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Over the last two decades, various in silico approaches have been developed and
refined that attempt to identify protein and/or peptide vaccines candidates from
informative signals encoded in protein sequences of a target pathogen. As to date,
no signal has been identified that clearly indicates a protein will effectively contribute to
a protective immune response in a host. The premise for this study is that proteins under
positive selection from the immune system are more likely suitable vaccine candidates
than proteins exposed to other selection pressures. Furthermore, our expectation is that
protein sequence regions encoding major histocompatibility complexes (MHC) binding
peptides will contain consecutive positive selection sites. Using freely available data
and bioinformatic tools, we present a high-throughput approach through a pipeline that
predicts positive selection sites, protein subcellular locations, and sequence locations
of medium to high T-Cell MHC class I binding peptides. Positive selection sites are
estimated from a sequence alignment by comparing rates of synonymous (dS) and
non-synonymous (dN) substitutions among protein coding sequences of orthologous
genes in a phylogeny. The main pipeline output is a list of protein vaccine candidates
predicted to be naturally exposed to the immune system and containing sites under
positive selection. Candidates are ranked with respect to the number of consecutive
sites located on protein sequence regions encoding MHCI-binding peptides. Results
are constrained by the reliability of prediction programs and quality of input data.
Protein sequences from Toxoplasma gondii ME49 strain (TGME49) were used as a case
study. Surface antigen (SAG), dense granules (GRA), microneme (MIC), and rhoptry
(ROP) proteins are considered worthy T. gondii candidates. Given 8263 TGME49
protein sequences processed anonymously, the top 10 predicted candidates were all
worthy candidates. In particular, the top ten included ROP5 and ROP18, which are
T. gondii virulence determinants. The chance of randomly selecting a ROP protein
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was 0.2% given 8263 sequences. We conclude that the approach described is a
valuable addition to other in silico approaches to identify vaccines candidates worthy
of laboratory validation and could be adapted for other apicomplexan parasite species
(with appropriate data).

Keywords: Toxoplasma gondii, Hammondia hammondi, Neospora caninum, reverse vaccinology, vaccine
discovery, positive selection

INTRODUCTION

Since the inception of reverse vaccinology (Rappuoli, 2000)
almost two decades ago, researchers have applied various
in silico approaches to identify protein and/or peptide vaccines
candidates worthy of laboratory validation. These approaches
were previously reviewed (Bowman et al., 2011; Jones, 2012;
Donati and Rappuoli, 2013; Rappuoli et al., 2016). Fundamental
to each approach is the detection of signals or patterns encoded
in protein sequences of a target pathogen. As to date, no
signal has been identified that clearly indicates a protein will
effectively contribute to a protective immune response in a host.
Consequently, the current best practice is to predict pertinent
protein characteristics from informative signals that collectively
support the likelihood the protein will make a credible candidate.
Although there is no proven set of characteristics, the general
community consensus delineating a valued characteristic is one
inferring that a protein is either external to or located on, or in,
the membrane of a pathogen. Such a protein type is deemed more
accessible to surveillance by the immune system than one within
the interior of a pathogen (Davies and Flower, 2007; Flower et al.,
2010). In this study, we investigate the amino acid substitution
rate of a protein as an additional characteristic supporting its
vaccine candidacy.

Protein sequences from Toxoplasma gondii were used as a
case study. Toxoplasma is an obligate intracellular pathogen
responsible for birth defects in humans (Montoya and Liesenfeld,
2004) and an important model system for the phylum
Apicomplexa (Roos et al., 1999; Kim and Weiss, 2004; Che
et al., 2010). An apicomplexan pathogen invades a host cell
first by, recognizing host-cell surface receptors via surface
antigens (SAGs) on its cell membrane, and then secreting
proteins (excreted/secreted antigens) from the organelles of
apical complexes, including Dense Granules (GRA), Micronemes
(MIC), and Rhoptries (ROP) (Chen et al., 2008). Consequently,
SAG, GRA, MIC and ROP proteins have been the primary
antigens under investigation in numerous recombinant/subunit
vaccine studies (Kur et al., 2009; Zhang et al., 2015) due to their
natural exposure to the immune system and potential to induce
a host immune response. These latter proteins are referred to
henceforth as target candidates.

All pathogen proteins are susceptible to various types of
selection in response to environmental pressures. This is from
the perception that natural selection acts mostly on expressed
proteins (i.e., the phenotype) rather than directly on genetic
material. The three main types of selection are positive,
negative/purifying, and balancing (Harris and Meyer, 2006;
Oleksyk et al., 2010). The selection type of interest in this study is

positive with the main environmental pressure being the immune
system. We use the term ‘positive selection’ in the context of any
type of selection where newly derived mutation has a selective
advantage over other mutations and that the majority of the fixed
mutations are adaptive even if most mutations are deleterious or
neutral (Kaplan et al., 1989; Thiltgen et al., 2017).

Pathogens are believed to represent one of the strongest
selective pressures acting on humans (Fumagalli et al., 2011).
Conversely, pathogens are naturally under strong selection to
prevent detection from the host’s immune system. Eventually,
advantageous escape mutations become fixed at the molecular
level. However, the host’s immune system is also under strong
selection for mutations that enable the pathogen to be detected.
Subsequently, once again, the pathogen will experience selection
for new escape mutations in this evolutionary arms race
(Thiltgen et al., 2017). This see-sawing process leaves sequence
patterns of variation indicating selected and neutral regions, i.e.,
genomic footprints known as selection signatures. Proteins that
continually avoid detection by the immune system are expected
not to have these signatures.

The premise for this study was that proteins under positive
selection, as identified by selection signatures, are more likely
suitable vaccine candidates than proteins under negative or
purifying selection. The expectation is that those proteins
naturally exposed to the immune system, such as the target
candidates, will possess and maintain higher levels of genetic
variation than interior ones; in effect creating a greater pool of
mutations for natural selection to act upon to avoid recognition
by the immune system (Pacheco et al., 2012; Obara et al., 2016;
Bigham et al., 2018; Garzon-Ospina et al., 2018).

One of the best known gene-based methods to detect
positive selection at the molecular level is based on codon
analysis. This method compares patterns of synonymous and
non-synonymous mutations in protein coding sequences from
divergent species. Synonymous mutations (functionally silent or
neutral) are presumed not to change the amino acid sequence
of the protein encoded, whereas non-synonymous mutations do
alter the amino acid sequence and are subject to natural selection.
The synonymous substitution rate is the neutral rate µS = µ. In
contrast, the non-synonymous substitution rate will be typically
different to the neutral rate µN 6= µ.

Ideally, we need a chronological series of ancestor genes to
truly calculate µN and µS rates. This is obviously an impracticable
ideal and so non-synonymous and synonymous distances, among
coding sequences of orthologous genes in a phylogeny, are
estimated from a sequence alignment (dN = tµN and dS = tµS
where t is the time of divergence or branch length in the
phylogeny). The substitution rate ratio (ω) is equal to dN/dS.
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This ratio quantifies the strength and denotes the type of
molecular selection pressures acting on protein-coding regions
(Kryazhimskiy and Plotkin, 2008). Most proteins are observed
to be under purifying selection. However, a continued elevated
rate of amino acid change in some proteins is expected as
a consequence of pathogen-host co-evolution (Thiltgen et al.,
2017). A review (Kryazhimskiy and Plotkin, 2008) explains the
relationship between selection and dN/dS over long time-scales.

