
fgene-09-00304 August 3, 2018 Time: 18:22 # 1

ORIGINAL RESEARCH
published: 07 August 2018

doi: 10.3389/fgene.2018.00304

Edited by:
Alfredo Pulvirenti,

Università degli Studi di Catania, Italy

Reviewed by:
Ayman Sabry El-Baz,

University of Louisville, United States
Cuncong Zhong,

The University of Kansas,
United States

*Correspondence:
João C. Setubal

joao.c.setubal@gmail.com

Specialty section:
This article was submitted to

Bioinformatics and Computational
Biology,

a section of the journal
Frontiers in Genetics

Received: 17 May 2018
Accepted: 18 July 2018

Published: 07 August 2018

Citation:
Amgarten D, Braga LPP, da Silva AM

and Setubal JC (2018) MARVEL,
a Tool for Prediction of Bacteriophage

Sequences in Metagenomic Bins.
Front. Genet. 9:304.

doi: 10.3389/fgene.2018.00304

MARVEL, a Tool for Prediction of
Bacteriophage Sequences in
Metagenomic Bins
Deyvid Amgarten1, Lucas P. P. Braga1,2, Aline M. da Silva1 and João C. Setubal1,3*

1 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil, 2 INRA, UMR 1347,
Agroécologie, Dijon, France, 3 Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States

Here we present MARVEL, a tool for prediction of double-stranded DNA bacteriophage
sequences in metagenomic bins. MARVEL uses a random forest machine learning
approach. We trained the program on a dataset with 1,247 phage and 1,029 bacterial
genomes, and tested it on a dataset with 335 bacterial and 177 phage genomes.
We show that three simple genomic features extracted from contig sequences were
sufficient to achieve a good performance in separating bacterial from phage sequences:
gene density, strand shifts, and fraction of significant hits to a viral protein database. We
compared the performance of MARVEL to that of VirSorter and VirFinder, two popular
programs for predicting viral sequences. Our results show that all three programs
have comparable specificity, but MARVEL achieves much better performance on the
recall (sensitivity) measure. This means that MARVEL should be able to identify many
more phage sequences in metagenomic bins than heretofore has been possible. In a
simple test with real data, containing mostly bacterial sequences, MARVEL classified
58 out of 209 bins as phage genomes; other evidence suggests that 57 of these 58
bins are novel phage sequences. MARVEL is freely available at https://github.com/
LaboratorioBioinformatica/MARVEL.
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INTRODUCTION

In the past few decades, our understanding of microbial life has been profoundly changed by
techniques of environmental sampling and high-throughput sequencing (Rappé and Giovannoni,
2003; Handelsman, 2004; DeLong, 2009). The uncultured majority of Bacteria and Archaea is
slowly being revealed and so is the largely unknown universe of their viruses (Yutin et al., 2018).
Viruses are the most abundant biological entities on Earth, outnumbering bacteria and archaea in
the oceans by a factor of at least 10, perhaps 100 (Bergh et al., 1989). The majority of environmental
viruses infects bacterial hosts and are therefore termed bacteriophages or simply phages. They have
been shown to be important drivers of biogeochemical cycles on Earth (Roux et al., 2016), as well
as key players in directing and originating bacterial diversity (Falkowski et al., 2008; Koskella and
Brockhurst, 2014; Braga et al., 2018).

Isolation is the gold standard for characterizing and assessing phage diversity, and many new
phages are isolated every year from diverse environments such as oceans, composting, and human
sewage, among many others (Sullivan et al., 2003; Kumari et al., 2009; Amgarten et al., 2017).
However, isolation of viruses is constrained by the requirement of cultivable bacterial isolates

Frontiers in Genetics | www.frontiersin.org 1 August 2018 | Volume 9 | Article 304

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2018.00304
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2018.00304
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2018.00304&domain=pdf&date_stamp=2018-08-07
https://www.frontiersin.org/articles/10.3389/fgene.2018.00304/full
http://loop.frontiersin.org/people/490194/overview
http://loop.frontiersin.org/people/475224/overview
http://loop.frontiersin.org/people/404548/overview
http://loop.frontiersin.org/people/38684/overview
https://github.com/LaboratorioBioinformatica/MARVEL
https://github.com/LaboratorioBioinformatica/MARVEL
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00304 August 3, 2018 Time: 18:22 # 2

Amgarten et al. Phage Sequence Prediction With MARVEL

as hosts. This hinders the prospection for new phages since the
vast majority of the microbial species are uncultivable under
laboratory conditions (Solden et al., 2016). In this context, tools
for mining viral sequences in large datasets of metagenomic reads
and contigs are crucial to retrieve information about novel phage
genes and genomes (Rosario and Breitbart, 2011).

