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Methylmercury (MeHg) is a potent neurotoxin that affects particularly the developing
brain. Since MeHg is a potent electrophilic agent, a wide range of intracellular
effects occur in response to its exposure. Yet, the molecular mechanisms associated
with MeHg-induced cell toxicity have yet to be fully understood. Activation of cell
defense mechanisms in response to metal exposure, including the up-regulation of
Nrf2- (nuclear factor erythroid 2-related factor 2)-related genes has been previously
shown. Nrf2 is a key regulator of cellular defenses against oxidative, electrophilic
and environmental stress, regulating the expression of antioxidant proteins, phase-II
xenobiotic detoxifying enzymes as well phase-III xenobiotic transporters. Analogous to
other electrophiles, MeHg activates Nrf2 through modification of its repressor Keap1
(Kelch-like ECH-associated protein 1). However, recent findings have also revealed
that Keap1-independent signal pathways might contribute to MeHg-induced Nrf2
activation and cytoprotective responses against MeHg exposure. These include, Akt
phosphorylation (Akt/GSK-3β/Fyn-mediated Nrf2 activation pathway), activation of the
PTEN/Akt/CREB pathway and MAPK-induced autophagy and p62 expression. In this
review, we summarize the state-of-the-art knowledge regarding Nrf2 up-regulation in
response to MeHg exposure, highlighting the modulation of signaling pathways related
to Nrf2 activation. The study of these mechanisms is important in evaluating MeHg
toxicity in humans, and can contribute to the identification of the molecular mechanisms
associated with MeHg exposure.
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INTRODUCTION

Methylmercury (MeHg) is a potent neurotoxin that affects particularly the developing brain and
its exposure remains a public health concern. The metal in its inorganic form (Hg0, Hg+, or
Hg2+) is present in the environment due to both natural and anthropogenic sources. Aquatic
microorganisms are capable of converting inorganic mercury to MeHg, which accumulates in
the food chain, reaching maximum concentrations in long-lived and predatory fish, such as
swordfish or tuna (Clarkson et al., 2003; Farina et al., 2011b; Ceccatelli et al., 2013). Therefore,
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the consumption of fish and seafood are the main source of
MeHg in humans, and greater than 90% of this toxicant is
absorbed by the gastrointestinal tract and it is ubiquitously
distributed. MeHg can easily cross the blood–brain barrier
(BBB) via the neutral amino acid transport system l as a
complex with L-cysteine, and its concentrations can reach 3–
6 fold higher levels in the central nervous system (CNS) than
in the blood (Costa et al., 2004; Johansson et al., 2007; Yin
et al., 2008; Grandjean and Herz, 2011; Syversen and Kaur,
2012).

The molecular mechanisms associated to MeHg-induced cell
toxicity have yet to be fully understood. MeHg accumulates in
numerous cell types in the CNS, but predominantly in astrocytes
(Charleston et al., 1994, 1996; Aschner, 1996). MeHg impairs
glutamate and aspartate uptake in astrocytes, leading to increased
glutamate concentration in the synaptic cleft, which in turn,
induces neuronal cell death secondary to excitotoxicity (Aschner
et al., 2007). MeHg has high affinity for thiol and selenol
groups and its interaction with these groups in amino acids
residues may alter the structure of a large number of proteins,
leading to mitochondrial dysfunction, decreased glutathione
levels, disruption of calcium homeostasis and an increase in
reactive oxygen species (ROS) production (Limke et al., 2004;
Falluel-Morel et al., 2007; Ceccatelli et al., 2010; Farina et al.,
2011a).

A substantial body of research has focused on the role
of increased ROS production and impairment of antioxidant
cellular defense in MeHg-induced cell toxicity. Several studies
have demonstrated that the activation of the antioxidant system
can afford protection against MeHg toxicity (Do Nascimento
et al., 2008; Hwang, 2012; Feng et al., 2017). Activation of
proteasome–ubiquitination system, autophagy, heat shock factor
protein 1 (Hsf1) and increased cellular metabolites, such as
hydrogen sulfide, have all been associated with cell defense
responses in the face of MeHg-induced cell toxicity (Hwang et al.,
2002, 2011; Yoshida et al., 2011). In this sense, the study of
these mechanisms is critical in evaluating MeHg toxicity and
can contribute to the identification of the molecular mechanisms
associated to MeHg exposure.

