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With the rapid development of biological research, microRNAs (miRNA) have become

an attractive topic because lots of experimental studies have revealed the significant

associations between miRNAs and diseases. However, considering that experiments

are expensive and time-consuming, computational methods for predicting associations

between miRNAs and diseases have become increasingly crucial. In this study,

we proposed a neighborhood regularized logistic matrix factorization method for

miRNA-disease association prediction (NRLMFMDA) by integrating miRNA functional

similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and

experimentally validation of disease-miRNA association. We used Gaussian interaction

profile kernel similarity to cover the shortage of the traditional similarity to make it more

reasonable and complete. Furthermore, NRLMFMDA also considered the important

influences of the neighborhood information and took full advantage of them to improve

the accuracy of the miRNA-disease association prediction. We also improved the

accuracy by giving higher weights to the known association data in the process of

calculating the potential association probabilities. In the global and the local leave-one-

out cross validation, NRLMFMDA got the AUCs of 0.9068 and 0.8239, respectively.

Moreover, the average AUC of NRLMFMDA in 5-fold cross validation was 0.8976 ±

0.0034. All the three kinds of cross validations have shown significant advantages to

a number of previous models. In the case studies of breast neoplasms, esophageal

neoplasms and lymphoma according to known miRNA-disease associations in the

recent version of HMDD database, there were 78, 80, and 74% of top 50 predicted

related miRNAs verified to have associations with these three diseases, respectively. In

the further case studies for new disease without any known related miRNAs and the

previous version of HMDD database, there were also high proportions of the predicted

miRNAs verified by experimental reports. All the validation experiment results have

demonstrated the effectiveness and practicability of NRLFMDA to predict the potential

miRNA-disease associations.
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INTRODUCTION

MicroRNAs (miRNAs) are a category of endogenous and
short non-coding single-stranded RNAs (21∼24 nucleotides)
which could regulate the gene expression by targeting mRNAs
for cleavage or translational repression at the posttranscriptional
level (Ambros, 2001, 2004; Bartel, 2004; Meister and Tuschl,
2004). The first miRNA was found 20 years ago. And since
then, people have discovered thousands of miRNAs in a wide
variety of species (Jopling et al., 2005; Kozomara and Griffiths-
Jones, 2011). Furthermore, more and more studies have found
that the miRNAs play crucial roles at multiple stages of the
biological processes (Lee et al., 1993; Chen et al., 2017b; Li et al.,
2017), such as early cell growth, proliferation (Cheng et al.,
2005), differentiation (Miska, 2005), development (Karp and

Ambros, 2005), aging (Bartel, 2009), apoptosis (Xu et al., 2004),
and so on. Additionally, the key regulatory roles of miRNAs
have increasingly been paid attention to in the abnormal gene
expression of biological cells. For example, the dysregulation of
the miRNAs has been confirmed as a main reason of aberrant
cell behavior by many studies (Griffiths-Jones et al., 2006).
In the recent years, more and more experiments have been
implemented to show that miRNAs have great connections with
the various development processes of many human complex
diseases (Lynam-Lennon et al., 2009; Meola et al., 2009; Huang

et al., 2016b). For example, researches have implicated that
miRNA-7a has clinical significance of high mobility group A2 in
human gastric cancer. And Schulte et al. reported the capacity
of miRNA-197 and miRNA-223 in predicting cardiovascular
death and burden of future cardiovascular events in a large
cohort of Coronary artery disease patients (Schulte et al., 2015).
Besides, Thomas Thum et al. (Thum et al., 2008) showed
that miR-21 affects the global cardiac structure and function
through regulating the ERK–MAP kinase signaling pathway
in cardiac fibroblasts. Therefore, identifying disease-related
miRNAs is important and beneficial to the treatment, diagnosis,
and prevention of a variety of clinically important disease.
Nevertheless, identifying the associations between miRNAs and

diseases with experimental methods is expensive and time-
consuming. With the development of biological technology, lots
of experiments have been implemented to produce vast numbers
of miRNA-associated datasets. There is an urgent need for us
to make further efforts to develop novel computational models
for potential miRNAs-disease association prediction. In fact,
many computational methods are well behaved in predicting
miRNA-disease associations (Chen and Yan, 2013; Chen, 2015b;
Chen et al., 2016a,g; Chen et al., 2018c). Therefore, further
experimental studies can be more efficiently implemented by
selecting the most promising associated miRNAs predicted by
computational models.

Based on the assumption that functionally similar miRNAs
are more likely to have associations with phenotypically
similar diseases, many computational approaches have been
introduced for the identification of miRNA-disease associations
(Bandyopadhyay et al., 2010; Jiang et al., 2010; Liu et al.,
2016b; Pasquier and Gardès, 2016; Zeng et al., 2016b; Zou
et al., 2016; Chen and Huang, 2017; Chen et al., 2017a,c,d;

You et al., 2017; Chen et al., 2018a,b,d,e,f; Tang et al., 2018). A
hypergeometric distribution-based model was proposed by Jiang
et al. (2010). Through using the human known disease-miRNA
association network, disease phenotype similarity network and
miRNA functional similarity network, this model gave the
prediction of miRNA-disease associations. But there was a high
proportion of false positive and false negative samples in the
miRNA-target associations set on which this method extremely
depended. Shi et al. (2013) proposed a random walk algorithm-
based model in protein-protein interaction (PPI) network under
the assumption that miRNAs have closer associations with
the diseases that are more correlated to the miRNA targets.
They obtained potential miRNA-disease associations by the
comprehensive consideration of miRNA–target interactions,
disease–gene associations and PPIs. Mørk et al. (2014) presented
a miRPD method by integration of miRNA-protein association
scores, protein-disease association scores and the shared proteins
between miRNAs and diseases to obtain the best scoring protein
connections between miRNA-disease pairs. Xu et al. (2014)
introduced a miRNA prioritization model by the integrationof
known disease–gene associations andmiRNA-target interactions.
It is worthy mentioning that the model is independent of
the experimentally verified miRNA-disease associations. Instead,
they need to calculate the similarity between miRNA targets and
disease genes. Nonetheless, the aforementioned methods could
not provide sufficiently accurate prediction results due to the
incomplete disease-gene association network or/and the miRNA-
target interactions with high false positive and false negative
samples.