Machine learning is a general technique that has gained
in popularity in the last few years (Hastie et al., 2009; James
et al., 2013). A machine learning algorithm can be trained to
recognize a specific biological attribute once a list of example
bona fide features is provided. Attributes are commonly referred
to as labels in supervised learning. A machine learning problem
generally consists of trying to assign labels to new objects,
given a list of features on which the algorithm was trained.
In the case of DNA sequences, commonly used features are
GC content, oligonucleotide frequency profiles, and codon
usage.

Two popular tools have been developed for prediction of
viral sequences in a dataset of DNA sequences (Roux et al.,
2015; Ren et al., 2017). VirSorter is a tool for prediction of viral
contigs in metagenomic datasets, which uses alignments and
similarity search in a database of known viruses (Roux et al.,
2015). VirFinder uses a machine learning classifier for the same
purpose, but in this case, k-mer frequency profiles (frequency
of nucleotide words of length k) are extracted from contigs and
given as input to a previously trained model (Ren et al., 2017).
Both tools have good performance and are shedding light into
the viral dark matter (Nigro et al., 2017; Hurwitz et al., 2018).
However, these tools do not perform well in terms of recall
(sensitivity), and therefore they might be missing an overly large
fraction of true viral sequences (Roux et al., 2015; Ren et al.,
2017).

Here we present MARVEL (Metagenomic Analysis and
Retrieval of Viral ELements), a tool for prediction of dsDNA
phage sequences in metagenomic bins. MARVEL uses a machine
learning approach and three simple genomic features extracted
from contig sequences. MARVEL considers a contig sequence to
be predicted as part of a previously determined bin (as opposed
to treating contigs as isolated objects), seeking to leverage the
information that all contigs in a bin are, in principle, part of the
same organism.

MATERIALS AND METHODS

Training and Testing Datasets
To build and test MARVEL, the RefSeq microbial dataset was
downloaded (January 2018) and only genomes belonging to the
Bacteria domain (NCBI txid: 2) and to dsDNA viruses from the
Caudovirales order (NCBI txid:28883) were selected (this is the
baseline dataset). Tailed phages were selected at this step as a
representative group given that they constitute the majority of
viruses present in most environmental samples (Ashelford et al.,
2003; Filée et al., 2005; Ackermann, 2007). The baseline dataset
was split into two subsets according to the GenBank record
date: before January 2016; and January 2016 and thereafter. This
time-based division is usually applied in classifiers to simulate

the use of the tool on newly isolated sequences (Roux et al.,
2015; Ren et al., 2017). We refer to the before-2016 subset as
the training dataset, and to the 2016-and-later subset as the
testing dataset. The training dataset has 1,247 phage genomes and
1,029 bacterial genomes, and it was used to train and generate
a model for prediction of phage bins. The testing dataset has
335 bacterial genomes and 177 phage genomes. Training and
testing datasets have no overlap and are available in MARVEL’s
repository page1.

Training and testing datasets were further processed to
generate mock datasets of contigs with specific lengths. For
each fragment length analyzed in this study (2, 4, 8, 12, and
16 kbp), complete genomes were randomly fragmented in 10
contigs of the specified length that may or may not have overlap.
Next, contigs belonging to the same organism were clustered
to form a simulated bin. This process was performed for both
training and testing sets, and the resulting bins were used
to train the machine learning algorithm, to asses MARVEL’s
performance, and to compare MARVEL against VirSorter and
VirFinder.