Epitopes (short peptides) are the minimal structure
recognized by the immune system and are the principal
components of subunit vaccines (Korber et al., 2006). More
specifically, it is the recognition of epitopes by T- and B-cells
(and soluble antibodies) that activates the cellular and humoral
immune response (Flower et al., 2010). Several studies have
shown that protective immunity to T. gondii is through cell-
mediated responses (Denkers and Gazzinelli, 1998; Innes et al.,
2002; Williams and Trees, 2006; Dlugonska, 2008).

T-cell epitopes, which are typically short linear peptides,
are derived from pathogen or host proteins (Hanada et al.,
2004). These peptides are bound by major histocompatibility
complexes (MHC) and presented by antigen-presenting cells
(APCs) for inspection by T-cell receptors (TCRs) (Korber et al.,
2006). Recognition of peptides by TCRs on CD8+ T cells cause
the secretion of IFN-γ, which activates macrophages to inhibit
replication, kill the parasite, and induce lysis of infected cells
(Cong et al., 2011). Identifying proteins that encode MHC
Class I (MHCI) restricted peptides is of interest because CD8+
T cells recognize epitopes presented in the context of MHCI
molecules. Furthermore, the expectation here is that protein
sequence regions from which these peptides originated will
contain signatures of selection. Studies support that different
regions of a protein, are potentially subject to different selective
pressures, particularly regions of functional relevance (Jin et al.,
2012; Vitti et al., 2013) and notably, in regions encoding T-cell
epitopes (Hughes, 1991). This study uses a T-Cell MHC class I
binding program to predict the physical location of medium to
high binding peptides on T. gondii proteins identified to have
positive selection sites.

We now present an approach that first predicts the T. gondii
proteins that are naturally exposed to the immune system and
contain sites under positive selection; and then rank these
candidates with respect to the number of consecutive sites
located on epitopes. Our aspiration was to take anonymous
T. gondii protein sequences and predict the target candidates.
The expectation is that the described approach can be adapted
for other apicomplexan parasite species with appropriate data.

MATERIALS AND METHODS

Data Collection
Protein and mRNA sequences in a FASTA format were
downloaded from EupathDB (Aurrecoechea et al., 2010) for the
Apicomplexan species listed in Table 1. All downloaded protein
sequences were validated to ensure that they commenced with
the letter M and did not contain invalid letters, e.g., J, O, U,
and X. All mRNA sequences were validated to ensure that they

commenced with ATG; terminated with TGA, TAA, or TAG;
contained only letters A, T, G, and C; and their sequence lengths
were a multiple of three for later codon analysis. Furthermore,
the mRNA sequences were checked to confirm that their codon
translations matched their corresponding protein sequences. The
related mRNA and protein sequences were then classified into
three datasets named Species 16, Species 25, and Species 55 in
accordance to how many species (or strains) were assigned to
the dataset. The datasets were based on published phylogenetic
relationships (Kuo et al., 2008; Morrison, 2009). Our mindset was
to evaluate whether introducing more distantly related sequences
to the potential ortholog groups increased CODEML’s power to
accurately estimate dN and dS. That is, the 25 and 55 species
datasets incrementally introduced more distantly related species
to the core 16 species dataset containing the target species.

Data Workflow for Predicting Positive
Selection Sites
The three datasets were processed independently in an in-house
pipeline that linked the input and output of the programs listed in
Table 2. Supplementary Table S1 shows the key command-line
syntax for these programs. Our pipeline and methodology was
adapted and extended from programs and methods proposed by
Jeffares et al. (2015). The overall initiative of the pipeline was to
generate the appropriate input files for CODEML, which are: (1)
a codon-based alignment of the DNA sequences from ortholog
group members and, (2) a phylogenetic tree of these members.
The pipeline steps to generate these files are now described.
Figure 1 represents a schematic of the pipeline data workflow.
T. gondii strain ME49 (referred to here as TGME49) was used
as the target species to test and establish the most appropriate
workflow/pipeline to be adapted for other apicomplexan data,
such as from Neospora caninum strain Liverpool (NCLIV) and
Hammondia hammondi strain H.H.34 (HHA).

Step 1: Identify Ortholog Groups
BLASTP was performed between the protein sequences of the
different species or strains within each dataset. For example,
the protein sequences from TGME49 were aligned in turn with
the sequences from HHA, then NCLIV and so on. In effect,
TGME49 sequences aligned with sequences from 15, 24 and 54
other species with respect to the dataset. An in-house python
script processed the BLASTP output and executed a Reciprocal
Best BLAST hit (RBH) method (Moreno-Hagelsieb and Latimer,
2008; Salichos and Rokas, 2011) to determine ortholog groups.
This method essentially works as follows: given protein A from
TGME49, protein B from NCLIV and protein C from HHA – for
these proteins to be in the same ortholog group; protein B must
be the best BLASTP hit to protein A, and protein C must be the
best hit to either protein A or protein B.

Step 2: Filter Ortholog Groups
Three separate sets of filtered groups were generated and ran
independently through the remaining pipeline. That is, the
ortholog groups were filtered such that each member of the
three filtered groups either had less than 90, 95, or 99% protein
sequence similarity, respectively. A further group membership
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TABLE 1 | List of Apicomplexan species used in study.

Data group Speciesa

16 species Hammondia hammondi strain H.H.34 (HHA:8007), Neospora caninum Liverpool (NCLIV:7131), Sarcocystis neurona SN3 (SN3:6965),
Sarcocystis neurona SO SN1 (SCRN:7077), Toxoplasma gondii ARI (TGARI:9958), Toxoplasma gondii FOU (TGFOU:10117), Toxoplasma
gondii GAB2-2007-GAL-DOM2 (TGDOM2:9136), Toxoplasma gondii GT1 (TGGT1:8460), Toxoplasma gondii MAS (TGMAS:10005),
Toxoplasma gondii ME49 (TGME49:8322), Toxoplasma gondii RH (TogoCp:26), Toxoplasma gondii RUB (TGRUB:10027), Toxoplasma
gondii TgCatPRC2 (TGPRC2:10121), Toxoplasma gondii VAND (TGVAND:9255), Toxoplasma gondii VEG (TGVEG:8410), Toxoplasma
gondii p89 (TGP89:9701).

25 species 14 Set + Cyclospora cayetanensis strain CHN_HEN01, Eimeria acervulina Houghton, Eimeria brunetti Houghton, Eimeria falciformis Bayer
Haberkorn 1970, Eimeria maxima Weybridge, Eimeria mitis Houghton, Eimeria necatrix Houghton, Eimeria praecox Houghton, Eimeria
tenella strain Houghton.

55 species 14 and 25 Set + Cryptosporidium andersoni isolate 30847, Cryptosporidium hominis TU502, Cryptosporidium hominis UdeA01,
Cryptosporidium hominis isolate TU502_2012, Cryptosporidium muris RN66, Cryptosporidium parvum Iowa II, Cryptosporidium ubiquitum
isolate 39726 Gregarina niphandrodes Unknown strain, Plasmodium berghei ANKA, Plasmodium chabaudi chabaudi, Plasmodium coatneyi
Hackeri, Plasmodium cynomolgi strain B, Plasmodium falciparum 3D7, Plasmodium falciparum IT, Plasmodium fragile strain nilgiri,
Plasmodium gaboni strain SY75, Plasmodium gallinaceum 8A, Plasmodium inui San Antonio 1, Plasmodium knowlesi strain H, Plasmodium
malariae UG01, Plasmodium ovale curtisi GH01, Plasmodium reichenowi CDC, Plasmodium relictum SGS1-like, Plasmodium vinckei petteri
strain CR, Plasmodium vinckei vinckei strain vinckei, Plasmodium vivax P01, Plasmodium vivax Sal-1, Plasmodium yoelii yoelii 17X,
Plasmodium yoelii yoelii 17XNL, Plasmodium yoelii yoelii YM.

aTarget species highlighted in bold. The protein prefix identifier and the number of proteins are contained in brackets for the 16 species dataset.