Nrf2 (nuclear factor erythroid 2-related factor 2) is a key
regulator in cellular defenses against oxidative, electrophilic
and environmental stress. In the nucleus, up-regulation of the
transcription factor Nrf2 in response to MeHg exposure has
been noted (Toyama et al., 2007; Kumagai et al., 2013). In this
review, we summarize the most recent findings associated to
Nrf2 up-regulation in response to MeHg exposure and also the
modulation of other signaling pathways related to Nrf2 activation
that might also be associated with cell defense responses against
MeHg toxicity.

Nrf2 ACTIVATION MECHANISMS

Once activated, Nrf2 is translocated into the cell nucleus and
forms a dimer with small Maf protein (sMaf) and binds
to antioxidant/electrophile response elements (AREs/EpREs)
located in the regulatory regions of many responsible genes for

cellular defense (Itoh et al., 1997). Nrf2 cooperatively regulates
antioxidant proteins such as glutamate cysteine ligase (GCL)
and heme oxygenase-1 (HO-1), phase-II xenobiotic detoxifying
enzymes, and phase-III xenobiotic transporters such as multidrug
resistance-associated proteins (MRPs) (Itoh et al., 1997; Alam
et al., 1999; Wild et al., 1999; Chan and Kwong, 2000; Hayashi
et al., 2003; Vollrath et al., 2006; Maher et al., 2007).

Nrf2 is regulated by Kelch-like ECH-associated protein 1
(Keap1), an adaptor subunit of Cullin 3-based E3 ubiquitin ligase.
Under normal conditions, Keap1 binds to Nrf2 in the cytoplasm
and promotes the ubiquitination and proteasomal degradation
of Nrf2, and thus, acts as a negative regulator of Nrf2 (Itoh
et al., 1999; Ishii et al., 2000; Wakabayashi et al., 2003). Keap1
acts as a sensor protein for oxidative and electrophilic insults
through the modification of its highly reactive cysteine residues
(e.g., Cys151, Cys273, and Cys288) (Dinkova-Kostova et al., 2002;
Zhang and Hannink, 2003; Eggler et al., 2005; Hong et al., 2005).
Thus, when the interaction between Nrf2 and Keap1 is disrupted,
proteasomal degradation of Nrf2 decreases, causing de novo Nrf2
to build up within the cell, leading to increased translocation of
Nrf2 into the nucleus.

In addition to repression of Nrf2 activity by Keap1, glycogen
synthase kinase-3 (GSK-3) has been shown to phosphorylate
specific serine residues in the Neh6 domain of Nrf2, creating a
degradation domain that is recognized by the ubiquitin ligase
adapter β-transducin repeat-containing protein (β-TrCP) and
subsequently targeted for proteasomal degradation independent
of Keap1 (Rada et al., 2011, 2012; Chowdhry et al., 2013;
Cuadrado, 2015).

CYTOPROTECTIVE RESPONSES TO
MeHg

MeHg Regulation on Nrf2 Activity
Since MeHg is a potent electrophilic agent, a wide range of
intracellular effects is associated with exposure to it (Farina
et al., 2011a,b). Among its effects, MeHg is able to modulate
Keap1/Nrf2 signaling. Data from in vivo experiments have
shown increased gene expression and proteins related to Nrf2
activation, such as HO-1 (heme-oxigenase-1) and γ- GCS
(γ-Glutamylcysteine synthetase) (Feng et al., 2017). It has been
shown that MeHg can induce the transcription of several genes
related to Nrf2 activation including HO-1, NQO-1 [NQO1
NAD(P)H quinone dehydrogenase], GCLC (glutamate-cysteine
ligase catalytic subunit) and Nrf2 in several cells types such as
SH-SY5Y neuroblastoma cells, primary hepatocytes, microglia
and astrocytes, to name a few (Toyama et al., 2007; Wang et al.,
2009; Ni et al., 2011; Culbreth et al., 2017).