Xuan et al. (2013a) constructed a computational method
called HDMP for the identification of miRNA-disease
associations based on the experimentally verified miRNA-
disease associations, miRNA functional similarity, disease
semantic similarity and disease phenotype similarity. According
to miRNAs with similar functions are normally related to
similar diseases and vice versa, they used the k nearest neighbors
of miRNAs for estimating more reliable relevance scores of
the unlabeled miRNAs. To overcome the shortages of the
previous methods, it assigned higher weights to members in
the same miRNA cluster when they calculated the miRNA
functional similarity. However, the HDMP cannot prioritize
miRNAs(diseases) for diseases(miRNAs) that have no known
related miRNAs(diseases). Additionally, the performance of
HDMP could not better than most of previous models which
were calculated based on the global network similarity measure.
A global network similarity-based computational model was
proposed by Chen et al. (2012b) called RWRMDA, which
used the random walk method based on the dataset of human
known miRNA–disease associations and miRNA functional
similarity. We can see that RWRMDA has excellent prediction
performance through cross-validation and case studies of
several important human complex cancers. However, there is
a non-negligible limitation that it could not work for diseases
without any known associated miRNAs. Chen et al. (2016f)
developed another computational approach of WBSMDA by
integrating the Gaussian interaction profile kernel similarity,
miRNA functional similarity, disease semantic similarity, and
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miRNA-disease associations for the prediction of potential
miRNAs-diseases associations. WBSMDA could effectively
predict disease(miRNA)-related miRNAs(diseases) that without
known related miRNAs(diseases). Recently, Chen et al. (2016d)
developed a novel computational model named HGIMDA,
which had superior performance compared with four classical
methods (WBSMDA, RLSMDA, RWRMDA, and HDMP).

Nowadays, machine learning has been applied in extensive
scientific fields, and it is highly effective for most of the
research problems (Chen et al., 2012a, 2015c, 2016c; Wong et al.,
2015; Huang et al., 2016b). Therefore, more and more studies
have focused on it. For instance, Xu et al. (2011) proposed
a computational model, named miRNA-target dysregulated
network (MTDN), which combined miRNA-target interactions
and expression pattern of miRNAs and mRNAs. In the model,
the support vector machine (SVM) classifier was constructed to
distinguish positive miRNA-disease associations from negative
ones by extracting the feature of network topologic information.
It is known that negative miRNA-disease associations are difficult
to obtain, and the ambiguity caused by negative samples
usually affects the accuracy of the supervised. Chen et al.
(Chen and Yan, 2014) provided RLSMDA, a computational
model in which they used semi-supervised learning to predict
potential disease-related miRNAs by the consideration of disease
semantic similarity, miRNA functional similarity, and known
miRNA-disease associations. Furthermore, RLSMDA could also
predict disease(miRNA)-related miRNAs(diseases) without any
known miRNAs(diseases) and avoid the problem of using
negative miRNA-disease associations. However, the ways of
combining the classifiers in different spaces together and the
selection of parameters for RLSMDA would greatly influence the
prediction result. Based on known miRNA-disease associations,
Chen et al. (2015b) further developed a computational model
of RBMMMDA by presenting restricted Boltzmann machine
(RBM). RBMMMDA is a two-layer (visible and hidden)
undirected graphical model, which can not only obtain new
miRNA-disease associations, but also corresponding association
types. Nevertheless, it is difficult to make decision on the
parameter values.

In our proposed method, we introduced a novel matrix
factorization computational approach, namely neighborhood
regularized logistic matrix factorization for miRNA-disease
association prediction (NRLMFMDA). In consideration of
the effectiveness of the classical method with integrated
similarities, we combined the Gaussian interaction profile kernel
similarity and the modified matrix factorization to get a more
accuracy prediction result. Based on the known miRNA-disease
associations, disease semantic similarity, miRNA functional
similarity, and Gaussian interaction profile kernel similarity,
the proposed method focuses on predicting the probability that
a miRNA would be associated with a disease by mapping a
miRNA and a disease to a shared low dimensional latent space
as two latent vectors. Additionally, we also studied the local
structure of the association data to further improve the prediction
accuracy by exploiting the influences of the neighbors which
were from the most similar miRNAs and most similar diseases.
Moreover, the proposed approach assigned higher importance

level to the nearest neighbors for avoiding noisy information.
Furthermore, we used global LOOCV, local LOOCV, and 5-fold
cross validation to evaluate the effectiveness of NRLMFMDA.
As a result, the AUCs of global and local LOOCV are 0.9068
and 0.8239, respectively. By adopting 5-fold cross validation,
NRLMFMDA model obtained the average AUC of 0.8976 ±

0.0034. In three types of case studies, we tested the prediction
effect of NRLMFMDA for known diseases in the recent version
of HMDD database, new diseases without any known related
miRNAs and known disease based on previous version of HMDD
database, respectively. As a result, most of the predicted miRNAs
have been confirmed by recent experimental reports. Thus, we
can conclude that NRLMFMDA is a useful tool in predicting
potential miRNA-disease associations.

MATERIALS AND METHODS

Human miRNA-Disease Association
For convenience, we have built an adjacency matrix Y ∈ Rm×n to
formalize the known miRNA-disease associations that acquired
from the HMDD v2.0 database (Li et al., 2014). The known
miRNA-disease associations dataset used in this paper includes
5430 distinct experimentally confirmed miRNA-disease between
383 diseases and 495 miRNAs, m and n were expressed as the
miRNAs and diseases numbers in the dataset. Then we stored the
known miRNA-disease association information into the matrix
Y. If a miRNA ri has been experimentally verified to be associated
with a diseasedj, then yij equals to 1, otherwise 0.

miRNA Functional Similarity
The miRNA functional similarity was calculated according to the
method proposed by Wang et al. (2010) by the consideration
of miRNAs with functional similar tend to be interacted with
semantic similar diseases, and vice versa (Goh et al., 2007; Lu
et al., 2008). Owing to their excellent work, we can download
themiRNA functional similarity data from http://www.cuilab.cn/
files/images/cuilab/misim.zip. The matrix MS was constructed
to represent the miRNA functional similarity. The element
MS(ri, rj) represented the value of similarity between the miRNA
ri and the miRNArj.