TABLE 2 | Programs used in the study [download date: July 2017].

Program Version aFunction Download URL Reference

bBLASTP 2.6.0 Performs a protein vs. protein
sequence alignment

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ Camacho et al., 2009

Clustal Omega 1.2.4 Computes a multiple sequence
alignment

http://www.clustal.org/omega/ Sievers et al., 2011

PAL2NAL 14 Converts a multiple sequence
alignment of proteins and the
corresponding mRNA sequences into a
codon-based DNA alignment.

http://www.bork.embl.de/pal2nal/#Download Suyama et al., 2006

RAxML 8.2.10 Creates a phylogenetic tree based on
maximum-likelihood inference.

https://github.com/stamatak/standard-RAxML Stamatakis, 2014

cCODEML 4.9e Computes substitution rate ratio
(dN/dS)

http://abacus.gene.ucl.ac.uk/software/paml.html Yang, 2007

dpredict_binding.py 2.17 Predicts peptides binding to Major
Histocompatibility Complex (MHC)
class I molecules

http://tools.iedb.org/mhci/download/ Kim et al., 2012

WoLF PSORT 0.2 Predicts subcellular localization sites of
proteins

ehttps://wolfpsort.hgc.jp Horton et al., 2007

SignalP 4.1 Predicts the presence and location of
signal peptide cleavage sites

http://www.cbs.dtu.dk/services/SignalP/ Petersen et al., 2011

TargetP 1.1 Predicts subcellular location http://www.cbs.dtu.dk/services/TargetP/ Emanuelsson et al., 2007

TMHMM 2.0 Predicts transmembrane helices http://www.cbs.dtu.dk/services/TMHMM/ Krogh et al., 2001

Phobius 1.01 A combined transmembrane topology
and signal peptide predictor

http://phobius.sbc.su.se/ Käll et al., 2004

Vacceed 1.0 Predicts secreted and/or
membrane-associated proteins

https://github.com/sgoodswe/vacceed Goodswen et al., 2014

aThe specific function utilized by this study (other functions can be performed). bBLASTP is a program within the BLAST+ package (a NCBI Basic Local Alignment
Search Tool). cCODEML is a program within the PAML package (a suite of programs for model fitting and phylogenetic tree reconstruction using nucleotide or amino-
acid sequence data). dpredict_binding.py is the frontend to a collection of prediction methods. The methods used by the study are ann, smm, and netmhcpan. eContact
program creators for standalone version.

requirement was a greater than 70% sequence similarity and
greater than 70% query coverage (i.e., the percent that a BLASTP
query sequence aligns to a target sequence). Additionally, each
filtered group contained only one protein per species (or strain).
That is, paralogs were excluded to remove their computational
complication when estimating dN and dS (Jeffares et al., 2015).

Any filtered group with less than five members were ignored from
further processing (the PAML documentation recommends that
the absolute minimum is 4 or 5 if the sequence divergence is
optimal). Randomly selected ortholog groups were compared to
manually curated groups contained in OrthoMCL (a database of
ortholog groups of proteins) (Li et al., 2003). OrthoMCL does
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FIGURE 1 | Schematic of steps taken to predict vaccine candidates given proteins sequences from a target pathogen. This figure represents an overview of the
steps and programs used to ultimately classify those proteins that are naturally exposed to the immune system and contain regions encoding major
histocompatibility complexes (MHC) binding peptides under positive selection. Further program details are shown in Table 2 and Supplementary Table S1.

not facilitate for high-throughput ortholog group verification,
but our comparisons provided a general indication that the RBH
script to generate the orthologs was correct. Groups meeting the
requirements were processed through the ongoing pipeline as
separate entities. That is, a filtered ortholog group is independent
of any other group.

Step 3: Preform a Sequence Alignment of Ortholog
Group Members
The protein sequences associated with the ortholog group
members were aligned using Clustal Omega.

Step 4: Convert to Codon Alignments
PAL2NAL was used to convert the protein sequence alignments
of each ortholog group into corresponding codon alignments.

An important PAL2NAL parameter is ‘-nogap.’ This is because
an alignment gap in CODEML is treated as an undetermined
nucleotide and is removed from the analysis. Removal of any
nucleotide means removal of the whole codon.

Step 5: Construct Phylogenetic Tree
A phylogenetic tree for each ortholog group was constructed
using RAxML. This program makes available a wide range
of user parameter settings. Two important parameters set the
type of algorithm and DNA substitution model. The algorithm
selected for this study conducted a rapid Bootstrap analysis
and searched for the best-scoring maximum likelihood tree
in one single program run. The selected substitution model
was generalized time reversible (GTR) GAMMA (Yang, 1994).
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Supplementary Table S1 shows the program parameter settings
used to construct the tree.

Step 6: Compute Substitution Rate Ratio (ω)
The CODEML program within the Phylogenetic Analysis
by Maximum Likelihood (PAML) package uses maximum
likelihood to statistically estimate dN and dS. It uses the observed
changes present in the codon alignments from PAL2NAL,
given the phylogenetic tree constructed by RAxML. CODEML
calculates the likelihood of the observed changes resulting from
two models of evolution, only one of which allows for the
possibility of detecting positive selection (dN/dS > 1). Figure 2
shows the values set within the CODEML configuration file for
this study, including the site models (NSsites) setting to test ω

varying at different sites.

Interpretation of Positive Selection
Results
The dN/dS ratio can indicate one of three types: (1) neutral
evolution, when an amino acid change is fixed at the same
rate as a synonymous mutation (dN/dS = 1); (2) positive
(Darwinian, directional/adaptive or diversifying) selection, when
an advantageous amino acid change is fixed at a higher rate than
a synonymous mutation (dN/dS > 1); and (3) purifying (negative
or background) selection, when a deleterious amino acid change
reduces its fixation rate (dN/dS < 1). For CODEML, the main
results of interest to this study are under the Bayes Empirical
Bayes (BEB) analysis (Yang et al., 2005) section of the CODEML
output (BEB is only computed with NSsite models 2 and 8).
This section lists the location and the posterior probability of
positively selected sites (i.e., where dN/dS > 1) on the target
protein. Significant sites with posterior probability > 99% are
designated with ‘∗∗’ and sites with posterior probability > 95%
but <or =to 99% designated with ‘∗’. The total number of sites
under positive selection for each T. gondii protein in the ortholog
groups were recorded along with the number of significant sites
(i.e., the sites designated with ‘∗’ or ‘∗∗’).

