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The high genetic complexity found in heterogeneous stock (HS-CC) mice, together with
selective breeding, can be used to detect new pathways and mechanisms associated
with ethanol preference and excessive ethanol consumption. We predicted that these
pathways would provide new targets for therapeutic manipulation. Previously (Colville
et al., 2017), we observed that preference selection strongly affected the accumbens
shell (SH) genes associated with synaptic function and in particular genes associated
with synaptic tethering. Here we expand our analyses to include substantially larger
sample sizes and samples from two additional components of the “addiction circuit,”
the central nucleus of the amygdala (CeA) and the prelimbic cortex (PL). At the level of
differential expression (DE), the majority of affected genes are region-specific; only in the
CeA did the DE genes show a significant enrichment in GO annotation categories, e.g.,
neuron part. In all three brain regions the differentially variable genes were significantly
enriched in a single network module characterized by genes associated with cell-to-cell
signaling. The data point to glutamate plasticity as being a key feature of selection for
ethanol preference. In this context the expression of Dlg2 which encodes for PSD-93
appears to have a key role. It was also observed that the expression of the clustered
protocadherins was strongly associated with preference selection.

Keywords: RNA-Seq, collaborative cross, nucleus accumbens shell, central nucleus of amygdala (CeA), prelimbic
cortex, network analysis

INTRODUCTION

Beginning with Lewohl et al. (2000) there are now more than 200 studies using some form
of genome-wide profiling to examine the relationships among alcohol effects, excessive alcohol
consumption and the brain transcriptome. Contet (2012) reviewed the existing literature and
noted that the genes associated with the risk of excessive consumption and/or the effects of
excessive consumption had regionally specific effects on gene expression. Subsequent studies
have confirmed and extended the “region” effect (e.g., Melendez et al., 2012; Osterndorff-
Kahanek et al., 2015; Smith et al., 2016; Mulligan et al., 2017). It is important to note that these
studies also by and large confirmed earlier observations (e.g., Kimpel et al., 2007) that regional
differences in gene expression are generally far greater than the effects of treatment, strain or
line (e.g., Mulligan et al., 2017). From a somewhat different perspective we have also observed
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that the regional transcriptional network signature is largely
independent of genetic diversity (Iancu et al., 2010).

In the current study we explore at the regional level
how selection for ethanol preference affects the transcriptome.
The regions compared (nucleus accumbens shell [SH], central
nucleus of the amygdala [CeA], and prelimbic cortex [PL]) are
components of the addiction circuit (Koob and Volkow, 2010,
2016). A previous study (Dhaher et al., 2008) suggested that the
CeA but not the SH has a more significant role in preference
(2-bottle choice) consumption. The short-term selection of the
High and Low ethanol preference lines from heterogeneous
stock-collaborative cross (HS-CC) founders has been described
elsewhere (Colville et al., 2017). After three generations of
bidirectional selection, the difference in the ethanol preference
ratio was 0.49 vs. 0.15 in the High and Low lines, respectively.
Sixty-five percent of the High females and 37% of the High males
had a preference ratio of >0.5 compared with 6.5% of the Low
females and 2.3% of the Low males. The HS-CC founders (formed
from five laboratory and three wild-derived strains) provide
substantially more genetic diversity than would be available in F2
intercrosses or HS animals formed solely from inbred laboratory
mouse strains (Roberts et al., 2007). It is estimated that the HS-
CC founder strains encompass >90% of Mus musculus genetic
diversity (Churchill et al., 2004).

Colville et al. (2017) used RNA-Seq to examine how
High/Low line selection affected the SH transcriptome. The
data analysis emphasized the effects of selection on gene
networks. Networks were constructed using the weighted gene
coexpression network analysis (WGCNA) (Zhang and Horvath,
2005). Selection targeted one of the network coexpression
modules that were significantly enriched in genes associated
with receptor signaling activity, including Chrna7, Grin2a,
Htr2a, and Oprd1. Connectivity in the module as measured
by changes in the hub nodes was significantly reduced in
the low preference line. The current study expands on these
observations by asking what features are regionally specific
or non-specific. For this purpose, sample sizes have been
substantially increased from Colville et al. (2017) to insure
the high quality of network structures across brain regions
(see Langfelder et al., 2011).

MATERIALS AND METHODS

Husbandry
The short term selection lines (Colville et al., 2017) were
obtained from the colony at the Portland VA Medical
Center, an AAALAC approved facility. All procedures
were in accordance with the VA Institutional Animal
Care and Use Committee and were performed according
to NIH Guidelines for the Care and Use of Laboratory
Animals. Mice were maintained at 21 ± 1◦C in plastic cages
(19 cm × 31 cm × 13 cm) on Eco-Fresh bedding (Absorption
Corp.) with tap water and Purina 5001 chow (PMI Nutrition
International, Brentwood, MO, United States) given ad libitum.
Pups were weaned and housed with same-sex litter mates
at postnatal day 21.

Selection
Selection details are found in Colville et al. (2017). Briefly, HS-
CC founders (Iancu et al., 2010) were selected for breeding based
on their preference for 10% ethanol vs. water. Beginning with 200
founders, the 20 males and 20 females with the highest preference
values were paired, with brother-sister matings avoided, to
create a “High” preference line; similarly, the 40 mice with the
lowest preference scores were paired to create a “Low” line.
∼200 pups from each generation were weaned and tested at
adulthood as above for three subsequent generations; active
selection concluded at S3. S4 alcohol-naive pups were used for
genetic analyses.