Disease Semantic Similarity Model 1
We constructed a Directed Acyclic Graph (DAG) to describe the
diseases according to theMeSH descriptors downloaded from the
National Library of Medicine (http://www.nlm.nih.gov/) (Chen,
2015a; Chen et al., 2015a, 2016a,e; Huang et al., 2016a). Then we
defined the contribution of disease d in DAG(D) to the semantic
value of disease D as follows:
{

D1D
(

d
)

= 1 if d = D

D1D
(

d
)

= max
{

1∗D1D
(

d′
)

|d′ ∈ children of d
}

if d 6= D
(1)

where 1 is the semantic contribution decay factor and we set the
value of 1 to 0.5 (Xuan et al., 2013b). The self-semantic value of
disease D is defined as follows:

DV1 (D) =
∑

d∈T(D)
D1D(d) (2)
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where T(D) represents D itself and all its ancestral nodes.
According to the observation that two diseases with larger shared
part of their DAGs have larger similarity score, the semantic
similarity score between disease di and dj are defined as follows:

SS1(di, dj) =

∑

t∈T(di)
⋂

T(dj)
(D1di (t)+ D1dj (t))

DV1(di)+ DV1(dj)
(3)

Disease Semantic Similarity Model 2
Different from disease semantic similarity model 1, we
considered that assigning the same contribution value to the
diseases in the same layer of DAG(D) was not reasonable.
Actually, a more specific disease which appears in less DAGs
contributes to the semantic similarity of disease D at a higher
contribution level. So we made definition for the contribution of
disease d in DAG(D) to the semantic value of diseaseD as follows:

D2D(d) = − log[the number of DAGs including t/

the number of diseases] (4)

We gave definition of the semantic similarity between disease
di and dj are the proportion of the summing contributions of
their shared ancestor nodes and themselves to them in all the
contributions of their ancestor nodes and themselves defined as
the disease semantic similarity model 1.

SS2(di, dj) =

∑

t∈T(di)
⋂

T(dj)
(D2di (t)+ D2dj (t))

DV2(di)+ DV2(dj)
(5)

Gaussian Interaction Profile Kernel
Similarity
Considering that Gaussian kernel function is one of the Radial
Basis function whose value depends only on the distance from
the origin, we constructed Gaussian interaction profile kernel
similarity as another similarity algorithm that different from
disease semantic similarity and miRNA functional similarity
(Van et al., 2011; Chen et al., 2016b). Our definition of vector
IV(di) and IV(rj) are the ith row and jth column of adjacent
matrix Y which represents whether the disease or the miRNA
associated with each of the miRNAs or the diseases. Accordingly,
the Gaussian interaction profile kernel similarity of diseases and
miRNAs can be computed as follows:

GD(di, dj) = exp(−βd

∥

∥IV(di)− IV(dj)
∥

∥

2
) (6)

GR(ri, rj) = exp(−βr

∥

∥IV(ri)− IV(rj)
∥

∥

2
) (7)

where adjustment coefficient βd and βr for the kernel
bandwidth can be denoted as follows:

βd = β ′
d/

(

1

n

n
∑

i=1

∥

∥IV(di)
∥

∥

2

)

(8)

βr = β ′
r/

(

1

m

m
∑

i=1

∥

∥IV(ri)
∥

∥

2

)

(9)

where β ′
d and β ′

r are the original bandwidths and both of
them were set 1 according to the previous literature (Chen and
Yan, 2013).

Integrated Similarity for MiRNAs and
Diseases
As mentioned above, a Directed Acyclic Graph (DAG) was
introduced to describe a disease based on the MeSH descriptors.
Disease semantic similarity was calculated according to the
assumption that the two diseases with larger shared area of their
DAGs may have greater similarity score. In fact, for the specific
disease that without DAG, we cannot calculate the semantic
similarity between the specific disease and other diseases. Thus,
for disease pairs that have no semantic similarity, we used
Gaussian interaction profile kernel similarity score to define their
similarity. We gave a definition of integrated disease similarity
by the combination of disease semantic similarity and Gaussian
interaction profile kernel similarity for disease. Specifically, if
disease di and dj have semantic similarity, the integrated disease
similarity can be defined as the average of SS1 and SS2, otherwise
we would attach the value of Gaussian interaction profile kernel
similarity for disease to the integrated disease similarity. The
formulations show as follows:

SD(di, dj)=







SS1(di ,dj)+SS2(di,dj)

2 di and dj has semantic similarity

GD(di, dj) otherwise

(10)

In the same way, we made a definition for integrated miRNA
similarity through combining miRNA functional similarity and
Gaussian interaction profile kernel similarity for miRNA. we
obtained the integrated miRNA similarity as follows:

SR(ri, rj) =

{

MS(ri, rj) ri and rj has functional similarity

GR(ri, rj) otherwise
(11)

NRLMFMDA
In this study, we proposed a neighborhood regularized logistic
matrix factorization method for miRNA-disease association
prediction (NRLMFMDA) by integrating known miRNA-disease
associations, miRNA functional similarity, disease semantic
similarity, and Gaussian interaction profile kernel similarity (see
Figure 1). As far as we have known, the matrix factorization
has been applied to recommender systems and obtained
successful association prediction results currently. For example,
logistic matrix factorization (LMF) (Johnson, 2014) has been
demonstrated to be effective for personalized recommendations.
Therefore, the probability of the association between a miRNA
and a disease can be computed based on it. In details, we mapped
the diseases and the miRNAs into a shared latent space with a
dimensionality r which is far lower than the minimum of m and
n. The latent space vectors ui ∈ R1×r and vj ∈ R1×r are used
to represent the properties of the miRNA ri and the diseasedj,
respectively. For simplicity, we further denote the latent vectors
of all miRNAs and all diseases by U ∈ Rm×r and V ∈ Rn×r

respectively, where ui is the ith row in U and vj is the jth row

Frontiers in Genetics | www.frontiersin.org 4 August 2018 | Volume 9 | Article 303

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


He et al. MiRNA-Disease Association Prediction

FIGURE 1 | Flowchart of NRLMFMDA model to predict the potential miRNA-disease associations based on the known associations in HMDD database.

in V. Simultaneously, the probability distributions of U and V
are assumed as Gaussian distributions with zero-means and their
variances are set as σ 2

r and σ 2
d
, respectively. Their formulations

are shown as follows:

p(U|σ 2
r ) =

m
∏

i=1

N(ui|0, σ
2
r I), p(V|σ

2
d ) =

n
∏

j=1

N(vj|0, σ
2
d I) (12)

where I denotes the identity matrix. Afterwards, based on the
Bayesian theorem, we know that

p(U,V|Y , σ 2
r , σ

2
d ) ∝ p(Y|U,V)p(U|σ 2

r )p(V|σ
2
d ). (13)

Based on the assumption that all the training examples are
independent, we denoted the probability of associations under
the condition of U and V as follows:

p(Y|U,V) =

m
∏

i=1

n
∏

j=1

p
cyij
ij (1− pij)

(1−yij) (14)

where we denote the probability pij of the association between
miRNA ri and disease djas follows:

pij =
exp(uiv

T
j )