Once Nrf2 orchestrates the transcription of antioxidant-
related genes and phase-2 detoxification enzymes, their by
products afford neuroprotection. For example, Toyama et al.
(2007) have demonstrated that primary hepatocytes derived
from Nrf2(−/−) mice showed greater susceptibility to MeHg-
induced cell death than cells derived from wild-type animals.
It was also observed that Nrf2(−/−) animals exposed to MeHg
for 8 days (5 mg/kg/day) exhibited flaccidity in the posterior
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limbs, but this effect was absent in wild-type mice exposed to
MeHg. Furthermore, 3 weeks after the first administration of
MeHg, all of the Nrf2(−/−) animals died as a result of MeHg-
toxicity while all the wild-type mice survived an analogous
exposure protocol (Toyama et al., 2011). In agreement with this
observation, it has been also demonstrated that Nrf2 knockdown
augments the in vitro toxic effect of MeHg in primary microglia
and astrocytes cultures, as well as in SH-SY5Y cells (Toyama
et al., 2007; Ni et al., 2011). Moreover, it has been reported that
several natural compounds like flavonoids and isothiocyanates
can up-regulate Nrf2 activity and afford neuroprotection against
MeHg. In vitro treatment with tea polyphenols in astrocytes
increased the expression of genes downstream of Nrf2 activity
(such as Nrf2, HO-1, and GCSH), preventing the MeHg-induced
decrease in cell viability, glutathione (GSH) content, and the
increase in ROS production (Liu et al., 2016). Feng et al. (2017)
have recently shown that treatment with sulforaphane, a natural
dietary constituent that induces Nrf2 (Sun et al., 2017), prevented
some of the in vivo MeHg toxic effects in mice cerebral cortex
and also reinforced the MeHg-induced Nrf2 up-regulation (Feng
et al., 2017). In primary hepatocytes, the up-regulation of Nrf2
was also associated to an increase in antioxidant responses,
raising GSH levels, and increased MeHg export from the cell
(Toyama et al., 2011). Taken together, these data reinforce
the hypotheses that Keap1/Nrf2 pathway may exerts protection
against MeHg toxicity.

Keap1-Dependent Nrf2 Regulation by
Methylmercury
The molecular mechanisms associated to MeHg-induced Nrf2
activation are complex and have yet to be fully understood.
Figure 1 shows the principle findings related to MeHg-induced
regulation of Keap-1/Nrf2. Keap-1 is the main negative regulator
of Nrf2 activity and contains 27 (in the human isoform)
and 25 (in the mouse isoform) cysteine residues that can
act as a potential target to MeHg (Dinkova-Kostova et al.,
2002; Zhang and Hannink, 2003). MeHg binds to recombinant
Keap1 protein and results from Biotin-PEAC5-maleimide-
labeling assay revealed that Keap-1 is a target for S-mercuration
in SH-SY5Y cells (Toyama et al., 2007, 2013). Additional
studies with MALDI-TOF/MS have indicated that MeHg can
bind specifically to three cysteines residues in Keap1 structure:
Cys151, Cys368, and Cys489 (Kumagai et al., 2013). Among
these three residues, Cys151 is essential to electrophile-mediated
disassociation of Keap1 and Nrf2, and also Keap1-directed
ubiquitination (Levonen et al., 2004). Thus, one might speculate
that MeHg-induced modifications in the Cys151 residue are
associated with changes in the Keap1/Nrf2 signaling induced
by MeHg. Within the intracellular space, MeHg is readily
conjugated to GSH forming MeHg-SG adduct that is transferred
to extracellular space by the MRP (Farina et al., 2011a). Taking
advantage of a synthetic ethyl monoester of MeHg-SG, Yoshida
et al. (2014) have shown that this adduct effectively induced
concentration-dependent toxicity and activated Nrf2-related
genes in SH-SY5Y cells. The Hg-S bond in MeHg-SG adducts
is relatively unstable, thus GSH adducts readily undergo
S-transmercuration with cellular proteins including Keap1,

