from searching for the
presence of a single gene or locus driving trait performance, to
that where traits are more likely underpinned by tens to hundreds
of genes, or regions of small effect, often dispersed across multiple
chromosomes of the genome. Since it is possible to generate a
high density of genome-wide markers, livestock, and crop species
now predominately undertake a number of high resolution
genome-wide association studies [GWAS; including regression
models, linear mixed models, and a number of Bayesian mixed
models (e.g., Bayes R, Bayesian Lasso, Bayes A)] in an effort
to obtain a more accurate understanding of the number and
distribution of trait associated loci along with their effect on
commercially relevant traits.

To date, only two GWAS studies (Robinson et al., 2014;
Khatkar et al., 2017b) have been published for penaeids. Both
studies successfully identifying a number of loci significantly
associated with sex confirming of observations of earlier QTL
studies (Staelens et al., 2008) by concluding that sex in penaeids
was likely a simple, genetically determined trait. Furthermore,
Robinson et al. (2014) utilized three GWAS analysis approaches
in tandem, to identify two markers associated with WSSV
resistance (one marker with GRAMMAS and FASTA, one marker
with QFAM). The limited identification of markers associated
with this complex trait may stem from the limited samples
size utilized (1,024 individuals) in the case the trait is highly
polygenic, or as suggested previously by Hayes et al. (2010) there
may be limited genetic variation underlying WSSV resistance
of P. monodon (heritability < 0.001). While both markers
were derived from RNA-Seq transcripts they were not further
characterized in the study. Given the desire to selectively breed
for disease resistance, further study of this trait, along with
characterization of the markers associated should be completed
to inform selective breeding programs.

In the second penaeid GWAS study, Khatkar et al. (2017b)
found no significant associations of markers with the growth
of L. vannamei after completing false-discovery-rate corrections
for multiple tests. It is suggested by this study that no gene of
large effect regulates growth, however, this finding contrasts those
obtained earlier through QTL analysis by Yu et al. (2015) with the
largest QTL found to explain 17.9% of phenotypic variation in
L. vannamei. This may have resulted from the small number of
phenotypic records used by Khatkar et al. (2017b), along with the
use of genotypic information derived from pooled DNA samples.
Furthermore additional individuals with genotype information
and phenotypic records are required (~10,000) to undertake
GWAS studies when including a large number of markers (5000
10,000), as each additional marker adds increasingly stringent
multiple testing corrections (i.e., false-discovery-rate or FDR,
Bonferroni corrections) that without sufficient detection power
can eliminate otherwise potentially associated markers (Korte
and Farlow, 2013). When investigating complex traits (those
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underpinned by multiple genomic regions of small effect) the
expected effect size of each individual marker is small (each
driving <1% of phenotypic variation) and can be overlooked
by QTL and GWAS analysis methods, particularly when a small
number of individuals (e.g., <5000-10,000) are utilized (Visscher
et al., 2014). To date, no Bayesian association approaches have
been used in GWAS, with linear mixed models (ASReml, FASTA,
GRAMMAS) or linear regression (QFAM) employed instead.
Use of Bayesian approaches may decrease bias in estimates of
SNP effect size, by allowing SNP effects to be modeled from a
mixture of normal distributions [i.e., small, medium, and large
effect sizes (Goddard et al., 2016)]. These Bayesian approaches
have been used in initial exploration of genomic selection models
of penaeids, but did not explore or comment specifically on any
associations found with traits (Wang et al., 2017).

Use of Genome-Wide Trait Association

Information in Penaeid Breeding

While GWAS can identify loci underpinning the performance
of traits, it is unlikely single or only a few markers can be
utilized in isolation to select superior animals (e.g., Marker
Assisted Selection, MAS), as a limited number of loci may not
capture sufficient contribution of the true trait performance.
Successful attempts to integrate MAS in aquaculture are limited,
and are increasingly being overlooked in favor of alternative
methods, and as such are not discussed in detail in this review.
Like those of livestock species, panels containing 50-100s of
markers [e.g., for feed efficiency in beef cattle (Abo-Ismail
et al, 2018)] can be developed to allow low cost prediction
of animal performance, but can often be poor at capturing
sufficient trait variation to make accurate breeding decisions.
Ultimately, it is expected as additional genomic resources become
available and are integrated (i.e., linkage maps used for QTL
studies are integrated into genomic assemblies), it will be
possible to characterize trait associated genomic regions to
the resolution of each underlying gene or possible causative
mutations (Quantitative Trait Nucleotides, or QTN). However,
due to the high commercial value of robust predictive markers
for advanced penaeid breeding, it is likely that some research
findings will be restricted from public scrutiny (Benzie, 2009).
As an example of this, a patent (Vuylsteke et al., 2012) has been
obtained for a sex-specific genetic marker identified by Staelens
et al. (2008), due to the potential economic value of use within
the production process of monosex populations of P. monodon.
The publication of full datasets is often restricted due to the
considerable investment required to generate large phenotypic
and genotype datasets, along with an increasing recognition of
the competitive value of genomic-based information generated
under industry based partnerships.