1+ exp(uiv
T
j )

(15)

And the known associations between diseases and miRNAs are
assigned with higher importance levels of c (c > 1) which is
empirically set to 5 in experiment so that we could get more
accurate predictions with the help of the trustworthy data. Then,
we made the log form on the both side of the formula (13) as
follows:

log p(U,V|Y , σ 2
r , σ

2
d ) =

m
∑

i=1

n
∑

j=1

cyijuivj
T

−(1+ cyij − yij) log[1+ exp(uiv
T
j )]

−
1

2σ 2
r

m
∑

i=1

‖ui‖
2
2 −

1

2σ 2
d

n
∑

j=1

∥

∥vj
∥

∥

2

2
+ C

(16)

where C is a constant. We maximized the posterior
distribution to obtain the most possible U and V. And it is
equivalent to the problem as follows:

min
U,V

m
∑

i=1

n
∑

j=1

(1+ cyij − yij) log[1+ exp(uiv
T
j )]

− cyijuivj
T +

λr

2
‖U‖2F +

λd

2
‖V‖2F (17)
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whereλr = 1
σ 2
r
, λd = 1

σ 2
d

, and ‖•‖F is the Frobenius

norm of a matrix. We solved this searching minimum problem
with an alternating gradient descent method (Johnson, 2014).
Because the neighborhoods of a miRNA or a disease have strong
associations, the nearest miRNAs and diseases can provide the
most useful information about how to find the reasonable way to
factorize the logical matrix. Therefore, our object is to minimize
the distances between di and its nearest neighbors in set N(di)
which is formed by K1 nearest neighbors of the diseasedi. The
same to miRNArj, N(rj)is the set formed by K1 nearest neighbors
of the miRNArj. K1is empirically set to 5 in experiment. We used
the adjacency matrix A and B to represent the neighborhood
information, and their elements aiu and bjv are defined as follows:

aiµ =

{

SR(ri, rµ) if rµ ∈ N(ri)

0 otherwise
(18)

bjv =

{

SD(dj, dv) if dv ∈ N(dj)

0 otherwise
(19)

Based on them, we aimed to minimize the following functions:

α

2

m
∑

i=1

m
∑

µ=1

aiµ
∥

∥ui − uµ

∥

∥

2

F

=
α

2





m
∑

i=1

(

m
∑

µ=1

aiµ)uiu
T
i +

m
∑

µ=1

(

m
∑

i=1

aiµ)uµu
T
µ





−
α

2
tr(UTAU)−

α

2
tr(UTATU)

=
α

2
tr(UTLrU) (20)

β

2

n
∑

j=1

n
∑

v=1

bjv
∥

∥vj − vv
∥

∥

2

F
=

β

2
tr(VTLdV) (21)

where Lr = (Dr+D̃r)−(A+AT) and Ld = (Dd+D̃d)−(B+BT).
In the two formulations,Dr , D̃r ,Dd,and D̃d are diagonal matrices
and their diagonal elements are r

ii =
∑m

µ=1 aiµ, D̃
r
µµ =

∑m
i=1 aiµ,

Dd
jj =

∑n
v=1 bjv, and D̃d

jj =
∑n

j=1 bjv, respectively. According to

the analysis above, the integrated formulation to minimize the
objective function F is as follows:

min
U,V

F = min
U,V

m
∑

i=1

n
∑

j=1

(1+ cyij − yij) ln
[

1+ exp(uivj
T)
]

− cyijuivj
T +

1

2
tr
[

UT(λrI + αLr)U
]

+
1

2
tr
[

VT(λdI + βLd)V
]

(22)

However, the alternating gradient descent method needs the
partial differential of F with respect to U and V, so they are
computed and simplified as follows:

∂F

∂U
= PV + (c− 1)(Y ∗ P)V − cYV + (λrI + αLr)U

∂F

∂V
= PTU + (c− 1)(YT ∗ PT)U − cYTU + (λdI + βLd)V

(23)

where P ∈ Rm×n is the matrix with elements pij in equation (10)
and ∗ represents the Hadamard product. The gradient step size
is chosen based on the AdaGrad algorithm (Duchi et al., 2011).
In the experiments, we selected the dimensionality of the latent
space r from {50, 100}. Simultaneously, we set λr = λd and chose
the values from

{

2−5, 2−4, · · · , 21
}

. Neighborhood regularization
parameters α and β were selected from

{

2−5, 2−4, · · · , 22
}

and
{

2−5, 2−4, · · · , 20
}

. The optimal learning rate γ was selected
from

{

2−3, 2−2, · · · , 20
}

.
In the training procedure, the new diseases and new miRNAs

are learned based on the mixed negative samples (including
potential positive miRNA-disease associations) which will lead
to a bias on the prediction results. Therefore, before obtaining
the final probabilities with the learned U and V above, we
further improved the prediction accuracy for new diseases or new
miRNAs by replacing the latent vectors of negative samples with
the linear combination of its nearest positive neighbors. For a
miRNA ri in negative set M− which is the set of new miRNAs
without any known related diseases, we denoted its K2 nearest
neighbors in positive set M+ by N+(ri). And for a disease dj
in negative set D− which is the set of new diseases without any
known related miRNAs, we denoted its K2 nearest neighbors
in positive set D+ by N+(dj), where K2 is empirically set to
5 in experiment. Hence, the modified association probability is
represented as follows:

p̂ij =
exp(ũiṽ

T
j )

1+ exp(ũiṽ
T
j )

(24)

Where,

ũi=







1
∑

w∈N+(ri)
SR(ri, rw)

∑

w∈N+(ri)
SR(ri, rw)uw if ri ∈ M−

ui if ri ∈ M+,

ṽj=







1
∑

z∈N+(dj)
SD(dj, dz)

∑

z∈N+(dj)
SD(dj, dz)vz if dj ∈ D−

vj if dj ∈ D+.