Peptide-MHC I Binding Predictions
A Linux standalone version of a T-Cell MHC class I binding
predictor (named predict_binding.py) was used to predict
binding peptides. This predictor was downloaded from the
Immune Epitope Database and analysis resource (IEDB) (Kim
et al., 2012). The protein sequence for every T. gondii protein
from the filtered ortholog groups (see step one in section “Data
Workflow for Predicting Positive Selection Sites”) was input
into the peptide-MHC binding predictor. There are thousands
of known MHC class I alleles. However, we predicted peptides
binding to 76 common human MHCI alleles (in effect, each
protein was tested against 304 MHC allele-peptide length
combinations. MHCI binds to peptides that are typically eight
to eleven amino acid residues in length. Therefore, 76 alleles ∗
4 peptide lengths = 304 combinations. ‘Common’ in this instance
refers to alleles that occur in at least 1% of the human population
or have an allele frequency of 1% or higher). The affinity of an
MHC allele and binding peptide is deemed greater the lower
the IC50 nM score. The predictor developers’ propose a rough

guideline for interpretation of the score: peptides with IC50 values
<50 nM are considered high affinity, <500 nM intermediate
affinity, and <5000 nM low affinity. The predicted sites under
positive selection were mapped to the intermediate and high
affinity peptides using an in-house Python script.

Published epitopes related to TGME49 were also downloaded
from IEDB in a comma-separated values (CSV) format. The
selected online search filters were ‘Linear Epitopes,’ T. gondii
ME49 for ‘Antigen,’ ‘All assay choices’ selected, ‘Any MHC
Restriction,’ ‘Any Host,’ ‘Any Disease,’ and ‘Any Reference Type.’
The number of epitopes downloaded was 110. These epitopes
were mapped to TGME49 gene identifiers and are listed in
Supplementary Table S2.

Predicting Proteins Naturally Exposed to
the Immune System
The following programs were used to predict if the target proteins
(e.g., TGME49, NCLIV, and HHA) were secreted or membrane
associated, i.e., naturally exposed to the immune system: SignalP
4.0 (Petersen et al., 2011) (predicts presence and location of signal
peptide cleavage sites); WoLF PSORT 0.2 (Horton et al., 2007)
and TargetP 1.1 (Emanuelsson et al., 2007) (predict subcellular
localization); TMHMM 2.0 (Krogh et al., 2001) (predicts
transmembrane domains in proteins); Phobius (Kall et al., 2004)
(predicts transmembrane topology and signal peptides); and
Vacceed (Goodswen et al., 2014) (computes the probability that
a protein is naturally exposed to the immune system). These
programs were essentially chosen because they are applicable
to eukaryotes, could be freely downloaded, run in a standalone
mode, allow high throughput processing, and execute in a Linux
environment. The threshold values applied to program outputs
for exposed (e.g., secreted or membrane-associated) classification
are SignalP ≥ 0.6 (secreted); WoLF PSORT = ‘membrane,’
‘secreted’ or ‘membrane_and_secreted’; TargetP ≥ 0.6
(secreted); tmhmm_ExpAA ≥ 18 (membrane-associated, or
secreted if tmhmm_First60 ≥ 10); tmhmm_First60 ≥ 10
(secreted); tmhmm_PredHel ≥ 0 (membrane); Phobius_TM ≥ 0
(membrane), Phobius_SP = ‘Y’ (secreted), and Vacceed ≥ 0.5
(where ‘≥’ denotes greater than or equal to’).

RESULTS

A total of 8322 protein sequences along with their originating
mRNA sequences were downloaded from EupathDB for the
test case target species, T. gondii ME49. These sequences were
validated as per section 2.1 and 59 proteins were removed
from further processing (i.e., a protein was removed if either
the mRNA or protein sequence was invalid). Supplementary
Table S2 lists the invalid protein IDs and the reason(s) for
removal.

Protein sequences from each of the 8263 valid TGME49
proteins were aligned in turn with the sequences from 15, 24
to 54 other species with respect to the dataset. Theoretically, if
each of the 8263 sequences were to fulfill the sequence similarity
and query coverage criteria with at least five other species (as
per step two described in section “Data Workflow for Predicting
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FIGURE 2 | CODEML configuration file settings used to estimate the amino acid sites under positive selection. This figure shows the values set within the CODEML
configuration file to detect positive selection sites in target pathogen proteins. CODEML is a program within the Phylogenetic Analysis by Maximum Likelihood
(PAML) package that estimates non-synonymous and synonymous evolutionary rates. Configuration values set by a user follow the ‘=’. The same settings were used
for each processed ortholog group – except seqfile, treefile, and outfile were changed to uniquely match a specific group. Text preceding with a ‘∗’ is a comment,
which specifies the range of possible options. These options are explained in detail in the PAML Manual (http://abacus.gene.ucl.ac.uk/software/paml.html).

Positive Selection Sites”), the maximum possible number of
orthologs groups would be 8263. Table 3 shows the actual
number of filtered ortholog groups per dataset following step two.
As expected the larger the upper similarity threshold, the more
inclusive of closely related species and the greater the number
of ortholog groups. Conversely, the smaller the upper similarity

threshold, the smaller the number of ortholog groups. Table 3
also illustrates the number of predicted candidates by the pipeline
given the ortholog groups. A candidate, in this case, is a TGME49
protein that is predicted to be exposed to the immune system
and contain sites under positive selection. More specifically, a
predicted candidate has a Vacceed score ≥ 0.5 and a CODEML

TABLE 3 | Number of ortholog groups per dataset and the number of predicted candidates.

Species dataset Filter set Dataset similarity criteriaa Ortholog groups Number of candidatesd

Inputb Outputc

16 1 >70% and <99% 3139 2986 651 (280)

16 2 >70% and <95% 143 130 60 (43)

16 3 >70% and <90% 22 19 11 (8)

25 1 >70% and <99% 3606 3373 663 (290)

25 2 >70% and <95% 581 520 61 (44)

25 3 >70% and <90% 252 226 16 (13)

55 1 >70% and <99% 3522 NC NC

55 2 >70% and <95% 597 527 63 (46)

55 3 >70% and <90% 314 288 17 (14)

aEach member of the filtered ortholog group have a specific greater than or less than protein sequence similarity. Other criteria for group membership include 70% query
coverage (the percent that the BLASTP query sequence aligned to the target sequence) and only one protein per species or strain. bNumber of ortholog groups input
into pipeline for predicting positive selection sites. cNumber of ortholog groups output from pipeline, i.e., some input ortholog groups generated non-specific errors and
subsequently output no (or unreliable) results. dNumber of predicted protein candidates for Toxoplasma gondii ME49, i.e., proteins predicted to be exposed to the immune
system and contain positive selection sites. The number in brackets is the number of predicted candidates excluding hypothetical proteins. NC, Not Computed (pipeline
terminated after 15 days of processing).
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generated count of significant positive selection sites greater than
zero. Some of these candidates are deemed true positives whilst
others are false. A true positive is a target candidate. That is, those
proteins with annotation that contain either the words ‘dense
granule protein GRA,’ ‘microneme protein MIC,’ ‘rhoptry protein
ROP,’ ‘SAG-related sequence SRS’ or ‘Toxoplasma gondii family’
as part of their protein name. Supplementary Table S2 lists the
244 out of 8263 proteins that match the latter annotation: 16
proteins contain ‘dense granule protein GRA’ (16/8263 = 0.19% of
TGME49 known proteins), 19 ‘microneme protein MIC’ (0.23%),
17 ‘rhoptry protein ROP’ (0.2%), 111 ‘SAG-related sequence
SRS’ (1.34%) and 81 ‘Toxoplasma gondii family’ (0.98%). The
‘Toxoplasma gondii family’ proteins are categorized A to E,
where there are 33 ‘A,’ 15 ‘B,’ 14 ‘C,’ 11 ‘D,’ and 8 ‘E’ annotated
proteins.