forming protein-MeHg adducts. While MeHg can modify the
Cys151 residue in the Keap1 structure, the MeHg-SG adduct was
able to modify the Cys319 residue. This residue is located in the
intervening region of the Keap1 structure and is important for the
ubiquitin E3 ligase activity and Nrf2 degradation (Taguchi et al.,
2011). Thus, it is possible to speculate that the S-mercuration
in the Cys319 residue also contributes to the up-regulation of
Nrf2 in response to MeHg (Toyama et al., 2013). Ultimately,
it is noteworthy that ROS are also important regulators of
Nrf2 activation, thus representing one of the main mechanisms
that mediate MeHg toxicity (Farina et al., 2011a; Kumagai
et al., 2013; Tebay et al., 2015). However, further studies are
necessary to elucidate the role of ROS in Nrf2 activation by
MeHg.

Keap1-Independent Nrf2 Regulation by
Methylmercury
Culbreth et al. (2017) found a Keap1-independent Nrf2 activation
pathway in MeHg exposed rat primary astrocytes, possibly
involving the regulation of a member of the src family kinase
named Fyn. It has been reported that Fyn can phosphorylate
Nrf2 favoring its exports from the cell nucleus (Jain and Jaiswal,
2007; Niture et al., 2014). MeHg exposure in vitro increased
gene expression of HO-1 and NQO-1 as well as nuclear Nrf2
localization. In parallel to increased Nrf2 activity, MeHg also
induced a decrease in Fyn mRNA expression and protein nuclear
localization, suggesting a Fyn downregulation in astrocytes
(Figure 1).

In primary cultures of rat astrocytes, the downregulation of
Fyn expression was also followed by a decrease in Sp1 protein
levels, the transcription factor that regulates Fyn expression.
Noteworthy, MeHg can also decrease the expression of other
genes related to Sp1 activation such as TGF-β1 (Culbreth et al.,
2017) (Figure 1). This result is in line with earlier findings
showing Sp1 interaction with Nrf2 at promoter sequences
that represses Sp1-specific target gene expression (Gao et al.,
2014). In contrast, MeHg exposure SH-SY5Y cells has been
shown to induce Sp1 activation, which was associated with
increased p38MAPK phosphorylation and HDAC4 expression.
Furthermore, the knockdown of p38MAPK, Sp1, and HDAC4
afforded neuroprotection against MeHg toxicity in cortical
primary neurons (Guida et al., 2017). Thus, it seems that a
decrease in Sp1 function was associated with a cytoprotective
response in astrocytes (Nrf2 activation), but the activation of this
transcription factor might be associated with neuronal cell death.
Further studies are necessary to dissect out the role of Sp1 in
MeHg toxicity.

As shown in Figure 1, MeHg also induced Akt
phosphorylation (Thr308) (Culbreth et al., 2017) confirming
previous results showing the knockdown of the p85α regulatory
subunit of phosphoinositide 3-kinase (PI3K) attenuated MeHg-
induced Nrf2 activation (Wang et al., 2009). This finding
corroborates previous reports that have shown a correlation
between Akt activation and up-regulation of Nrf2-related
gene expression (Calkins et al., 2009; De Oliveira et al.,
2015; Wang et al., 2016). Once activated, Akt promotes
inhibitory phosphorylation of GSK-3β (Ser9), inhibiting Fyn
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FIGURE 1 | Signal orchestration against MeHg toxicity. (A) Under non-stressed conditions, Nrf2 is captured by Keap1 and ubiquitinated by Cul3 in the cytosol that
leads to degradation through ubiquitin–proteasome system, resulting in the inhibition of Nrf2 translocation from the cytoplasm to nucleus. Fyn is phosphorylated by
GSK-3β, leading to Fyn nuclear localization. Fyn phosphorylates nuclear Nrf2, which leads to nuclear export and degradation of Nrf2. Sp1 is a transcription factor of
Fyn. Steady state level of p62 and LC3-II expression under basal activity of JNK and ERK. (B) Cellular protective responses to MeHg. MeHg covalently modifies
Keap1 through Cys151 and/or Cys319, leading to inhibition of Nrf2 degradation. As a result, Nrf2 translocates into nucleus and the interacts with a partner protein
sMaf, resulting in formation of heterodimer that binds to the antioxidant response element (ARE), thereby upregulating its downstream genes (e.g., HO-1, GCL, and
MRP) (1). MeHg induces phosphorylation of GSK-3β at Ser9 mediated by activated Akt at Thr308. Since this inactive form of GSK-3β is unable to phosphorylate
Fyn, substantial retain of nuclear Nrf2 coupled to diminished nuclear translocation of Fyn occurs (2). MeHg covalently modifies PTEN, resulting in inhibition of its
catalytic activity, thereby phosphorylating Akt through Thr473 and tits downstream transcription factor CREB, which binds to the cAMP-response element (CRE),
leading to up-regulation of anti-apoptotic protein Bcl-2 (3). MeHg reduces Sp1 protein level and thus down-regulates Sp1-dependent target genes such as fyn (4).
Phosphorylation of JNK and ERK mediated by MeHg increases p62 and LC3-II expressions, thereby promotes autophagosomal degradation of misfolded/damaged
proteins (5). Possible linkage between MeHg-induced MAPK activation and Nrf2 upregulation via p62/LC3-II-mediated autophagosomal degradation of Keap1 (6).
Dotted gray lines indicate processes disrupted by MeHg exposure.