Feature Extraction and Classifier
Development
As previous studies have shown, genomic features such as
DNA k-mer profiles and GC content can be strong signals in
linking or differentiating genome sequences from bacteria and
viruses (Edwards et al., 2016; Ren et al., 2017). However, it
is known that phages try to mimic host genome sequences in
order to overcome their defenses (Carbone, 2008; Bahir et al.,
2009). This causes classifiers based on k-mer frequencies to have
poor performance in terms of overall accuracy and especially
recall. In other words, when one of these classifiers identifies
a phage genome, it is almost always correct, but it is likely
to miss a majority of new phages present in environmental
samples.

Seeking more robust features, we focused our efforts
on characteristics related to genome structure and protein
translational mechanisms of each organism. Such characteristics
require a second layer of information, which may be added by
utilization of results from gene prediction programs, such as
Prodigal (Hyatt et al., 2010) and GeneMark (Besemer et al., 2001).
Therefore, we evaluated phage and bacterial genomes according
to six of these genomic features extracted from the baseline
dataset of RefSeq complete genomes.

These six features are: average gene length, average spacing
between genes, density of genes, frequency of strand shifts
between neighboring genes, ATG relative frequency, and fraction
of genes with significant hits against the pVOGs database
(Grazziotin et al., 2017). Average gene length was computed by
adding up the length of all predicted CDSs in the genome or in the
contigs in a bin (in bp) divided by the total number of predicted
CDSs. Average spacing was calculated as the mean length in bp
of regions between two CDSs. Density of genes was calculated as
the total number of CDSs divided by genome length measured
in kbp. Frequency of strand shifts was computed by adding up

1https://github.com/laboratoriobioinformatica/MARVEL
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the number of strand shifts between neighboring genes, and
dividing by the total number of CDSs in the genome. ATG relative
frequency was computed by counting the number of ATG triplets
in one of the strands, in all contigs in a bin or in the complete
genome, divided by the total number of 3-mers in that sequence
(one strand). Finally, each CDS in a genome was searched using
HMMscan (Eddy, 2011) against the pVOGs database of viral
HMM profiles (Grazziotin et al., 2017) (downloaded in January
2018); a significant hit was noted when the e-value was less than
or equal to 10−10. The number of significant hits was divided by
the total number of CDSs to generate the fraction of genes with
significant hits against the pVOGs database. All values based on
predicted CDSs were extracted from GenBank files as available
for download in January 2018 (exploratory step) or predicted in
simulated fragments by Prodigal (Hyatt et al., 2010) as driven by
Prokka (Seemann, 2014).

Using Python Scikit Learn libraries (Pedregosa et al., 2011),
we tried different machine learning approaches based on the
six features listed above. Specifically: support vector machine
(SVM), logistic regression, neural networks, and random forest.
Classifiers were evaluated using the training set as well as k-fold
cross-validation (k = 20), with the result that random forest was
the best approach for our target prediction. Similar findings about
suitability of random forest classifiers in bioinformatics have also
been reported (Boulesteix et al., 2012; Zhang et al., 2017).

The relative weight of each feature on a given dataset was
calculated by the ID3 implementation of random forest (Quinlan,
1986). Features with low gain of information were removed from
the final model, in order to simplify feature extraction in the
final version of the tool. The following features were selected
as more informative: gene density, strand shifts, and fraction of
genes with significant hits against pVOGs database (see section
“Results”). We then extracted these three informative features
from a complete training set of 8 kbp simulated bins, and a
random forest classifier was trained to be MARVEL’s prediction
core. The random forest model was trained with 50 initial tree
estimators and leaf pruning; other parameters were set to their
default values.