Table 4 shows the prediction outcomes in predicting a target
candidate when given different species datasets. The sequence
similarity criteria > 70 and <95 resulted in the best positive
predictive value (PPV) for each of the species datasets. This
clearly shows that including more closely or distantly related
sequences limits the predictive power of the approach, i.e., >95
(more closely related) or <90 (more distantly related) results in
lower PPV. Furthermore, the results show that including more
species related to TGME49 (i.e., those in the 25 and 55 species
datasets) did not improve the predictive power.

Supplementary Table S3 lists the predicted candidates, i.e.,
the true and false positive proteins for each species dataset and
sequence similarity criteria (excluding hypothetical proteins). For
the >70% and <95% similarity, the majority of the protein IDs
identified as true positives are the same within each dataset,
whereas the IDs mostly differ for the false positives. For example,
there are 40, 38, and 40 true positives for the 16, 25, and 55 species
datasets, respectively; of which 33 have the same IDs in all three
datasets. Conversely, there are 3, 6, and 6 false positives for the
16, 25, and 55 species datasets; of which only one has the same
ID in all three datasets. The candidate names from each dataset
are listed side-by-side in Supplementary Table S2 to highlight
the consensus in the predictions. Overall, the 16 species dataset
with >70% and <95% similarity delivers the best results given
that it has the most true and the least false number of positives,
i.e., has the best PPV with 93% (referred to henceforth as the
elected dataset). The number of false negatives for the elected
dataset compares favorably with the other species datasets, but
the negative predictive value (NPV) is poor in comparison due to
the substantially less number of true negatives used in the NPV
computation, e.g., 27, 389, and 400 true negatives for the 16, 25,
and 55 species datasets, respectively.

In this study, we also evaluated the McDonald–Kreitman test
(MKtest) (McDonald and Kreitman, 1991), Tajima’s D (Tajima,
1989), and Wright’s fixation index (FST) (Brown, 1970) to assess
their suitability for the presented pipeline. Although these latter
methods can be used to indicate positive selection, they were not
designed for that purpose. The candidate predictive outcomes
from MKtest, Tajima’s D, and FST using the same elected dataset
were compared with the CODEML outcomes. Supplementary
Table S4 shows the predictive comparisons. Tajima’s D, FST and
CODEML produced similar outcomes, but MKtest method, at

least for the elected dataset, had substantially poorer predictive
power.

All pipeline results related to the elected dataset were compiled
in Supplementary Table S5. This includes for each TGME49
member of the processed ortholog groups: the counts for the
number of predicted positive selection sites by CODEML; the
counts for the number of CODEML predicted sites associated
with intermediate and high affinity peptides; and results from
SignalP, TargetP, TMHMM; Phobius, WoLF PSORT, and Vacceed
that provide indications of secreted or membrane-associated
characteristics (i.e., potential exposure to the immune system).
The results were categorized into four groups based on the
sum of the number of positive sites > 95% and the number of
positive sites > 99% posterior probability (i.e., the total significant
positive sites count); and the Vacceed score (recorded in
‘P > 95 + 99%’ and ‘Vacceed_score’ columns in Supplementary
Table S5. P > 95+ 99% referred to henceforth as the site count).
Group one comprises those proteins predicted to be exposed
to the immune system and containing positive selection sites,
i.e., potential vaccine candidates (Vacceed score ≥ 0.5 and site
count > 0), group two have proteins predicted to be not exposed
but containing positive selection sites (Vacceed score < 0.5 and
site count > 0), group three have proteins predicted to be exposed
but not under positive selection (Vacceed score ≥ 0.5 and site
count = 0); and group four proteins are neither exposed nor
under positive selection (Vacceed score < 0.5 and site count = 0).
Figure 3 shows a schematic of the four groups, as classified by
a protein’s selection and subcellular location status. Group one,
the candidates (excluding hypothetical proteins), were ranked
based on the number of consecutive positive selection sites on
intermediate and/or high binding MHC I peptides (recorded
in the ‘Consecutive PSS’ column in Supplementary Table S5).
The top 10 ranked candidates are listed in Table 5. All 10 are
target candidates. Furthermore, the program output values from
SignalP, WoLF PSORT, TargetP, TMHMM, and Phobius support
that all top 10 candidates are either secreted or membrane-
associated.

The association between predicted binding peptides and
positive selection sites were examined for the top 10 candidates.
For example, GRA3 is predicted to contain 20 highly significant
positive selection sites. All 20 of these positive selection sites
are associated with 75 out of 304 MHC allele-peptide length
combinations. That is, a site can be associated with more than
one allele, e.g., the 144th GRA3 amino acid (letter ‘G’) is a positive
selection site and is associated with HLA-A∗02:01 (peptide length
9), HLA-A∗02:06 (peptide length 10) and a further 23 other allele-
peptide length combinations. A site can also be associated with
one or more peptides, e.g., the 144th GRA3 amino acid is on
the peptide ‘VILSLGTSA’ and ‘ILSLGTSAL’ that bind to HLA-
A∗02:06 (peptide length 9). The GRA3 positive selection sites are
spread on 78 different peptides. More than one site can be on
the same peptide (referred in this study as consecutive sites). The
maximum number of observed consecutive sites for GRA3 was
eight and is illustrated in Figure 4.

An analysis of the species type contributing members to the
elected dataset ortholog groups was performed. For example,
ROP8 (one of the top 10 candidates) has five members
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TABLE 4 | Comparisons between predicted outcomes from different species datasets when predicting target candidates for Toxoplasma gondii ME49.

Species dataseta Similarity criteriab TP FP FN TN SP (%) SN (%) PPV (%) NPV (%) Processing time (hms)c

16 >70% and <99% 90 189 35 894 72 82 32 96 65 h 25 m 6 s

16 >70% and <95% 40 3 13 27 75 90 93 68 1 h 53 m 48 s

16 >70% and <90% 7 1 2 3 78 75 88 60 12 m 4 s

25 >70% and <99% 87 203 53 1257 62 86 30 96 97 h 3 m 51 s

25 >70% and <95% 38 6 14 389 73 98 86 96 8 h 46 m 43 s

25 >70% and <90% 6 7 3 192 67 96 46 98 5 h 1 m 8 s

55 >70% and <95% 40 6 12 400 76 98 87 97 360 h 14 m 24 s

55 >70% and <90% 8 6 3 247 73 98 27 99 202 h 26 m 14 s

A predicted candidate is one that has a Vacceed score ≥ 0.5 and a CODEML generated count of significant positive selection sites > 0. The target candidates are proteins
containing either the words ‘dense granule protein GRA,’ ‘microneme protein MIC,’ ‘rhoptry protein ROP,’ ‘SAG-related sequence SRS,’ or ‘Toxoplasma gondii family’ as
part of their protein name (these proteins are naturally exposed to the immune system and expected to have sites under positive selection). TP = true positives = number
of correctly predicted target candidates, FP = false positives = number of exposed proteins under positive selection but not recognized as target candidates; FN = false
negatives = number of target candidates incorrectly predicted to be non-exposed and/or under negative or neutral selection; TN = true negatives = number of proteins
correctly predicted to be non-exposed and under negative or neutral selection; SN = sensitivity = % of target candidates correctly predicted = TP/(TP + FN), SP = %
of non-candidates correctly predicted = TN/(FP + TN); PPV = positive predictive value = % of target candidates that are true positives = TP/(TP + FP); NPV = negative
predictive value = % of non-candidates that are true negatives = TN/(FN + TN). aNumber of species (or strains) per dataset (see Table 1). bEach member of the
filtered ortholog group have a specific greater than or less than protein sequence similarity. Note that there are no results for dataset containing 55 species with member
sequences >70% and <99% (the processing for this dataset was terminated after 15 days). cTime shown in hours (h), minutes (m), and seconds (s). Computer processing
performed on a Linux cluster running Red Hat Enterprise Linux 7 (RHEL7) with the following specifications: 3.4 GHz Intel Xeon E5-2687W v2 (8 Cores) 25 MB L3 Cache
(Max turbo 4.0 GHz, Min. 3.6 GHz), 32 GB 1866 MHz ECC DDR3-RAM (Quad Channel), 2x 2TB 7,200 RPM SATA III Hard Drives (Raid).