(25)

The modified latent vectors are helpful to overcome the bias due
to using the uncertain negative samples to train the latent vectors
of miRNAs and diseases in negative sets.
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RESULTS

Performance Evaluation
Leave-one-out cross validation (LOOCV) and 5-fold cross

validation were applied to evaluate the performance of
NRLMFMDA. And the LOOCV was implemented in two
ways. (1) Based on the experimentally confirmed miRNA-
disease associations in HMDD v2.0 database, Global LOOCV

was used to evaluate the performance of NRLMFMDA. The
“global” means that each one of the known miRNA-disease
associations will be left out in turn to be considered as
candidate association which are the unconfirmedmiRNA-disease

associations. Then after calculating prediction association scores
of all the miRNA-disease pairs by NRLMFMDA, we compared
the score of each test sample with all the candidate ones
to observe whether its rank was above the threshold which

was given in advance. (2) Unlike the Global LOOCV, Local

LOOCV only compared the score of each test sample with the
candidate samples composed of all the miRNA-disease pairs
whose miRNAs did not have any known associations with the

investigated disease. And if the rank of the test association
exceeded the threshold which was given ahead of time, the
model was considered to successfully predict this miRNA-disease

association. Further, we drew Receiver operating characteristics
(ROC) curve by plotting the true positive rate (TPR, sensitivity)
vs. the false positive rate (FPR, 1-specificity) at different
thresholds. Sensitivity refers to the percentage of the positive
samples correctly identified among all the positives. Meanwhile,
specificity denotes the percentage of negative samples correctly
identified among all the negatives. After that, the prediction
ability of NRLMFMDA would be evaluated by Area under the
ROC curve (AUC). AUC=1 indicates the prediction performance
of NRLMFMDA is perfect; AUC=0.5 indicates the prediction

performance of NRLMFMDA is random. The results showed that
NRLMFMDA obtained the AUC of 0.9068 and 0.8239 in global
and local LOOCV, respectively (see Figure 2). The AUC results
implied that the NRLMFMDA had shown reliable and effective
prediction performance for potential miRNA–disease association
prediction. However, HGIMD, RLSMDA,HDMP, andWBSMDA
obtained the AUC of 0.8781, 0.8426, 0.8366 and 0.8030 in global
LOOCV, respectively. In local LOOCV, their AUCs are 0.8077,
0.6953, 0.7702, and 0.8031, respectively. Differently, RWRMDA
only has AUC of local LOOCV (0.7891) which is one of its
defects because it cannot uncover the missing associations for all
the diseases simultaneously. Therefore, in comparison with the
previousmethods, we can intuitively observe the improvement of
predicting the miRNA-disease associations with NRLMFMDA.

Additionally, we also implemented 5-fold cross validation
to evaluate the prediction effectiveness of NRLMFMDA. We
firstly divided the known miRNA-disease associations into five
parts randomly. Then, one of the five parts was treated as test
samples and the remaining four parts were regarded as training
samples in turn. In the same way as LOOCV, the miRNA-disease
pairs without known evidence of association were regarded as
candidate samples. Afterwards, the scores of test samples were
taken out to compare with the scores of candidate samples,
and we finally acquired their rankings. This procedure was
repeated 100 times randomly to make validation more accuracy.
In comparison with RLSMDA, HDMP, and WBSMDA whose
average AUCs were 0.8569± 0.0020, 0.8342± 0.0010 and 0.8185
± 0.0009 respectively, the average AUC of NRLMFMDA in 5-fold
cross validation was 0.8976 ± 0.0034 which further confirmed
the effectiveness and superiority for predicting potential miRNA-
disease associations. At last, in order to obtain a clear knowledge
of the predictability performance of NRLMFMDA. We listed
evaluation result of NRLMFMDA and other several typical

FIGURE 2 | AUC of global LOOCV (left) compared with HGIMDA, RLSMDA, HDMP, and WBSMDA; AUC of local LOOCV (right) compared with HGIMDA, RLSMDA,

HDMP, WBSMDA, and RWRMDA. As a result, NRLMFMDA achieved AUCs of 0.9068 and 0.8239 in the global and local LOOCV, which exceed all the previous

classical models.
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TABLE 1 | Performance evaluation comparison between NRLMFMDA and other several typical models in global LOOCV, local LOOCV and 5-fold cross validation based

on known miRNA-disease associations.

Model The AUC in global LOOCV The AUC in local LOOCV The AUC in 5-fold cross validation

NRLMFMDA 0.9068 0.8239 0.8976 ± 0.0034

HGIMDA 0.8781 0.8077 N/A

RLSMDA 0.8426 0.6953 0.8569 ± 0.0020

HDMP 0.8366 0.7702 0.8342 ± 0.0010

WBSMDA 0.8030 0.8031 0.8185 ± 0.0009

RWRMDA N/A 0.7891 N/A

TABLE 2 | Prediction of the top 50 predicted miRNAs associated with breast neoplasms based on known associations in HMDD database.

miRNA Evidence miRNA Evidence

hsa-mir-200c dbdemc;miR2Disease hsa-mir-1302 unconfirmed

hsa-let-7e dbdemc hsa-let-7i dbdemc;miR2Disease

hsa-let-7d dbdemcc;miR2Disease hsa-mir-133a dbdemc

hsa-mir-655 unconfirmed hsa-mir-9 dbdemc;miR2Disease

hsa-mir-590 dbdemc hsa-mir-103a unconfirmed

hsa-mir-221 dbdemc;miR2Disease hsa-mir-450b unconfirmed

hsa-mir-181 unconfirmed hsa-mir-19b dbdemc

hsa-mir-10b dbdemc;miR2Disease hsa-mir-18a dbdemc;miR2Disease

hsa-mir-15a dbdemc hsa-mir-23a dbdemc

hsa-mir-182 dbdemc;miR2Disease hsa-mir-20b unconfirmed

hsa-mir-150 dbdemc hsa-mir-345 dbdemc

hsa-mir-16 dbdemc hsa-mir-106a dbdemc

hsa-mir-219 dbdemc hsa-mir-33a unconfirmed

hsa-mir-15b dbdemc hsa-mir-195 dbdemc;miR2Disease

hsa-mir-17 miR2Disease hsa-mir-200a dbdemc;miR2Disease

hsa-mir-422a dbdemc hsa-mir-455 dbdemc

hsa-mir-215 dbdemc hsa-mir-132 dbdemc

hsa-mir-1247 unconfirmed hsa-mir-652 dbdemc

hsa-mir-151 unconfirmed hsa-mir-96 dbdemc;miR2Disease

hsa-mir-22 dbdemc;miR2Disease hsa-mir-1323 unconfirmed

hsa-mir-107 dbdemc hsa-mir-137 dbdemc

hsa-mir-143 dbdemc;miR2Disease hsa-mir-202 dbdemc;miR2Disease

hsa-mir-346 dbdemc hsa-mir-2355 unconfirmed

hsa-mir-191 dbdemc;miR2Disease hsa-mir-204 dbdemc;miR2Disease

hsa-mir-223 dbdemc hsa-mir-126 dbdemc;miR2Disease

The first column records top 1–25 related miRNAs. The second column records the top 26-50 related miRNAs.

models in global LOOCV, local LOOCV as well as 5-fold cross
validation by using tabular format (see Table 1).