Dissection of Tissue and Extraction of
RNA
At 8 weeks of age, naive S4 mice, balanced for sex and
line, were euthanized, the brains removed and immediately
frozen on dry ice. Frozen brains were sliced in 55 micron
coronal sections on a freezing microtome at −13◦C and slices
containing the nucleus accumbens, the amygdala, and the medial
prefrontal cortex were mounted on PEN slides. Mounted slices
were lightly thionin-stained under RNAse-free conditions and
dehydrated in increasing concentrations of ethanol diluted in
RNAse free water (50, 70, 95, and 100%) for 30 s each and
then air-dried. The shell of the accumbens (SH), the CeA
and the PL were dissected bilaterally on a Leica LMD-6000
using known anatomical landmarks (Franklin and Paxinos,
2008). Dissected tissue was processed with the ARCTURUS
PicoPure kit. RNA quality was assessed using the Caliper
LabChip GX and RNA Quality Scores (RQS). Only samples
with RQS scores of >7 and >100 ng of total RNA were used
for library formation. Sample numbers were as follows: SH-
71; CeA-67; and PL-54. For reasons that were not clear, the
percentage of extractions from the PL for high quality RNA was
significantly lower.

RNA-Seq
Library formation (polyA+, stranded) and sequencing were all
performed according to Illumina’s specifications at the OHSU
Massively Parallel Sequencing Shared Resource. Libraries were
multiplexed six per lane, yielding approximately 25–30 million
totals read per sample. FastQC was used for quality checks on
the raw sequence data. Sequence data were then aligned using
STAR [Spliced Transcripts Alignment to a Reference (Dobin
et al., 2013)] allowing for a maximum of three mismatches
per 100 bp read. For all samples >85% of the reads uniquely
aligned. Using the featureCounts suite (Liao et al., 2014), reads
were aligned to known genomic features to generate counts at
the gene level. Gene expression data were imported into the
R application environment; upper-quartile normalization was
performed using the edgeR Bioconductor package (Robinson
et al., 2010). The gene read density threshold for inclusion
in the network analyses was an average of >1 count per
million (CPM). Network connectivity for coexpression was
calculated as described elsewhere (Colville et al., 2017). The
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expression data have been deposited to NCBI’s Gene Expression
Omnibus1.

Differential Expression (DE), Differential
Variability (DV), and Differential Wiring
(DW) Analyses
Differential expression was determined using edgeR, with
the option of “tagwise” dispersion. Adjustment for multiple
comparisons was performed using the SGOF procedure
(de Uña-Alvarez, 2012). The threshold for significance was set
at adjusted p-value < 0.05, although for module enrichment
we utilized unadjusted p-values < 0.01. For gene differentially
variable (DV), we utilized the “var.test” procedure in the R “stats”
package; the threshold for significance was also set at adjusted
p-value < 0.05. To mitigate the computational load for detecting
differential wiring (DW), we restricted the search to Pearson
correlations between individual genes that differed by >0.5. This
general procedure has been used to quantify network rewiring
in both genomic (Gill et al., 2010) and neural imaging studies
(Hosseini et al., 2012). Using this procedure, we identified for
each gene, the number of changed edges and then inquired as to
whether some genes had a disproportionately high number of
changing edges. For the latter, the binomial test was used with
the following parameters. The average incidence of changing
edges (the rate of the binomial test) was computed by dividing
the number of changing edges (p < 0.01) by the total number of
network edges. The number of trials (for each gene) was equal to
the number of edges. The number of “successes” was equal to the
number of changing edges.

Coexpression Network Construction
The coexpression network was constructed by means of
the WGCNA (Langfelder and Horvath, 2008; Iancu et al.,
2012). We started by constructing adjacency network matrices
independently for each region by computing the Pearson
correlation between all gene pairs. These values were raised
to a power β = 6 for all regions, which was chosen such
that the network approaches a scale-free structure (exponential
distribution of node connectivity).

Given that biological mechanisms of network components
are best captured by the most connected genes, we restricted
the size of the network to genes that were in the top 80% with
regards to connectivity. This also reduces the overall network size
and decreases the computational load while preserving scale-free
topology. The resulting networks contained ∼6,500 genes in the
three networks (see Supplementary Tables).

We clustered the adjacency matrices utilizing average linkage
and the WGCNA cuttreeHybrid function with the following
parameters: cutHeight = 0.9995, minClusterSize = 100, and
deepSplit = 4. The resulting clusters (denoted as modules)
are uniquely identified by arbitrarily chosen colors which are
independently generated for each brain region.

To determine the extent to which modules are preserved
across brain regions we employed two complementary

1http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65950

procedures. First we utilized the WGCNA modulePreservation
function to check whether modules detected in one region
show increased coexpression/connectivity in the other regions,
recognizing that they might be distributed across different
modules even if preserved. A second measure of module
preservation was computed based on the gene overlap between all
module pairs in all three regions, which is denoted as tabulation-
based module preservation in the modulePreservation WGCNA
function (Langfelder et al., 2011).