FIGURE 3 | The four parasite protein classifications based on selection and
subcellular location. Parasite proteins can theoretically be classified into four
types: (1) proteins exposed to the immune system and under positive
selection (i.e., potential vaccine candidates); (2) proteins not exposed but
under positive selection; (3) proteins exposed but not under positive selection;
and (4) proteins that are neither exposed nor under positive selection.

(proteins) in its ortholog group and in effect five species or
strains (TGME49, TGGT1, TGRUB, TGVEG, and HHA) have
contributed to the group. Each member of the group has a
sequence similarity within the range 70–95%. Figure 5 shows
the species or strain contributions for the prediction outcomes
(TP, FP, FN, and TN) when using the elected dataset. Only
T. gondii RH (TogoCp) did not contribute to an ortholog group,
but this species has only 26 known proteins. The species HHA
contributes the most members to the ortholog groups (over 71%)
and consequently is a major contributor to all four prediction
outcomes. TGRUB is the largest (80%) and TGPRC2 is the
smallest (35%) contributor to the ortholog groups that possess

TP candidates; and all Toxoplasma strains (except TogoCp) and
HHA make a contribution. Conversely, NCLIV, SN3, and SRCN
make no contributions to TP predictions, but contribute more
than all the Toxoplasma strains to TN predictions (74, 48, and
48%, respectively). When using the 25 or 55 species datasets,
the contributing species to the TP predictions were exactly
the same as the 16 species contributions, although in slightly
different proportions. However, the contributions to the other
prediction outcomes (FP, FN, and TN) were notably different.
Supplementary Table S2 shows the comparison of the species
contributions between the 16, 25, and 55 species datasets.

Our pipeline was also tested with other target pathogens;
namely, T. gondii p89 (TGP89), HHA, and NCLIV. TGP89
is one of the most distantly related strains to T. gondii
based on haplogroups (Su et al., 2012); H. hammondi is the
closest extant relative to T. gondii (Jenkins et al., 1999);and
N. caninum is morphologically and developmentally similar
to T. gondii (Bjerkas and Dubey, 1991). Hammondia and
Neospora are still significantly different in that they have
never been found to infect humans (Barratt et al., 2010;
Walzer et al., 2013). Both TGP89 and HHA have appropriate
protein annotation to identify target candidates and evaluate
pipeline prediction outcomes. The PPVs for TGP89 and
HHA candidates were 86 and 68%, respectively, using the
16 species dataset with >70 and <95% sequence similarity.
NCLIV, in contrast, has limited annotation both in ToxoDB
and National Center for Biotechnology Information (NCBI)
to use exclusively for evaluation (one putative dense-granule
antigen DG32, five putative microneme proteins, five SAG related
proteins, and no rhoptry proteins). To assist in evaluating
NCLIV predicted candidates, the protein description from
their closest homolog was used. Despite this, 15 of the 45
candidates remained hypothetical, and no target candidates
were identified. We also used the top 10 Toxoplasma candidate
sequences as BLASTP queries to find the closest Neospora
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TABLE 5 | The top 10 predicted Toxoplasma gondii ME49 vaccine candidates for this study, i.e., proteins predicted to be exposed to the immune system, under positive
selection, and contain consecutive positive selection sites on intermediate and/or high binding MHC I peptides.

Protein ID Protein namea No. of sites No. of sig.
sites

Consc. PSSs Max. No.
consecutive

Exposed
probability

Reference

TGME49_227280 Dense granule
protein GRA3

20 20 179 8 0.99 Craver and Knoll, 2007;
Bontell et al., 2009;
Rosenberg et al., 2009∗

TGME49_310780 Dense granule
protein GRA4

82 21 153 8 0.92 Kur et al., 2009; Dziadek
et al., 2012; Meng et al.,
2013

TGME49_309330 SAG-related
sequence SRS55F

63 18 107 5 0.82 Kim et al., 2007; Bontell
et al., 2009; Wasmuth
et al., 2012

TGME49_320190 SAG-related
sequence
SRS16Bb

72 26 52 4 0.90 Kim et al., 2007; Wasmuth
et al., 2012∗

TGME49_320200 SAG-related
sequence SRS16A

39 13 41 3 0.94 Wasmuth et al., 2012; Hehl
et al., 2015

TGME49_215775 Rhoptry protein
ROP8

134 13 40 2 0.86 Parthasarathy et al., 2013;
Zhang et al., 2016; Song
et al., 2017

TGME49_214080 Toxofilinc 39 14 36 3 0.94 Bontell et al., 2009; Song
et al., 2017∗

TGME49_205250 Rhoptry protein
ROP18

87 11 35 3 0.98 Bontell et al., 2009; Qu
et al., 2013; Behnke et al.,
2015; Grzybowski et al.,
2015; Zhang et al., 2016;
Song et al., 2017∗

TGME49_238440 SAG-related
sequence SRS22A

28 18 30 4 0.59 Hehl et al., 2015

TGME49_308090 Rhoptry protein
ROP5

20 7 29 3 0.86 Bontell et al., 2009; Behnke
et al., 2015; Chen et al.,
2015; Grzybowski et al.,
2015∗

aHypothetical proteins are not included in the list. bFormally SRS9. cRhoptry protein. No. of sites = Total number of positive selection sites predicted by CODEML; No.
of sig. sites = the number of positive sites > 95% + number of positive sites > 99% posterior probability as predicted by Bayes Empirical Bayes (BEB) analysis within
CODEML; Consc. PSS = number of consecutive positive selection sites located on intermediate and/or high binding major histocompatibility complexes (MHC) class I
peptides; Max. No. consecutive = maximum number of consecutive positive selection sites on a single MHCI peptide; Exposed probability = a score from 0 to 1 predicted
by Vacceed that indicates the protein is likely to be a secreted or membrane-associated (a ‘1’ indicates ‘highly likely’); References = reference to a published study that
supports the protein’s vaccine candidacy (a ‘∗’ supports positive selection status).

homolog. This showed, for example, that there was no NCLIV
homolog for GRA3, NCLIV_054830 (unspecified product)
was the closest homolog to GRA4 with 37% similarity,
NCLIV_001970 (unspecified product) was closest to ROP 8
with 47%, NCLIV_051340 (putative toxofilin) to toxofilin with
34%, NCLIV_060730 (putative ROP5) to ROP18 with 30%,
and NCLIV_060730 to ROP5 with 52% similarity. The net
finding was that these latter NCLIV proteins are too distantly
related to contribute to the TGME49 candidate ortholog groups.
Additionally, the former NCLIV sequences were used as BLASTP
queries to find the closest homolog species. For example,
NCLIV_054830 was closest to TGDOM2_310780 (GRA4)
with 31%, and NCLIV_001970 was closest to NCLIV_001950
(Rhoptry protein ROP7, related) with 53% similarity. The
net finding, when running our pipeline with NCLIV as the
target species, was that no ortholog groups were created
for these latter NCLIV sequences. This is because there
are no known homolog sequences with greater than 70%
similarity.