Case Studies
Based on another two miRNA-disease association databases,
namely dbDEMC (Yang et al., 2010) and miR2Disease (Jiang
et al., 2009), we studied three common major diseases of
human beings to verify the prediction results of NRLMFMDA.
The dataset of 5430 known miRNA-disease associations from
HMDD v2.0 was treated as training set. For each disease,
all candidate miRNAs would be ranked in the light of their
predicted scores and the top 50 predicted miRNAs would
be confirmed using another two miRNA-disesase association

databases (i.e., dbDEMC and miR2Disease). It is worth noting
that only candidate miRNAs that without known associations
with investigated disease were ranked and confirmed. Therefore,
there is no overlap between the training samples and the
prediction lists and none of the top 50 predicted miRNAs
existed in HMDD v2.0. We ulteriorly observed the number of
the verified miRNAs in the top 10, top 20 and top 50 ones
which are related with the three diseases respectively in the two
databases.

Breast cancer is the worldwide women’s health threatening,
and it has caused large quantity of death in female all over the
world. More than 80% of breast cancers are hormone-receptor
positive in the western world (Van et al., 2014). About 232,340
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new cases of invasive breast cancer including 39,620 breast cancer
deaths occurred among women of America in 2013. At present,
more and more researchers have paid attention to the original
etiology of miRNAs in breast cancers and increasing number of
evidences show that several miRNAs are closely related to breast
cancer and play important roles in the tumorigenesis of breast
cancer. For example, among the differentially expressedmiRNAs,
miR-10b,miR-125b,miR145,miR-21, andmiR-155 showed as the
most consistently deregulated in breast cancer. It is worthy noting
that miR-10b, miR-125b, and miR-145, were down-regulated and
the other two, miR-21 and miR-155, were up-regulated, which
means that they can be treated as tumor suppressor genes or
oncogenes, respectively (Iorio et al., 2005). After implementing
NRLMFMDA, we can obtained all the rankings for potential
miRNA-disease associations from the HMDD v2.0. The final
results showed that 8, 16 and 39 of the top 10, 20 and 50
potential miRNAs associated with breast cancer were confirmed,
respectively (see Table 2).

Esophageal Neoplasms is a cancer generated from the
esophagus which runs between the throat and the stomach. It is
still a common cancer happened among the public. The estimated
number of new esophageal cancer cases and deaths were 291238
and 218957, respectively. The crude incidence and mortality
rates for esophageal cancer were 21.62/100000 and 16.25/100000,

respectively(Zeng et al., 2016a). Researches have showed that low
expression of let-7b and let-7c associated with poor response to
chemotherapy both clinically and histopathologically, which was
observed from 74 patients as the training set in before-treatment
biopsies (Sugimura et al., 2012). NRLMFMDA was implemented
to identify esophageal neoplasms-associatedmiRNAs. As a result,
9 out of the top 10 and 40 out of the top 50 predicted esophageal
neoplasms related miRNAs were experimentally confirmed by
reports (see Table 3).

Lymphoma is a group of blood cell tumors developed
from lymphocytes that is a type of white blood cell. It’s also
worth mentioning that Hodgkin lymphoma and non-Hodgkin
lymphoma are the two main types, among which the proportion
of patients with non-Hodgkin lymphoma (NHL) is about 90%.
(Alizadeh et al., 2000). Experimental studies showed that the
miR155 is significantly up-regulated in some Burkitt’s lymphoma
and several other types of lymphomas (Metzler, 2004). In canine
B-cell lymphomas, compared with normal canine peripheral
blood mononuclear cells (PBMC) and normal lymph nodes
(LN), the expression of miRNA hsa-mir-19a was increased. After
the implementation of NRLMFMDA, we took lymphomas as
a case study for the identification of potential miRNA-disease
association. The results showed that 8 out of top 10 and 37 out
of 50 potential lymphoma-associated miRNAs in the prediction

TABLE 3 | Prediction of the top 50 predicted miRNAs associated with esophageal neoplasms based on known associations in HMDD database.

miRNA Evidence miRNA Evidence

hsa-mir-146a dbdemc hsa-mir-1972 unconfirmed

hsa-mir-26b dbdemc hsa-mir-200b dbdemc

hsa-mir-675 unconfirmed hsa-mir-20b dbdemc

hsa-mir-10b dbdemc hsa-mir-1247 unconfirmed

hsa-mir-191 dbdemc hsa-mir-31 dbdemc

hsa-mir-15b dbdemc hsa-mir-198 dbdemc

hsa-mir-143 dbdemc hsa-mir-103a unconfirmed

hsa-mir-20a dbdemc hsa-mir-152 dbdemc

hsa-mir-34b dbdemc hsa-mir-1915 unconfirmed

hsa-mir-27a dbdemc hsa-mir-195 dbdemc

hsa-mir-9 dbdemc hsa-mir-320e unconfirmed

hsa-mir-221 dbdemc hsa-mir-335 dbdemc

hsa-mir-590 dbdemc hsa-mir-106b dbdemc

hsa-mir-200c dbdemc hsa-mir-181d dbdemc

hsa-mir-25 dbdemc hsa-mir-422a dbdemc

hsa-let-7a dbdemc hsa-mir-372 dbdemc

hsa-mir-203 dbdemc;miR2Disease hsa-mir-15a dbdemc

hsa-mir-376c unconfirmed hsa-mir-1 dbdemc

hsa-let-7e dbdemc hsa-mir-181 unconfirmed

hsa-mir-100 dbdemc hsa-mir-29a dbdemc

hsa-mir-29b dbdemc hsa-mir-30d dbdemc

hsa-mir-2355 unconfirmed hsa-mir-106a dbdemc

hsa-mir-205 dbdemc;miR2Disease hsa-mir-92 dbdemc

hsa-mir-30a dbdemc hsa-mir-371a unconfirmed

hsa-mir-125a dbdemc hsa-mir-141 dbdemc

The first column records top 1-25 related miRNAs. The second column records the top 26–50 related miRNAs.
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TABLE 4 | Prediction of the top 50 predicted miRNAs associated with lymphoma based on known associations in HMDD database.