Coexpression Module Characterization
Module enrichment in DE, DV, and DW genes was used to assess
the effects of selection on network structure. We considered
a module “enriched” based on overlap between module genes
and DE/DV/DW genes, using Fisher’s exact test with Bonferroni
correction for number of modules. The Gorilla algorithm (Eden
et al., 2009) was used to provide a visual representation of
GO annotation enrichment. To implement a ranking procedure
we integrated differential network results at the module and
gene summarization level into a comprehensive gene screening
procedure. Modules enriched in gene or edge changes were the
primary focus of further annotations. At the individual gene
level, we focused on module hubs with normalized intramodular
connectivity above 0.8 (see Colville et al., 2017; Iancu et al., 2018).

RESULTS

Summary of Gene Expression Data in the
SH, CeA, and PL
The average gene expression levels across the three brain regions
are presented in Supplementary Table S1; data are provided
for the Ensembl annotated “genes” (N = 42,282). In all regions
approximately 15,000 “genes” met the threshold of one CPM
reads. Genes showing at least a 10-fold difference in expression
between two regions are also found in Supplementary Table S1.
Some expected examples include the high expression of Adora2,
Penk, and Drd2 in the CeA and SH and the high expression of
Bdnf and Cck in the PL.

Gene Coexpression Networks
Gene networks were constructed using the WGCNA as described
elsewhere (Colville et al., 2017). Initially all genes meeting
the expression criteria of one CPM were entered into the
analysis using a consensus module approach (Iancu et al.,
2010). The number of genes in each network was then culled
to include only those genes that contribute >80% of the
total network connectivity. It was these reduced sets of genes
(∼6,500/region) that were entered into subsequent analyses.
Modules were color coded arbitrarily within or across regions.
Supplementary Table S2 also provides annotation for which
network modules were significantly enriched in genes associated
with neurons, astrocytes, and oligodendrocytes (Cahoy et al.,
2008). We investigated the interaction subnetwork of Dlg2, a
gene affected by selection and well-connected in the network.
Utilizing the GeneMANIA (Warde-Farley et al., 2010) software as
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implemented in the associated Cytoscape (Shannon et al., 2003)
plugin, we found a number of non-transcriptional mechanisms
by which Dlg2 interacts with other members of the glutamate
family (Figure 1).

Module Preservation and Affected Gene
Module Distribution Across Regions
Utilizing the tabulation-based module preservation procedure,
we quantified the extent to which modules overlap across regions.
The vast majority of modules were preserved across regions (Z
summary > 2), as described in Langfelder et al. (2011). There
were a few exceptions: the CeA modules cyan, greenyellow,
midnightblue, and yellow were either not preserved or only
mildly preserved (2 < Z summary < 3) in both SH and PL. The
SH modules grey60 and lightgreen were not preserved in either
CeA or PL; additionally SH lightcyan was not preserved in CeA.
The PL module midnightblue was not preserved in the CeA. The
rest of the modules were either preserved (2 < Z summary < 10)
or in most cases highly preserved (Z summary > 10). These
results illustrate that transcriptional network organization is
overall preserved across brain regions, although the strength of
interaction varies.

We also utilized a complementary module preservation
measure which is tabulation-based and uses the Fisher exact
test. This measure evaluates whether the intersection of two
modules originating from different brain regions is greater
than what can be expected by chance. We found that in
most cases each module has one or at most 2–3 counterparts
in different brain regions (Figure 2). When overlaying the
DE/DV/DW information on the module overlap, a complex
picture emerges. We have examples of counterpart modules
being affected across region, for example the DW CeA blue
module having a very strong counterpart in the DE SH lightgreen
module (Figure 2A). Another example of concordance across
regions includes the DE, DV, and DW SH magenta module
having a strong counterpart in the DV, DW PL brown module
(Figure 2C). The clearest example of lack of concordance is the
DE, DV, DW SH magenta module with no counterpart in the CeA
(Figure 2A).

Differential Expression (DE) Across
Regions
There were 398, 302, and 183 genes showing significant (adjusted
p-value < 0.05) DE between the High and Low selected
lines in the CeA, SH, and PL, respectively (Supplementary
Table S3). The overlap in DE is illustrated in Figure 3. Only
five genes (5730455P16Rik, Gdi2, Skiv2, Tsr1, and Glod4), all
with increased expression in the High line, showed common
DE. The overlap for DE was highest between the SH and
CeA (N = 31). Genes in all the overlapping categories are
listed in Supplementary Table S3. Only one gene showed a
difference in the direction of DE between regions; Doc2b showed
increased/decreased expression in the High line (PL vs. SH).
GO annotation of the CeA DE genes revealed a significant
enrichment in genes associated with the neurononal component
(FDR < 3 × 10−5), structural constituent of myelin sheath

FIGURE 1 | Interaction partners for Dlg2 extracted using Gene Mania
(Warde-Farley et al., 2010) which was accessed as a Cytoscape plugin with
default settings. Depicted are top 20 genes related to Dlg2 through physical
interactions, colocalizations, or sharing protein domains. Dlg2 which encodes
for PSD93, interacts with a number of genes and gene products associated
with glutamate receptor activity including Dlg4, Syngap1, Neto, Grin1, Grin2b,
Dlgap1, and Dlg3.