The predicted candidates for TGP89, HHA, and NCLIV are
listed in Supplementary Table S6 along with predictions for
T. gondii GT1 (PPV = 98%), T. gondii MAS (PPV = 91%),

FIGURE 4 | Location of predicted positive selection sites and one
MHC-binding peptide on the dense granule protein GRA3 from Toxoplasma
gondii strain ME49. This is the entire protein sequence of the dense granule
protein GRA3. Letters highlighted in red are amino acid sites predicted to be
under positive selection by CODEML (with a posterior probability > 99%). The
letters underlined represent an encoded major histocompatibility complexes
(MHC) binding peptide, i.e., a peptide (AAVPWYAVAF) was predicted to
strongly bind to MHC Class I HLA-C∗03:02. This peptide of length 10
contains eight sites under positive selection.
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FIGURE 5 | The percentage of proteins from a species or strain contributing to the prediction of T. gondii ME49 vaccine candidates (meanings of species
abbreviations shown in Table 1). The graphs (A–D) illustrate the percentage of proteins from representative species or strains of the 16 species dataset contributing
to ortholog groups. More specifically, it shows the collective contribution to recipient ortholog groups associated with the prediction outcomes (true positives, false
positives, false negatives, and true negatives) when predicting vaccine candidates for T. gondii ME49. For example, in graph [A] 40 out of 143 ortholog groups
contain a T. gondii ME49 protein that was correctly predicted as a candidate, i.e., a true positive. The species Hammondia hammondi strain H.H.34 (HHA)
contributes a protein to 75% of ortholog groups containing a true positive protein, i.e., 30 of the 40 groups contain a HHA protein.

T. gondii RUB (PPV = 95%), and T. gondii VEG (PPV = 94%).
ROP18, ROP16, and toxofilin were predicted candidates in all
T. gondii strains.

DISCUSSION

The aim of this study was to evaluate a positive selection
detection method in its contributing capacity to identify potential
protein vaccine candidates, given thousands of anonymous
protein sequences from a pathogenic protozoan. Data from the
protozoan T. gondii ME49 were chosen for the evaluation because
Toxoplasma is a model system for the phylum Apicomplexa and
the ME49 genome sequence is the primary T. gondii reference.
Furthermore, the protein name annotation is comparatively
better than other apicomplexan species.

There is no known subunit vaccine against Toxoplasma or
indeed against any apicomplexan species. Hence this study had
no definitive target protein-type to validate our methodology.
However, SAG-related, GRA, MIC, and ROP proteins have
received the most focus in recombinant/subunit vaccine studies
and are therefore judged to be suitable target candidates. There
are 244 proteins that were classified target candidates based on
their protein name. Nevertheless, it is important to emphasize
that the true immunogenic efficacy for the majority of these
target candidates is unknown. Our premise under evaluation
here is that a protein naturally exposed to the immune system
and containing epitopes under positive selection will make a
more worthy vaccine candidate for laboratory testing than a

protein without these characteristics (Doolan, 2011; Jones, 2012;
Donati and Rappuoli, 2013; Oprea and Antohe, 2013). We
believe that in identifying the target candidates, it provides a
homing mechanism to the worthy candidates. There are 8263
TGME49 proteins and the probability of randomly selecting a
target candidate is 2.9% (244/8263).

We created a high-throughput pipeline to identify the
target candidates, given the high number of proteins and the
impracticality of investigating protein candidacy on a case-
by-case basis. Our pipeline used freely available, standalone
bioinformatic programs. A considerable drawback to an
automated process, such as a pipeline, is that a generic set
of parameters and threshold values are applied to all data.
For example, each program in our pipeline has tens or
hundreds of changeable parameter settings (especially RAxML
and CODEML) that have varying degrees of impact on results.
Similarly, different threshold values can be set to classify output
data, e.g., a Vacceed score ≥ 0.5 denotes an immune-system
exposed protein and a site count > 0 denotes protein under
positive selection. Taken together, there are potentially hundreds
of user-defined combinations of parameters and thresholds with
the net effect of fluctuating prediction outcomes (TPs, FPs, FNs,
and TNs). The desired intention of our pipeline was therefore
to favor combinations that greatly increased the probability of
identifying target candidates (i.e., a high PPV outcome) at the
possible detriment to the NPV.

There are several recognized methods to detect positive
selection (reviewed in Wollstein and Stephan, 2015) and freely
available programs to apply these methods. The dN/dS ratio
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method implemented in the program CODEML was chosen
for our pipeline. CODEML has the important functionality to
identify positive selection occurring at individual amino acids
(sites), unlike other methods evaluated in this study. This was
important because we specifically sought to ascertain if predicted
epitopes contained positive selection sites.

At the heart of the positive selection detection method
performed by CODEML is the estimation of non-synonymous
and synonymous distances from a coding sequence alignment
of orthologous genes. A key component to the success of this
method is the creation of appropriate ortholog groups. The
main factor affecting appropriateness is how closely or distantly
related are the sequences of the group members. It was unclear
at the onset of this study, what the upper and lower sequence
similarity thresholds should be for group membership to provide
optimum predictive power that ultimately detects the greatest
number of target candidates. To address this uncertainty, we
tested our pipeline with varying similarity thresholds, and varying
numbers and types of contributing species. In effect, the testing
increased or decreased the number of observed sequence changes
in accordance with the introduction or removal of sequences,
such that these test scenarios either increased or decreased
CODEML’s power to accurately estimate dN and dS, e.g., too few
observed changes, too little power. Also, CODEML’s intended
use is to observe these changes in protein coding sequences
from divergent species. Whether the introduced sequences are
actually from divergent species is at the onus of the CODEML
user. That is, all ortholog group sequences are treated exactly the
same during the codon-based alignment and phylogenetic tree
creation, irrespective of the sequences’ origin.

It is arguable whether observed changes between T. gondii
strain sequences in the ortholog groups represent fixation
events along independent lineages (i.e., substitutions in
diverging species) or polymorphisms segregating in a single
population (i.e., mutations within the strains). Furthermore,
fixed substitutions are expected to occur over long time-scales
(Kryazhimskiy and Plotkin, 2008) and it is difficult to know the
appropriate time-scale associated with each contributing strain.
A study applying clustering methods to 950 isolates collected
from around the world identified 15 haplogroups that collectively
define six major clades (A–F) in T. gondii (Su et al., 2012). In
our opinion this latter study suggests that some T. gondii strains
are diverging more than others. That is, although all isolates of
the genus Toxoplasma have been classified a single species, their
global and isolated distribution has allowed for independently
evolving strains. Clade ‘A’ contains the strains TGGT1 and
TGFOU; clade ‘B’ contains TGMAS; ‘C’ contains TGVEG; ‘D’
TGME49 and TGARI; ‘E’ TGP89; and ‘F’ contains TGRUB and
TGVAND. Clade ‘D’ has the highest level of divergence from
other clades (Su et al., 2012) and typically clade ‘D’ strains have
a closer relationship to C than A such that the relationships are
D - > C - > A - > B - > F - > E. The similarity relationships
between the members of the top 10 ortholog groups only loosely
follow the clade relationships, which indicate that there may be
a typical phylogenetic relationship between the T. gondii strains
but not their proteins. Hence, creating a phylogenetic tree from
protein-coding sequences associated with each ortholog group

is deemed a better solution than creating one phylogenetic tree
from the genome sequences of the strains.