Tests With Simulated Metagenomic Bins
Simulated bins containing different fragment lengths were
generated for genomes of the testing set as previously described
to asses MARVEL’s performance. Each test corresponding to a
specific fragment length was performed in five randomly sampled
replicates of 150 bins (75 bacteria and 75 dsDNA phages). Bins
were submitted to MARVEL and predictions were evaluated for
true positive rates, specificity, accuracy, and F1 score according
to the following standard formulae:

TPR =
TP

TP + FN

SPC =
TN

TN + FP

ACC =
TP + TN

TP + FP + TN + FN

F1 =
2TP

2TP + FP + FN

Where : TPR = True positive rate, SPC = Specificity,
ACC = Accuracy,

TP = True positive count, FP = False positive count,
TN = True negative count, FN = False negative count

Tests With Real Metagenomic Data From
Composting Samples
A dataset of Illumina raw reads from composting samples
generated by our group (Antunes et al., 2016) was used to test
MARVEL’s performance in real metagenomic data. Five samples
were extracted from a composting unit, and whole community
DNA was extracted to generate shotgun metagenomic reads;
this dataset contains mostly bacterial sequences. Raw reads for
all five samples were cross-assembled with metaSpades (Nurk
et al., 2017) generating a set of contigs. Metabat2 (Kang et al.,
2015) was used for binning with parameters: -m 1500 -s 10000.
Other parameters remained with their default values. Resulting
bins were evaluated regarding quality and the presence of
Bacterial and Archaeal marker genes using CheckM (Parks et al.,
2015).

Pipeline Implementation
MARVEL was coded in Python 3 and uses Prokka (Seemann,
2014) and HMMscan (Eddy, 2011) as important dependencies.
As input, MARVEL requires a directory with metagenomic bins
in FASTA format; it generates a results directory containing bins
predicted as phages. An auxiliary script was made available to
generate bins from Illumina paired-end reads using standard
tools and methods (Breitwieser et al., 2017).

Performance Comparison of MARVEL,
VirSorter, and VirFinder
Each contig of a simulated bin (10 contigs in total) was
individually given as input to VirSorter and VirFinder. For a
given tool, an entire bin was considered to be a positive prediction
in case at least one of its contigs were predicted as viral (note
that in our experimental set-up, there are no bins with both
bacterial and viral sequences). A contig was considered viral
if predicted in categories I and II for VirSorter, and if the
q-value was less than or equal to 0.01 for VirFinder. Tests were
performed for different fragment lengths and in 30 randomly
sampled replicates of 100 bins (50 bacteria and 50 dsDNA
phages). Average values of true positive rate, specificity, and
accuracy were compared using the Wilcoxon signed-rank test
and were considered significant if the p-value was less than
0.001.

Running time was measured for all tools using two sets of
bins (100 bins averaging 40 kbp and 100 bins averaging 160 kbp)
in a standard desktop computer with a 64-bit Intel Core i7-
4770 3.4 GHz × 6 CPUs and 8 GB RAM DDR3, running Linux
distribution Ubuntu 16.
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FIGURE 1 | Scatter plot of bacterial and phage genomes using two of the three features as axes: strand shifts by total number of genes and density of genes. Green
and red dots represent bacterial and phage genomes, respectively.

RESULTS

As mentioned, we tested six different genomic features; the three
best features for our target prediction were gene density, strand
shifts, and fraction of significant pVOGs hits. The relative weights
of each feature (based on gain of information) according to the
ID3 implementation on both training and testing datasets are:
genes density: 0.32, strand shifts: 0.31, pVogs hits: 0.37. Figure 1
shows results for two of these features on the baseline dataset;
numerical results for all three features are shown in Table 1. In
Supplementary Figure S1 we also present a PCA analysis of the
three selected features.

For a given length, simulated bins were randomly subsampled
and given as input to MARVEL in five replicates. Predictions
were performed for each simulated bin and results are shown in

TABLE 1 | Mean values (and respective standard deviations) for three features
extracted from the training dataset of dsDNA phage and bacterial genomes.

Features

Gene density
(genes by kbp)

Strand shifts by total
number of genes

Fraction of pVOGs
significant hits

Phage 1.44 (±0.27) 0.07 (±0.05) 0.68 (±0.2)

Bacteria 0.93 (±0.13) 0.24 (±0.08) 0.1 (±0.04)

Figure 2. Additional results for k-fold cross validation using both
training and testing datasets are presented in Supplementary
Table S1.

The comparison results between MARVEL, VirSorter, and
VirFinder are shown in Figure 3. Table 2 shows running times
for each tool with two different sets of bins as input and running
on a standard desktop computer.