(FDR < 4 × 10−3) and axon ensheathment (FDR < 7 × 10−3)
(Supplementary Table S4). Genes in the neuron part category
included Adora1, Chrna4, Crhr1, Drd1a, Gabbr2, Gabrd, Gal,
Htr1a, Htr2a, Htr7, Pde1b, Reln, Syt2, and Tac1. The CeA DE
genes were significantly (corrected p < 8× 10−7) enriched in the
yellow network module (Supplementary Table S2). The yellow
module was enriched in annotations associated with plasma
membrane (FDR < 5 × 10−4), regulation of nervous system
development (FDR < 4 × 10−4) and structural constituent of
myelin sheath (FDR < 9 × 10−3; Supplementary Table S4).
The average relative intramodular connectivity (full scale – 0.0 to
1.0) for the yellow module DE genes in the Low and High lines
was 0.30 and 0.31, respectively (see Supplementary Table S3).
Five of the 109 DE yellow module genes were hub nodes
(relative connectivity >0.80 in either the High or Lines or both
lines). These genes were Rbm24, Dock10, Prkcd, Rap1gap, and
Spg2.

There was no significant enrichment in any GO annotation
for the DE genes in the SH. Similarly, this group of genes was
not enriched in any of the SH network modules. The average
relative intramodular connectivity for these DE genes in the Low
and High lines was 0.41 and 0.39, respectively.

There was no significant enrichment in any GO annotation
for the DE genes in the PL. This group of genes was however,
significantly enriched (p< 4× 10−5) in the PL turquoise network
module. This module was enriched in genes with the Rho GTPase
binding annotation (FDR < 6 × 10−3). The average relative
intramodular connectivity for these DE genes in the Low and
High lines was 0.43 and 0.32, respectively (p < 0.003). Five of the
83 DE turquoise module genes were hub nodes. These genes were
Mapk7, Pcgf2, Leng2, Col5a3, and Pabpn1.
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FIGURE 2 | Module overlap across brain regions together with enrichment of
modules in DE/DV/DW genes. Color from blue to red is proportional to
–log10(p) of overlap between module membership (Fisher exact test).
A majority of modules have strong counterparts across regions. The affected
modules also have an affected counterpart in a majority of cases, although we
also find region specific affected modules. (A) CeA – SH; (B) CeA – PL;
(C) SH – PL.

Differential Variability (DV) Across
Regions
There were 424, 479, and 236 genes showing significant (adjusted
p-value < 0.05) DV between the High and Low selected lines

in the CeA, SH, and PL, respectively (Supplementary Table S5).
The overlap in DV is illustrated in Figure 3C. Thirty genes were
common to all three regions and this grouping was significantly
(FDR < 3 × 10−3) enriched in genes associated with cell-to-
cell signaling. Genes with this GO annotation included Dlg2,
Egr3, Gabbr2, Lnpep, Pcdhgb2, Pcdhac2, Sstr4, and Syt10. The
overlap in genes (N = 44) between the PL and SH showed
a significant enrichment in genes with the GO annotation of
neuron projection (FDR < 6 × 10−3). Genes with this GO
annotation included Bace1, Cpeb3, Fzd3, Igf1r, Igsf9, Kcna3,
Kcnb1, Kcnma1, Slc8a1, Sv2c, Tenm1, and Tenm3. In all three
regions the direction of the DV was High line > > Low line.

GO annotation of the CeA DV genes revealed a significant
enrichment in genes associated with cell-to-cell signaling
(FDR < 3 × 10−4; Supplementary Table S7). Genes in
this category and not already noted above included Chat,
Gabrg3, Glra3, Gpr88, Ntrk2, Pten, Sdcbp, and five additional
protocadherins. The CeA DV genes were significantly (1× 10−8)
enriched in a single network module, blue. Annotations for the
blue module included synaptic membrane (FDR < 5 × 10−2)
and cell-to-cell signaling (FDR < 2 × 10−7; Supplementary
Table S6). The blue module contained most of the cell-to-
cell signaling genes noted above and included Chrm5, Chrna7,
Chrnb2, Grid1, Grik3, Grin2a, Grin2b, Htr5a, and Sv2c; the
module was also associated with 16 protocadherin genes. For
the blue module DV genes, intramodular connectivity was
significantly different between the Low and High lines (0.32 vs.
0.48, p< 1× 10−16). The most prominent change in connectivity
for non-hub to hub status was seen forNtrk2 (0.197 vs. 0.821; Low
vs. High line). Nrtk2 encodes TrkB, a receptor for Bdnf.

GO annotation of the SH DV genes revealed a significant
enrichment in genes associated with cell-to-cell signaling
(FDR < 2 × 10−4; Supplementary Table S6) and neuron
projection (FDR < 7 × 10−3). The signaling genes (N = 33)
in addition to the common DV genes noted above included
Chat, Chrna7, Grik2, Grin2b Htr1b, Htr2a, Oprd1, Sv2c, and 10
protocadherins. The SH DV genes were enriched (p< 2× 10−21)
in a single network module, magenta; 187 or the 231 members
of the magenta module were significantly DV between the High
and Low selected lines. The magenta module was enriched in
genes associated with cell-to-cell signaling (p < 3 × 10−11) and
neuron part (p < 4 × 10−5; Supplementary Table S6). The
magenta module signaling genes overlapped with those noted
above, e.g., Chrna7 and Grin2b, and included 12 protocadherins.
Focusing on the DV genes within the magenta module, average
intramodular connectivity increased from 0.34 to 0.73 (Low vs.
High; p < 1× 10−63). Genes showing large changes (non-hub to
hub status; Low vs. High) included Pde4d, Adra1a, Pcdhga8&6,
and Ncam2.