The results clearly showed, at least for T. gondii ME49, that
there is an ideal ‘Goldilocks’ range for the sequence similarity
thresholds, i.e., >70 and <95. The same thresholds are supported
by another study that used CODEML with Plasmodium parasites
(Nygaard et al., 2010). Thresholds greater than 95 possibly
introduce more polymorphism observed sequence differences.
Our testing also showed that including more species related to
T. gondii ME49 (i.e., those in the 25 and 55 species datasets), with
the potential of having more sequences within the range >70 and
<95 contributing to the group, did not improve the predictive
power.

The best PPV (93%) was achieved using the 16 species dataset
with the Goldilocks similarity range. Our approach worked
effectively in the sense that out of 53 target candidates represented
in 83 ortholog groups, 40 were correctly identified (130 groups
were processed but 47 contained ME49 hypothetical proteins). It
is reasonable to assume that some of the CODEML predictions
are incorrect, given the inherent deficiencies in all programs per
se. We judge, however, that a protein predicted to contain many
significant positive sites will likely have an unknown percentage
to be true; whereas, chances for a true prediction are less likely
with only a few predicted significant sites. Furthermore, a protein
predicted to contain a positive selection site on a functional
region (e.g., encoding an epitope) is weighted more highly here
than on a non-functional region. Given the conceivably high
number of epitopes encoded in a protein sequence, the chances
of randomly selecting a site on an epitope is potentially high.
However, these chances incrementally reduce the more sites
that are predicted on the same epitope. The 40 candidates were
ranked on the number of consecutive positive selection sites on
intermediate and/or high binding MHC I peptides. Table 5 shows
the top 10 ranked candidates. The highest ranked are deemed the
most promising. A considerable number of publications support
the top 10, although published vaccine candidacy evidence for
‘SAG-related sequence SRS’ proteins was difficult to find. This
difficulty was also enhanced due to protein name changes, i.e.,
both new and historical publications use different names for the
same SRS proteins, e.g., SRS29B or the original SAG1, and SR16B
or the original SRS9.

An unknown element in our study is how many of the
244 target candidates will truly contribute toward protective
immunity. This means that it is unclear as to what extent
our approach has missed true candidates, i.e., only 53 out of
244 target candidates were represented in the 130 ortholog
groups. Most of the target candidates have no published vaccine
candidacy evidence, especially the ‘SAG-related sequence SRS’
or ‘Toxoplasma gondii family’ proteins. The conundrum is
whether the lack of evidence indicates that these proteins
are not worthy or are unexploited candidates for vaccine
candidacy investigation. Despite this, there are clearly some target
candidates with published evidence missed by our approach; for
instance, GRA2, GRA5, GRA7, ROP7, and SRS29B (Kur et al.,
2009; Dziadek et al., 2012). Most of the missed target candidates
are captured by increasing the upper similarity threshold to
99% (see Supplementary Table S3), but this is at the expense
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of a substantial increase in false positives. The proteins GRA9,
GRA10, GRA12, ROP1, ROP6, ROP7, and all MICs are not
captured as candidates because the similarity between most of
their respective ortholog members is >99% and the minimum
five member requirement was not fulfilled (ROP2A and ROP4
were not processed due to invalid sequences – see Supplementary
Table S2).

Our testing has shown that CODEML and Vacceed work
satisfactorily in distinguishing immune system-exposed proteins
under positive selection, i.e., our approach can capture the
majority of target candidates when given an appropriate ortholog
group with valid sequences, but obviously fails if there is no
ortholog group to process. Furthermore, the described approach
can be adapted for other apicomplexan parasite species or strains
with appropriate data as supported by the TGP89 and HHA
prediction results.

The high levels of evolved genetic variation for the target
candidates present a major challenge for the development of
an effective vaccine. This is because an immune response
generated against one allele might not be effective against a
different allele expressed by a parasite of the same species
(Elsheikha and Mansfield, 2004; MacHugh et al., 2011). To help
address this challenge we propose that all protein members
of a candidate’s ortholog group are potential candidates, based
on common conjecture that proteins with similar sequences
are likely to have similar functions. This proposal is supported
by the fact many of the same candidates were predicted
irrespective of the Toxoplasma strain chosen as the target species
(see Supplementary Table S6). For example, the TGME49
ROP18 ortholog group contains TGGT1_205250 as a member.
TGGT1_205250 was predicted as a candidate when T. gondii
GT1 (TGGT1) was the chosen target species. In fact, ROP18,
ROP16, and toxofilin were predicted as a candidate for all strains.
This is important because of the need for vaccines to contain
two or more distinct antigens, or two or more alleles of the
same antigen to protect against multiple species and diverse
strains, i.e., multivalent vaccines that represent the majority of
the genetic diversity of candidate antigens (Barry and Amott,
2014).

Our approach was unable to identify target candidates for
NCLIV, although its limited annotation did make evaluation
difficult. A possible reason for this disappointing result was the
absences of a clear outgroup species and diverging sequences
afforded by other Neospora strains. For example, HHA was
the outgroup species (i.e., the most distantly related species)
for 29 out of the 40 true positive candidates in the TGME49
elected dataset. Moreover, the majority of TGME49 ortholog
groups would not have been created without the membership
contributions from additional Toxoplasma strains, i.e., there are
not enough available sequences from other species with greater
than 70% similarity. H. heydorni is the sister taxon to N. caninum
(Dubey et al., 2002) in a similar manner to how H. hammondi
is the sister group to T. gondii. We expect improved NCLIV
results from our pipeline when quality H. heydorni and additional
N. caninum strain sequences become available.

A challenge as highlighted by missed candidates is in
determining pipeline threshold values, which in effect governs
the creation of an ortholog group. A high throughput solution
is sought to either weed out false positives based on additional
selection criteria when using high similarity thresholds or to
judiciously vary the ortholog membership requirements for each
protein with the goal of capturing the maximum number of
worthy candidates. Nevertheless, what is encouraging is that
ROP5 and ROP18 are virulence determinants (Taylor et al., 2006;
Walzer et al., 2013) and our pipeline classified both as top 10
candidates. The chance of randomly classifying a ROP protein
was 0.2% given 8263 anonymous sequences.

Possibly the utmost important task of an in silico approach to
vaccine discovery is to distinguish antigenic from non-antigenic
pathogen proteins. Most in silico studies (Pizza et al., 2000; Ross
et al., 2001; Wizemann et al., 2001; Montigiani et al., 2002;
Doytchinova and Flower, 2007; Donati and Rappuoli, 2013) use
a filtering approach based on specific protein characteristics but
mainly protein localization (e.g., secretory, outer-membrane).
More recent studies (Doytchinova and Flower, 2007; Bowman
et al., 2011; Goodswen et al., 2013) have incorporated machine
learning algorithms into the reverse vaccinology methodology.
It is our opinion that these approaches should not be used in
isolation. The best strategy is to strive for a consensus of predicted
antigens from several approaches. We conclude that an approach
to classify those proteins naturally exposed to the immune system
and containing epitopes under positive selection, such as the one
presented here, is a valuable addition to other in silico approaches
to identify vaccines candidates worthy of laboratory validation.
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