miRNA Evidence miRNA Evidence

hsa-mir-10b dbdemc hsa-mir-106b dbdemc

hsa-mir-1247 unconfirmed hsa-let-7a dbdemc

hsa-mir-221 dbdemc;miR2Disease hsa-mir-326 dbdemc

hsa-mir-1302 unconfirmed hsa-mir-99b dbdemc

hsa-mir-30a dbdemc hsa-mir-103a unconfirmed

hsa-mir-31 dbdemc hsa-mir-30b dbdemc

hsa-mir-9 dbdemc hsa-mir-124 dbdemc

hsa-mir-27b dbdemc hsa-mir-204 dbdemc

hsa-mir-181c dbdemc hsa-mir-1915 unconfirmed

hsa-let-7d dbdemc hsa-mir-410 unconfirmed

hsa-mir-15b dbdemc hsa-mir-19b dbdemc;miR2Disease

hsa-mir-202 unconfirmed hsa-mir-301b unconfirmed

hsa-let-7e dbdemc;miR2Disease hsa-mir-518a unconfirmed

hsa-mir-2355 unconfirmed hsa-mir-125a dbdemc

hsa-mir-27a dbdemc hsa-mir-191 dbdemc

hsa-mir-139 dbdemc;miR2Disease hsa-mir-23a dbdemc

hsa-mir-17 dbdemc;miR2Disease hsa-mir-200c dbdemc

hsa-mir-215 dbdemc hsa-mir-33a dbdemc

hsa-mir-20a dbdemc;miR2Disease hsa-mir-1 dbdemc

hsa-mir-29b dbdemc hsa-mir-127 dbdemc;miR2Disease

hsa-mir-29c dbdemc hsa-mir-132 dbdemc

hsa-mir-208b unconfirmed hsa-mir-146b unconfirmed

hsa-mir-655 unconfirmed hsa-mir-200b dbdemc

hsa-mir-99a dbdemc;miR2Disease hsa-mir-942 unconfirmed

hsa-mir-219 dbdemc hsa-let-7b dbdemc

The first column records top 1–25 related miRNAs. The second column records the top 26–50 related miRNAs.

result list have been verified based on recent experimental reports
(see Table 4).

To demonstrate the result of ranking completely, we
have provided the prediction list of the whole potential
miRNA-disease associations in HMDD v2.0 database and
their association scores predicted by NRLMFMDA (see
Supplementary Table 1).

In addition, we want to test the prediction ability of
NRLMFMDA for the new diseases, namely the ones that have
no known association with any miRNA. Therefore, we hid
the association information between the miRNAs and the
test disease by setting any of the known associations between
them as unknown ones. After implementing the NRLMFMDA,
we obtained the ranking of the miRNA-disease association
prediction scores. We showed the result of hepatocellular
carcinoma ranking in Table 5, in which we can see that 9,
18 and 42 related miRNAs out of the top 10, 20, and 50 had
been confirmed by at least one of the three databases HMDD,
dbDEMC and miR2Disease. Moreover, hsa-mir-146a was ranked
first in the top 50 and the recent research has confirmed that a
functional polymorphism (rs2910164) in the miR-146a gene is
associated with the risk for hepatocellular carcinoma (Xu et al.,
2008).

Finally, we implemented NRLMFMDA on the old version of
the database HMDD to observe whether the model still performs

well on it. After implementing the experiment with the proposed
method, it had shown the effectiveness on predicting potential
miRNA-disease associations based on the previous dataset. For
instance, there are 5, 11, and 31 respectively out of top 10, 20, and
50miRNAs related with the lung neoplasms have been confirmed
(see Table 6). As we can see, hsa-mir-96 was ranked first in the
top 50 and research has confirmed that the expression of miR-
96 in tumors was positively related to its expression in sera.
Besides, high expression of tumor and serummiRNAs of themiR-
183 family were associated with overall poor survival in patients
with lung cancer, which was demonstrated by Log-rank and Cox
regression analyses (Zhu et al., 2011).

According to the result of case studies on the fivemajor human
diseases, excellent prediction performance of NRLMFMDA has
been presented. With the development of experimental tools and
the improvement of experimental measures, we look forward
that more and more miRNA-disease association data verified by
experiment will spring up. At that time, increasing portion of the
predictions with NRLMFMDA can be verified by researches in
the future.

DISCUSSION

Nowadays, researchers have made progress not only in
discovering miRNAs, but also in discovering the important
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TABLE 5 | Prediction of the top 50 predicted miRNAs associated with carcinoma, hepatocellular based on known associations in HMDD database.

miRNA Evidence miRNA Evidence

hsa-mir-146a dbdemc;miR2Disease;HMDD hsa-mir-1247 unconfirmed

hsa-mir-16 dbdemc;miR2Disease;HMDD hsa-mir-150 dbdemc;miR2Disease;HMDD

hsa-mir-215 miR2Disease hsa-mir-483 HMDD

hsa-mir-133b HMDD hsa-let-7e dbdemc;miR2Disease;HMDD

hsa-mir-15a dbdemc;miR2Disease;HMDD hsa-mir-205 miR2Disease;HMDD

hsa-mir-15b dbdemc;HMDD hsa-mir-139 miR2Disease;HMDD

hsa-mir-103b unconfirmed hsa-mir-92a miR2Disease;HMDD

hsa-mir-345 HMDD hsa-mir-145 dbdemc;miR2Disease;HMDD

hsa-mir-9 miR2Disease hsa-mir-204 unconfirmed

hsa-mir-20a dbdemc;miR2Disease;HMDD hsa-let-7g miR2Disease;HMDD

hsa-mir-219 miR2Disease;HMDD hsa-mir-1302 unconfirmed

hsa-mir-143 dbdemc;miR2Disease hsa-mir-1972 unconfirmed

hsa-mir-125a dbdemc;miR2Disease;HMDD hsa-mir-191 dbdemc;HMDD

hsa-mir-29b dbdemc;HMDD hsa-mir-450b HMDD

hsa-mir-106b dbdemc;miR2Disease;HMDD hsa-mir-181d dbdemc;HMDD

hsa-mir-22 dbdemc;HMDD hsa-mir-30b HMDD

hsa-mir-152 miR2Disease;HMDD hsa-mir-10b HMDD

hsa-mir-675 unconfirmed hsa-mir-941 unconfirmed

hsa-mir-27b dbdemc hsa-mir-30a miR2Disease;HMDD

hsa-mir-221 dbdemc;miR2Disease;HMDD hsa-mir-30d dbdemc;HMDD

hsa-let-7d miR2Disease;HMDD hsa-mir-200a dbdemc;miR2Disease;HMDD

hsa-mir-100 dbdemc;HMDD hsa-mir-194 dbdemc;miR2Disease

hsa-mir-26a dbdemc;miR2Disease;HMDD hsa-mir-2355 unconfirmed

hsa-mir-198 HMDD hsa-mir-146b HMDD

hsa-mir-29a dbdemc;HMDD hsa-let-7c dbdemc;miR2Disease;HMDD

The first column records top 1–25 related miRNAs. The second column records the top 26–50 related miRNAs.