GO annotation of the PL DV genes revealed a significant
enrichment in genes associated with signal transduction
(FDR < 1 × 10−6), cell to cell signaling (FDR < 1 × 10−4) and
neuron part (FDR < 8 × 10−9) (Supplementary Table S6). The
signaling genes overlap with those noted above but also include
Nos1 and Gm3. The PL DV genes were enriched (p < 3× 10−10)
in a single network module, brown. GO annotations for the
brown module included neuron part (FDR < 5 × 10−11), PDZ
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FIGURE 3 | Overlap of selection associated DE, DV, and DW genes across three brain regions: CeA, SH, and PL. (A) As indicated in the Venn diagram (B) there was
only 5 DE genes common to all three brain regions: 5730455P16Rik,Gdi2, Skiv2, Tsr1, and Glod4. The region and module distribution of these genes is illustrated.
The greatest overlap was between the CeA and SH (N = 31). Only annotation of the CeA DE genes revealed a significant enrichment in GO categories that included
neuron part, structural constituent of myelin sheath and axon ensheathment. Genes in the neuron part category included Adora1, Chrna4, Crhr1, Drd1a,Gabbr2,
Gabrd, Gal, Htr1a, Htr2a, Htr7, Pde1b, Reln, Syt2, and Tac1. (C) Overlap of selection associated DV genes across three brain regions: CeA, SH, and PL. There were
30 significant DV genes common to all three brain regions and this grouping was significantly enriched (FDR < 3 × 10–3) in genes associated with the GO annotation
of cell to cell signaling. Genes with this GO annotation included Dlg2, Egr3, Gabbr2, Lnpep, Pcdhgb2, Pcdhac2, Sstr4, and Syt10. The significant DV genes unique
to each brain region also showed an enrichment in genes associated with cell to cell signaling. (D) Overlap of selection associated DW genes across three brain
regions: CeA, SH, and PL. There were 72 significant DW genes common to all three brain regions and this grouping was significantly enriched (FDR < 5 × 10–3) in
genes associated with the GO annotation of post-synapse. Genes with this GO annotation included Chrna7, Als2, Pppir9a, Strn, Kcna4, Kif1a, and Slc1a2. Genes
showing unique DW to each of the three brain regions were enriched in genes associated with the GO annotation synapse or synapse part.

domain signaling (FDR < 1 × 10−2) and cell to cell signaling
(FDR < 7× 10−11). The signaling genes (N = 49) largely overlap
the signaling genes in the blue and magenta modules noted
above and include a large number (N = 18) of protocadherins,
also seen prominently in the SH results. Focusing on the brown
module DV genes, average intramodular connectivity differed
between the High vs. Low lines (0.72 vs. 0.40; p < 5 × 10−20).
Genes showing large differences in hub status (High > > Low)
included Syt10, Dgkh, Grin2a, and Adra1a.

Differential Wiring (DW) Across Regions
There were 1,392, 1,445, and 879 genes showing significant
(adjusted p-value < 0.05) DW between the High and Low selected
lines in the CeA, SH, and PL, respectively (Supplementary
Table S7). The overlap in DW is illustrated in Figure 3D.
Seventy-two genes were common to all three regions and this
grouping was significantly (FDR < 5 × 10−3) enriched in genes
associated with the post-synaptic component. Genes with this
GO annotation included Chrna7, Als2, Pppir9a, Strn, Kcna4,
Kif1a, and Slc1a2 (Supplementary Table S8). The overlap in
genes between the PL and SH (N = 123) showed a significant
(FDR < 2 × 10−2) enrichment in genes with the synaptic

membrane annotation; these genes included Arrb1, Itgb1, Cpd,
Akap5, Rim1, Shank3, Ptprz1, Gm3, Ank2, Gm1, and Cntmap2.
There was no annotation enrichment in the overlapping genes
between the PL and CeA. The overlapping genes between the CeA
and the SH (N = 309) showed a significant (FDR < 2 × 10−3)
enrichment in genes associated with the neuronal component
(Supplementary Table S8); genes in this category (N = 60)
included Calm1, Gad2, Nlg1, Oprd1, Pten, Rab10, and Sv2a.

GO annotation of the CeA DW genes revealed a significant
enrichment (FDR < 4× 10−7) in genes (N = 118) associated with
the synaptic component (Supplementary Table S8); genes in this
category included Cnr1, Dlg1, Gabra4, Gabrb3, Gabrg3, Gphn,
Gria2, Grid2, Grik3, Grin2b, Grm5, Slc1a2&3, Stx1b,2&3, and
Syap1. The CeA DW genes were enriched in three modules: blue,
magenta, and turquoise (Supplementary Table S8). The blue
CeA module is described above. The magenta module did not
have a significant enrichment in any GO category. The turquoise
module was enriched in the categories macromolecule metabolic
process (FDR < 1 × 10−8), ubiquitin–protein transferase
activity (FDR < 2 × 10−4) and membrane-bound organelle
(FDR < 1 × 10−9). It also should be noted that for six
modules, the number of DW genes was significantly less than
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expected; these modules were significantly conserved in response
to selection. For the DW genes in the blue, magenta, and
turquoise modules, intramodular connectivity (Low vs. High;
0.26 vs. 0.55) was significantly different (p < 1 × 10−95). Large
changes (>0.5 in relative connectivity) were noted for the genes
Cab39, Nrtk2, Ankrd10, and Mov10; all of these genes increased
relative connectivity from the Low to the High line. Additional
details for Nrtk2 are noted above.