In the long term, it is likely that selection for polygenic
traits will instead be enhanced through genomic selection (GS),
where genome wide information is used to ascertain genomic
relationships among individuals, and combined with the effect
size of each trait associated SNP markers to generate a genomic
estimate breeding value (gEBV). Unlike the low density trait
specific panels available for livestock, by utilizing genome-wide

information GS allows recalculation and reconfiguration of
the models underlying gEBVs, based on progressively updated
genetic maps (e.g., linkage and LDU map). In addition, SNP
effects are also continuously updated due to the observed
LD decay between SNPs and trait locus across subsequent
generations (Amaral et al., 2008). LD decay is expected to occur
more rapidly given the relatively outbred status of penaeids
in current and future breeding programs (Wang et al., 2016,
2017), when compared to most livestock species (e.g., cattle,
sheep, horses, pigs, goats; Hall, 2016). Early modeling of
genomic selection and prediction accuracy has been completed in
L. vannamei (Wang et al., 2016, 2017), and indicates the ability
to undertake genomic selection with a density of genome-wide
markers (~3,200) currently available in commercial products
(e.g., the Infinium ShrimpLD-24 v1.0 Bead Chip; Jones et al.,
2017a). The effects of population stratification and marker
number have been explored, however, prediction accuracy has
only been estimated in internal subsets, rather than in subsequent
novel generations. Mean reliability of the gEBV's (generated with
BayesA, rrBLUP, and Bayesian LASSO) for body weight and body
length, were 0.411 and 0.029 respectively (Wang et al., 2016),
however, these values may decrease under empirical forward-
prediction validation (Daetwyler et al., 2013). Additional samples
[currently 200 individuals from 13 full-sib families (Wang et al.,
2016)], as well as inclusion of half-sib families would provide
more robust prediction capacity through improved estimates of
SNP effects and division of maternal and paternal influences
on trait performance. Further exploration of genomic selection
breeding program designs (within- vs. between-family GS) and
genotyping marker density should also be completed to ensure
optimisation of genetic gain, in relation to cost of genotyping and
inbreeding rates achieved (Lillehammer et al., 2013).

CONCLUSIONS

The field of penaeid genomics has seen considerable research
applied over the past 30 years. Recent advances in “omics”
research has continued to push the industry toward broad-
scale uptake of genomic resources, particularly toward the
implementation of genomic selection, and has begun to provide
the understanding to overcome a number of the impediments
faced by industry. However, the resources available currently
require further development to ensure wide-scale use is feasible,
and that studies being undertaken provide the most informative
results possible to aid industry development. With this in mind,
suggestions for areas of research focus are;

- Incorporation of error-corrected long-read sequencing
information and optical mapping to complete long standing
genome assembly projects.

- Integration of resources (linkage maps, physical maps,
annotated transcriptome, characterized proteome data, and
genome sequence) to form a complete and highly informative
dataset that can be provided in a genome browser

- Development and public provision of cost effective genotyping
resources for use in commercial scale genomic selection
programs, as well as quantitative traits studies (e.g., GWAS).
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Where possible consistent marker sets should be used to allow
progressive improvement of datasets and comparison between
studies.

- Development and release of high-density linkage maps (with
minimal “binned” markers) and LDU maps to understand
genome architecture, genome evolution, and inform genomic
selection practices.

- Annotation of shrimp specific proteins and transcripts, as
well as those conserved across taxa, to provide a complete
understanding of the functional elements dictating shrimp
performance. Cataloging of these should be maintained in
public repositories to allow follow up studies (CRISPER or
RNAi knockdown) to confirm role of identified targets of
potential commercial importance.

- Undertaking of empirical forward-prediction genomic
selection studies which incorporate traits of commercial
importance (e.g., growth, disease resistance), to allow
determination the most effective approach for the industry
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