Identification of Novel Phage Genome
Candidates From Composting Samples
Reads from composting samples were assembled and binned,
generating 209 bins. These bins were given as input to MARVEL,
which classified 58 bins as phage genomes (Supplementary
Table S2). These 58 bins ranged in length from 10 to 236 kbp
(averaging 27 kpb), which are in the expected range of phage
genomes (Mahmoudabadi and Phillips, 2018).

We submitted the 209 bins to CheckM. Out of the 58 bins
predicted as phages, only one presented bacterial marker genes.
This bin contains a CDS predicted to code for a member of
the MerR family of transcriptional activators (pfam00376). All
other 57 bins were classified by CheckM as “root,” meaning that
they had no hits against the set of bacterial marker genes used
by CheckM. The potential novelty of the sequences in these 58
bins can be evaluated by observing the number of CDSs in each
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FIGURE 2 | MARVEL’s performance in simulated bins obtained from the testing set of RefSeq genomes. Recall, specificity, accuracy and F1 score are shown for
bins composed of different contig lengths.

FIGURE 3 | Performance comparison of MARVEL, VirSorter, and VirFinder. Means were compared using Wilcoxon signed-rank test. Standard deviation of 30
replicates are show by error bars. ∗ denotes statistically significant difference.

bin with significant pVOGs hits: the observed range was [14–
60]% (Supplementary Table S2). The 209 bins used in this test
are available at https://github.com/LaboratorioBioinformatica/
MARVEL.

DISCUSSION

Figure 1 and Table 1 show that the features chosen can effectively
distinguish between bacterial and dsDNA phage sequences.

Frontiers in Genetics | www.frontiersin.org 5 August 2018 | Volume 9 | Article 304

https://github.com/LaboratorioBioinformatica/MARVEL
https://github.com/LaboratorioBioinformatica/MARVEL
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00304 August 3, 2018 Time: 18:22 # 6

Amgarten et al. Phage Sequence Prediction With MARVEL

TABLE 2 | Running time for two different set of bins.

100 bins of ∼40 kbp 100 bins of ∼160 kbp

Wall CPU Wall CPU

time usage time usage

MARVEL 11 m 33 s 17 m 54 s 36 m 33 s 70 m 45 s

VirSorter 10 m 20 s 27 m 21 s 39 m 18 s 140 m 8 s

VirFinder 40 s 40 s 42 s 42 s

Tests were performed in a desktop computer with a 64-bit Intel Core i7-4770
3.4 GHz × 6 CPUs and 8 GB RAM DDR3, running Linux distribution Ubuntu 16.
CPU times are the sum of times spent by each CPU.

These results suggest that higher gene density and lower rates
of strand shift are important phage genomic hallmarks when
compared with bacterial genomes. The length of phage genomes
is physically constrained by the size of the capsid, which imposes
a limited space for genes in the genome (Chirico et al., 2010),
favoring increased gene density when compared to bacteria.
Evidence supporting very compact phage genomes has also been
reported by previous studies (O’Connell, 2005; Roux et al., 2015;
Mahmoudabadi and Phillips, 2018). The lower rates of strand
shifts can be interpreted as giving phages more efficiency in
transcription/translation processes. Such efficiency helps ensure
competitive superiority of phage genes over host genes and
is essential for phage control of host transcription/translation
machinery and cellular resources (Mrázek and Karlin, 1998;
Miller et al., 2003). MARVEL’s results have also indicated that
the pVOGs database of HMM profiles is comprehensive enough
to capture the signal of conserved phage proteins, such as DNA
polymerases, helicases, and terminases. These proteins were often
identified in the newly discovery genomes, which is in agreement
with previous reports from the literature (Rohwer and Edwards,
2002; Comeau et al., 2007). In sum, gene density, strand shifts
and pVOGs hits combined as features in a machine learning
approach allow more accurate and more sensible prediction
of phage genomes compared to other features reported in the
literature. Moreover, the relative weights of these three features
are approximately the same, suggesting that our model is robust,
and should perform well even when a new phage genome has few
or no hits to the pVOGs database.