GO annotation of the SH DW genes revealed a significant
enrichment (FDR < 4 × 10−12) in genes (N = 137) associated
with the synaptic component (Supplementary Table S8); genes
in this category and not noted previously included Adam10,
Arrb1, Epha4, Grm4&7, Homer1, P2ry1, Snap25&29, Synpo, and
Synpr. The SH DW genes were enriched in five network modules,
most prominently in the green module (p < 4 × 10−9). The
green module was significantly enriched in genes associated
with the synaptic component (p < 2 × 10−8), nervous system
development (p< 1× 10−4) and enzyme binding (p< 2× 10−2).
For nine modules, the number of DW genes was significantly less
than expected. For the green module DW genes, intramodular
connectivity on average showed no change between the Low and
High lines (0.61 vs. 0.62, respectively).

GO annotation of the PL DW genes revealed a significant
enrichment in genes (N = 75) associated with the synaptic
component (FDR < 2× 10−8) and in genes (N = 282) associated
with development (FDR < 2 × 10−4; Supplementary Table S8).
Genes in the synapse category and not noted previously included
Cadm1&2, Dmd, Kcna2&4, Phactr1, Snph, Sntb1, and Tln1.
The PL DW genes were significantly enriched in two network
modules, brown and green. The brown module is described
above. The green module was enriched in genes associated with
regulation of cellular localization (FDR < 2× 10−2) and in genes
associated with the neuronal component (FDR < 6 × 10−4).
Different from the CeA and SH, only one PL module (yellow)
showed significant conservation (corrected p < 0.05). For the
brown module DW genes, relative intramodular connectivity
increased in the High vs. Low line (0.59 vs. 0.24; p < 6 × 10−56).
Genes moving from non-hub status (Low line) to hub status
(High line) included Sox6, Egr3, Soga3, Pcdhgb5, Pcdhga8,
Senp5, and Prkg1. For the green module DW genes, relative
intramodular connectivity increased in the High vs. Low line
(0.52 vs. 0.21; p< 2× 10−37). Genes moving from non-hub status
(Low line) to hub status (High line) included Ncoa4, Edem3,
Xpr1, and Necab1.

DISCUSSION

We recognize that there are many strategies available for
analyzing complex datasets, such as those presented here, and
each will emphasize somewhat different aspects of the data.
The approach taken here is one that we have used previously
(Colville et al., 2017; Iancu et al., 2018). The key metrics; DE,
DV, and DW, are computationally straightforward and can be
easily replicated. The WGCNA has greatly matured since its
introduction (Zhang and Horvath, 2005) and has been used
in more than 300 publications. In the current study we have

focused our investigations on those genes that contribute to at
least 80% of network connectivity. This thresholding reduced the
number of genes considered for further analyses from ∼15,000
to ∼6,500 in each of the three brain regions. The genes culled
are “leaf” nodes with low connectivity. While selection will
have significant effects on some of these culled genes, none
will be hub nodes. We also note that the sample sizes used in
the current study were sufficient to produce networks of high
quality (Langfelder and Horvath, 2008). The selection of the
High and Low ethanol preference lines from HS-CC founders has
been described elsewhere (Colville et al., 2017). The HS-CC was
derived from eight mouse strains, including three wild-derived
strains; the genetic diversity captured is∼90% of that available in
M.musculus (Roberts et al., 2007). The preference lines were bred
using a short-term selective breeding protocol (Belknap et al.,
1997; Metten et al., 2014) that minimizes the stochastic fixation of
alleles unrelated to the phenotype of interest, here 2-bottle choice
ethanol preference. From the perspective of ethanol preference
and consumption, the HS-CC are of interest in that ∼25% of
the animals show a preference for ethanol; this differs from
a <5% preference found in our HS/NPT mice (unpublished
observation) that were derived from eight laboratory mouse
strains (Hitzemann et al., 2014).

Contet (2012) surveyed the existing literature and noted
that multiple functional categories were associated with a
“predisposition” to excessive ethanol consumption and in
most cases each of the categories have been supported by
multiple publications (see Table 2 in Contet, 2012). Some
regional specificity for each of the functional categories was
also noted; however, the regional differences in gene expression
were generally larger than those associated with selection for
preference or binge drinking (Kimpel et al., 2007; Mulligan
et al., 2011). Subsequent studies have confirmed and extended
the “region” effect (e.g., Melendez et al., 2012; Osterndorff-
Kahanek et al., 2015; Smith et al., 2016; Mulligan et al., 2017).
The data in Supplementary Table S1 again confirm marked
differences in regional gene expression. Fifty or more genes
in each of the three regions show a 10-fold higher expression
when compared with at least one other region. In no region was
selection associated with a change in expression of >2-fold and
in most cases, selection was associated with small changes in
expression (<30%) among the genes included in the DE analyses
(see above). The number of significantly DE genes, common to
all three regions was small (N = 5) and the genes appear to
have no common function(s). Only in the CeA, did the analyses
reveal that the DE genes were associated with significant GO
annotations (neuron part, structural constituent of myelin sheath
and axon ensheathment). Among the genes in the neuron part
category were several that have been implicated in excessive
ethanol consumption, including Adora1, Crhr1, Gal, and Syt2
(Belfer et al., 2006; Enoch et al., 2013; Barbier et al., 2015; Clark
et al., 2017). However, in the CeA as well as the SH and PL,
the DE genes had on average a low intramodular connectivity,
i.e., these genes were “leaf” nodes. This observation is consistent
with the observation that the degree of DE was generally quite
small and to detect such small changes requires that the variance
for these genes must be relatively low. Connectivity requires
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sufficient variance to accurately detect gene–gene correlations
(see below). Overall, we conclude that DE is not a key selection
feature for preference lines derived from genetically diverse
HS-CC founders and when viewed in a network context.
A similar conclusion was reached on a smaller SH sample
(Colville et al., 2017).