roles that miRNAs play in physiological and pathophysiological
processes (Liu and Olson, 2010). For example, aberrant
expression of miRNAs has been related with various
neurological disorders (NDs) in the central nervous system
such as Huntington disease, amyotrophic lateral sclerosis,
schizophrenia and autism, Alzheimer disease, Parkinson’s
disease. If dysregulated miRNAs are discoveried in patients
with NDs, this may be used as a biomarker for the earlier
diagnosis and monitoring of disease progression (Kamal
et al., 2015). MiRNA can also be transcriptional regulators
participated in pulmonary sarcoidosis and packaged in
extracellular vesicles (EV) during cellular communication
(Kishore et al., 2018). In biomedical research, identification
of disease-associated miRNAs has become an important
filed, which will accelerate people’s understanding of
disease pathogenesis at the molecular level and disease
diagnosis, treatment and prevention in medical(Chen et al.,
2017d).

This paper introduced the computational method called
NRLMFMDA in which we combined the novel method of logistic
matrix factorization with the similarity computational method
of Gaussian interaction profile kernel similarity and further
assigned higher importance level to the known associations
in the process of calculating the potential miRNA-disease

association probabilities to assure the larger positive influence
of the known data. Additionally, we also took full advantage
of the information of nearest neighbor diseases and miRNAs
to improve the accuracy of the miRNA-disease association
prediction (Liu et al., 2016a). As is known, the logistic
matrix factorization technique has been applied in many
early work of predicting associations. And it has shown
remarkable effectiveness. Taking the neighborhood principle into
consideration, we modified it in a more reasonable way to
improve the accuracy of prediction. Due to the introduction of
the Gaussian interaction profile kernel similarity, the information
of the disease similarity and the miRNA similarity was fully
excavated to improve the accuracy of the prediction. To verify
the accuracy of the NRLMFMDA, three types of cross validation
which contains Global LOOCV, Local LOOCV, and 5-fold cross
validation have been implemented. As a result, the excellent
performance of NRLMFMDA has been showed both from
the cross validation and the case studies with several crucial
diseases.

Several important factors contribute to the excellent
performance of NRLMFMDA. First of all, more and more
association pairs between miRNAs and diseases have
been discovered and confirmed till now. Due to the data-
dependent property of NRLMFMDA, the increasing of known
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TABLE 6 | Prediction of the top 50 predicted miRNAs associated with lung neoplasms based on known associations in old version HMDD database.

miRNA Evidence miRNA Evidence

hsa-mir-96 dbdemc;HMDD hsa-mir-139 dbdemc;miR2Disease

hsa-mir-498 dbdemc hsa-mir-323 unconfirmed

hsa-mir-491 unconfirmed hsa-mir-181d dbdemc

hsa-mir-335 miR2Disease;HMDD hsa-mir-379 unconfirmed

hsa-mir-378 unconfirmed hsa-mir-448 unconfirmed

hsa-mir-596 unconfirmed hsa-mir-302d dbdemc

hsa-mir-409 unconfirmed hsa-mir-301b unconfirmed

hsa-mir-523 unconfirmed hsa-mir-1 dbdemc;miR2Disease;HMDD

hsa-mir-526b dbdemc hsa-mir-154 dbdemc

hsa-mir-220 miR2Disease hsa-mir-510 unconfirmed

hsa-mir-15a dbdemc hsa-mir-17 miR2Disease;HMDD

hsa-mir-520f dbdemc hsa-mir-133a dbdemc;HMDD

hsa-mir-136 dbdemc;HMDD hsa-mir-376a HMDD

hsa-mir-520c unconfirmed hsa-mir-219 miR2Disease;HMDD

hsa-mir-657 unconfirmed hsa-mir-181a dbdemc;HMDD

hsa-mir-185 dbdemc;HMDD hsa-mir-25 dbdemc;HMDD

hsa-mir-34a dbdemc;HMDD hsa-mir-194 unconfirmed

hsa-mir-514 unconfirmed hsa-mir-130b dbdemc

hsa-mir-383 dbdemc hsa-mir-15b dbdemc

hsa-mir-642 unconfirmed hsa-mir-532 unconfirmed

hsa-mir-29a dbdemc;miR2Disease;HMDD hsa-mir-598 unconfirmed

hsa-mir-181b dbdemc;HMDD hsa-mir-512 unconfirmed

hsa-mir-338 dbdemc;miR2Disease;HMDD hsa-mir-526a unconfirmed

hsa-mir-224 dbdemc;miR2Disease;HMDD hsa-let-7b miR2Disease;HMDD

hsa-mir-210 dbdemc;miR2Disease;HMDD hsa-mir-134 HMDD

The first column records top 1–25 related miRNAs. The second column records the top 26–50 related miRNAs.

associations assuredly improved the predicting accuracy.
Secondly, NRLMFMDA can take full advantage of the similarity
information by introducing the Gaussian interaction profile
kernel similarity. Thirdly, NRLMFMDA pays attention to
the neighborhood information which provides more reliable
associations by using the neighborhood regularization method
in the training procedure and the neighborhood smoothing
method in the final prediction. What’s more, some machine
learning-based model randomly selected negative samples
as training data, this inaccurate chosen process would affect
the model’s prediction accuracy. The modified latent vectors
used in NRLMFMDA can overcome the bias because of using
the uncertain negative samples to train the latent vectors of
miRNAs and diseases in negative sets, which would helpful
to the improvement of prediction accuracy for NRLMFMDA.
Last but not least, searching the optimal solution with an
alternating gradient ascent procedure made sure the reliability
of the disease eigenvectors and the miRNA eigenvectors. In
view of above-mentioned, NRLMFMDA has greatly improved
the accuracy in prediction association between miRNA and
disesase.

Some limitations have been noted in this study. Firstly,
though current studies benefit from the increased known
data, it is never a finished work to expand data. Numerous
excellent methods were proposed just to cover the shortage

of the data (Liu et al., 2014; You et al., 2014). Secondly,
in the iterative process, we have five parameters that are
difficult to choose as the optimal combination. Actually,
we have some ranges for the five parameters. However,
even using grid search strategy, it wastes a lot of time
and resources due to the limitation of current situation.
Therefore, we expect to use some optimized search strategy
to improve the accuracy of prediction method in the
future.
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