In terms of performance metrics, MARVEL has high F1 scores
and accuracy for all bin lengths analyzed, but especially for bins
composed of contigs 4 kbp long and longer (Figure 2). True
positive rates were particularly high for all fragment lengths. As
already mentioned, VirFinder and VirSorter do not in general
have good recall values, as opposed to specificity, for which their
performance is usually very good (Roux et al., 2015; Ren et al.,
2017). Altogether, these performance results in simulated data
suggest that MARVEL is effectively able to predict dsDNA phage
genomes in metagenomic bins.

All three tools have comparable results for specificity in
most of the fragment lengths studied, with the exception of
2 kbp-fragments (Figure 2). On the other hand, MARVEL’s true
positive rates (recall) were significantly higher in all cases (p-
value < 0.001). MARVEL’s better true positive rates resulted in
better overall accuracy compared to the two other tools in all

scenarios. Short contigs (2 kbp or less in length) represent a
clear limitation, since MARVEL uses CDS predictions as primary
information in all three features that we selected. Sequences too
short will contain very few or no CDSs, and at least two CDSs are
required for calculating the features gene density and frequency
of strand shifts. On the other hand, reports in the literature
indicate that viral bins are often composed of large contigs, and in
some cases contain almost complete viral genomes (Dutilh et al.,
2014; Paez-Espino et al., 2017), suggesting that this limitation
may not be serious.

The use of MARVEL in one dataset of real data, with
contigs having widely varying lengths, yielded promising results,
resulting in 57 potentially novel phage sequences.

Upstream processing such as assembly and binning are
two major factors that also influence MARVEL’s performance.
Chimeric contigs, as well as poorly binned bins may generate
noisy data, which will certainly increase the number of erroneous
predictions. Therefore, it is important to choose thresholds
and parameter values to ensure quality of upstream processing
(Mavromatis et al., 2007; Roux et al., 2017). There are several tools
available for assembly and binning which generate good quality
contigs and bins (Kang et al., 2015; Li et al., 2016; Wu et al., 2016;
Nurk et al., 2017). We emphasize, however, that assessing quality
of viral bins is not an easy task. CheckM is a tool for assessing
marker genes, contamination and completeness of metagenomic
bins, but unfortunately only bacterial and archaeal datasets of
marker genes are available (Parks et al., 2015).

Our results (Table 2) show that MARVEL and VirSorter have
comparable running times, while VirFinder is much faster than
either. For all programs, wall time was under an hour for what we
believe are realistic-sized datasets.

CONCLUSION

To our knowledge, MARVEL is the first tool capable to
effectively separate metagenomic bins containing dsDNA phage
sequences from those containing bacterial sequences. By doing
this, it facilitates downstream metagenomic analyses aiming
to characterize phage phylogenetic and functional diversity.
VirSorter and VirFinder are two excellent tools optimized to
analyze single contigs. Although it would be possible to use these
tools in a pipeline to generate whole bin predictions, this would
certainly require substantial additional work. Furthermore, we
present results in simulated data showing significantly better true
positive rates and accuracy for MARVEL’s predictions. These
improvements were achieved by the implementation and use of
three specific genomic features, shown here to be highly suitable
for viral sequence prediction.

In its present incarnation, as described here, MARVEL is
able to effectively predict tailed phages of the Caudovirales
order only. Tailed phages constitute the majority of viruses
present in most environmental samples, and we believe this fact
justifies our choice (Ashelford et al., 2003; Filée et al., 2005;
Ackermann, 2007). On the other hand, the features that we used
for predictions in this work may not be as effective for viruses
in general (Mahmoudabadi and Phillips, 2018). This may be one
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reason why recall rates in our tests were lower for VirSorter and
VirFinder as compared to MARVEL, since those other tools are
generic viral sequence finders.

We believe an effective generic viral model would be hard
to achieve, given the heterogeneity of viral types and genome
structures. Nevertheless, it is our intention to expand MARVEL’s
scope to include prediction of other groups of viruses, by
obtaining additional models specific to other viral groups. Such
models would be available to users as parameter choices in
future versions of MARVEL; the program was designed with this
objective in mind. We are also working on a module that will seek
to provide genome completeness and contamination statistics for
each predicted phage genome, similar to what CheckM (Parks
et al., 2015) does for bacterial genomes.
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