The relationship(s) between network connectivity and gene
variability are not entirely clear. However, if the variance is
“biological” and not technical or simply stochastic, it follows
that variance and connectivity will increase in tandem; for the
moderate sample sizes of most gene expression studies, gene–
gene correlations and hence connectivity will be more easily
detected. Colville et al. (2017) observed that selection for the
High and Low preference lines was associated with a cluster
of DV genes that were highly enriched in a single network
module (greenyellow). The module was highly enriched in
genes associated with receptor signaling (e.g., Chrna7, Grin2a,
Htr2a, and Oprd1) but also included a large number of genes
associated with cell adhesion. Cadherins and protocadherins
were particularly enriched in the greenyellow module. Expanding
the SH sample size from Colville et al. (2017) by ∼50% did
not perceptually change the results. In the SH, the DV genes
were highly enriched in a single module (magenta) that was
similar to the greenyellow module (again remembering that
module color has no meaning and is randomly assigned). The
magenta and greenyellow modules are of a similar size (231 vs.
227 genes, respectively); 98 genes overlap between the modules
(Supplementary Table S9). The modules share 37 hub nodes;
including Oprd1, Dlg2, Gabrb2, Pcdhgb2, Pcdhga6, and Pcdhga7,
i.e., a measure of core connectivity is unchanged. The differences
between the modules are largely found in the less connected
nodes.

The CeA and PL DV genes also were enriched in single
network modules, blue and brown, respectively. Annotation of
these modules was similar to that for the SH magenta module,
e.g., a significant enrichment in genes associated with cell to cell
signaling. The SH magenta, the CeA blue and the PL brown
modules were significantly different in size (231, 773, and 593
genes, respectively). However, 183 (79%) the genes in the SH
module are also found in the CeA and PL modules. This grouping
of module core genes is found in Supplementary Table S9.
This core grouping contains several receptors including Adra1a,
Chrna7, Grin2b, Htr2a, Oprd1, and Sstr4; this core group also
contains 17 protocadherins including 14 of the 22 known γ

protocadherins. Thirty significant DV genes were identified as
common to all three regions (see Figure 2); 25 genes of this group
are found in the core module grouping. Within the core module
grouping, we identified the 18 genes that were hub nodes across
all three regions; we next aligned these genes with the 25 common
DV genes found in the core module. Our rationale for this step
was to identify high priority hub nodes, that could be targeted
in future studies. Six genes were identified: Dlg2, Gatad2b,
Pcdhac2, Tnks, Usp29, and Usp9x. Dlg2 encodes for post-synaptic
density protein 93 (PSD-93), Gatad2b encodes for transcriptional
repressor p66-beta, Pcdhac2 encodes for protocadherin αc2, Tnks
encodes for Tankyrase-1, Usp29 encodes for ubiquitin specific
protease 29 and Usp9x encodes for ubiquitin specific protease

9, X-linked. That two ubiquitin-related genes are in this group
cannot be unexpected, given the long standing observations
that ubiquitination is associated with chronic ethanol exposure
in both animals and humans (see Sokolov et al., 2003; Liu
et al., 2006; Contet, 2012; Melendez et al., 2012; Widagdo
et al., 2017). Our data link ubiquitination to risk for excessive
consumption. The precise mechanisms are unknown but we
note here that ubiquitination has a key role in glutamate
receptor trafficking (Widagdo et al., 2017). The functions of
Tankyrase-1 (Tank-1) in the brain have not been investigated.
However, Tank-1 is a member of a large family of poly (ADP-
ribose) polymerases (PARPs). PARP-1 is thought to have key
role(s) in the neuroinflammatory cascade associated with binge
ethanol consumption (Tajuddin et al., 2018). To our knowledge,
Pcdhαc2 has no function remarkably different from the other
members of the αPcdh family; however relatively little is known
about functions of the individual gene products. What the data
presented previously (Colville et al., 2017) and again confirmed
here clearly illustrates that selection for ethanol preference
engages a large number of the clustered protocadherins. Again
with a focus on glutamate neurotransmission, Suo et al. (2012)
have shown that both the α and γ protocadherin clusters are
involved in the inhibition of Pyk2 (protein tyrosine kinase
2), which results in the disinhibition of Rac1 (Ras-related C3
botulinum toxin substrate 1) that in turn can facilitate the proper
assembly of dendritic spines (see Figure 8 in Suo et al., 2012).
Mutations and deletions in Gatad2b have been associated with
intellectual disabilities (e.g., Tim-Aroon et al., 2017). Perhaps
more pertinent for the current study, the ENIGMA consortium
has found that SNPs associated with both Gatad2b and Dlg2 are
associated with differences in putamen size (Chen et al., 2017).
The coexpression and physical interaction partners for Dlg2 are
shown in Figure 1. Key partners include a number of genes
encoding glutamate receptor subunits (e.g., Grin2b and Grid1)
and genes encoding glutamate associated membrane proteins
(e.g., Dlg1, Dlg4, and Dlgap1). Bell et al. (2016) have reviewed
the literature associated with ethanol risk, ethanol effects and
glutamate reward circuitry; importantly, these authors noted
when comparing the P and NP rats, there were a number of
differences in glutamate signaling genes that predate ethanol
exposure. Clinical studies have shown that in family history
positive (FHP) individuals there is an altered response to both
alcohol and the NMDA antagonist ketamine, suggesting a genetic
link between alcoholism and NMDA receptor function (Petrakis
et al., 2004; Joslyn et al., 2010).

Differential wiring which is necessarily related to DV, provided
a measure of how selection affects the interaction (connectivity)
of each gene with the entire coexpression network. Similar to
our previous results (Colville et al., 2017; Iancu et al., 2018), we
observed that selection has marked effects on DW and this was
true across all regions, with the effects somewhat more prominent
in the CeA and SH than the PL. The large DW effect associated
with selection is largely silent in most analyses of coexpression
data, even though the data illustrate here that the rewiring of
the coexpression system is perhaps the most profound change
in the transcriptome. There were 71 common DW genes across
the three brain regions and this core group was significantly
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enriched in genes associated with the post-synaptic membrane.
The genes in this category included Chrna7, Als2, Ppp1r9a,
Strn, Kcna4, Kif1a, and Slc1a2. Slc1a2, which encodes for the
excitatory amino acid transporter 2 (EAAT2) and is the principal
transporter within the brain for glutamate, is of interest given the
focus on excitatory neurotransmission above and evidence that
inhibition of EAAT2 reduces ethanol consumption (Sari et al.,
2016). Other members of this group appear to have some role(s)
in regulating glutamatergic receptor function. For example, the
deletion ofChrna7 leads to the loss of NMDA receptors (Lin et al.,
2014). Interestingly, the deletion of Chrna7 is also associated
with increased sensitivity to several ethanol-induced behaviors
(Bowers et al., 2005). Als2 encodes for alsin which has been shown
to protect neurons from glutamate-associated neurotoxicity (Lai
et al., 2006; Kwak and Weiss, 2006; Cai et al., 2008). Strn which
encodes for striatin, is highly enriched in dendritic spines; this
localization is reduced by NMDA receptor stimulation which
appears to have a key role in synaptic plasticity (see Chen et al.,
2012 and references therein). Kcna4 which encodes potassium
voltage-gated channel subfamily A member four, is recruited to
the synapse by PSD95, where it is phosphorylated (Wong and
Schlichter, 2004). Kif1a encodes a kinsin family three member
which is also known as axonal transporter of synaptic vesicles.
Mutations in the Drosophila homolog unc-104, have revealed
the importance of the protein product in glutamate spontaneous
release and in post-synaptic density organization (Zhang et al.,
2017).

In each of the three brain regions, the DW genes unique to
that region were highly enriched in synapse-associated genes.
This effect was particularly dramatic in the CeA where a large
number of both GABA and glutamate receptor subunits were
affected. DW genes were distributed across several network
modules, making the distribution of the DW genes more diffuse
than that for the DV genes. It was also observed in both the
CeA and SH that a number of network modules were largely
preserved from the effects of selection on wiring. Many of
these preserved modules had annotations associated with ATP
metabolic processes, DNA replication, rRNA cellular respiration
and so on. One purpose of using a short-term selective breeding
protocol is to minimize genetic drift and focus the analysis on
only those alleles associated with the phenotype of interest, here
ethanol preference. Clearly, the DW data illustrates that even
three rounds of selection had marked and extensive effects on the
brain transcriptome.

Our discussion has largely focused on those changes in gene
expression that are similar across the three brain regions. Our
argument for taking this perspective is that these changes are
the “broad” targets for manipulation. Included in these broad
targets are core genes, including hub nodes, associated with
glutamate receptor signaling and synaptic plasticity. We have also
confirmed (see Colville et al., 2017) that selection for ethanol
preference in HS-CC mice involves a large cohort of clustered
protocadherins. This differs from selection for binge ethanol
consumption where we have observed that selection for “drinking
in the dark” involves numerous extra-cellular matrix genes such
as collagens and matrix metalloproteases (Iancu et al., 2018).
“Narrow” sense targets for manipulations will include those

selection based changes that are regionally unique. For example,
we observed that in the CeA, the expression of Nrtk2 which
encodes TrkB, a receptor for Bdnf, moves from non-hub status
in the Low selected line to hub status in the High line. Numerous
studies have linked the regulation of ethanol consumption to the
regulation of Bdnf function; Darcq et al. (2016) have found in
the rat dorsolateral striatum the Bdnf-TrkB system is essential
to maintaining moderate ethanol intake. Our data suggest that
manipulating this system in the CeA will likely have marked
effects on ethanol preference.
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