phosphorylation and nuclear export (Jain and Jaiswal, 2007;
Culbreth et al., 2017). Furthermore, GSK-3β activation is
associated with increased Nrf2 phosphorylation associated with

its degradation (Rada et al., 2011; Niture and Jaiswal, 2012). Since
there is no evidence for a direct Nrf2 phosphorylation by Akt,
it is reasonable speculate that the modulation of GSK-3β and/or
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Fyn afford a link between MeHg-induced activation of Akt and
Nrf2 (Figure 1).

Modulation of Akt, MAPK, and
Autophagy in Response to MeHg
Exposure
In addition to Nrf2 activation, Akt up-regulation can modulate
other signaling pathways related to cell survival, and exert
cytoprotective effects against MeHg toxicity. Impairment in Akt
signaling has been shown to exacerbate MeHg-induced cell death
(Wang et al., 2009; Unoki et al., 2016). Exposure of SH-SY5Y cells
to MeHg increased Akt phosphorylation and nuclear localization,
CREB phosphorylation and Bcl-2 protein levels (Unoki et al.,
2016), as shown in Figure 1. These results corroborate earlier
findings that showing increased CREB phosphorylation in the
cerebral cortex of rats exposed to MeHg (Fujimura and Usuki,
2017). Akt phosphorylation is regulated, to a certain extent, by the
phosphatase activity of PTEN (phosphatase and tensin homolog
deleted on chromosome 10). Notably, MeHg (1 µM) decreased
PTEN activity in vitro probably due to S-mercuration and/or by
ROS-induced modifications in cysteine residues in the enzyme
structure (Unoki et al., 2016). However, at higher concentrations
(>10 µM), MeHg disrupted this signaling pathway. Although
the PTEN S-mercuration persisted after exposure to higher
MeHg concentrations, decreased Akt phosphorylation and CREB
activity were noted, likely due to increased S-mercuration of
these proteins (Unoki et al., 2016). Thus, one may posit that
some of the effects associated with MeHg are concentration- or
cell type-dependent, and could be related to a cytoprotective
or toxic effect (Unoki et al., 2016). This hypothesis is also
consistent with reports that have shown down-regulation of Akt
in response to MeHg, such as decreased Akt phosphorylation
in the hippocampus of 30-day-old rat pups prenatally exposed
to MeHg (Heimfarth et al., 2018a). MeHg also reduced Akt
phosphorylation in vitro in primary neurons, at concentrations
associated with cell death (Pierozan et al., 2017). Nonetheless,
further studies are necessary to elucidate the biochemical
mechanisms associated to the regulation of Akt signaling induced
by MeHg.

In addition to Akt activation, other signaling pathways have
been shown to be activated by MeHg. A role for mitogen activated
protein kinase (MAPK) has been advanced in the cellular
responses to MeHg. MAPKs are a group of serine–threonine
kinases associated with a various range of cell processes, such
as inflammation, cellular survival, differentiation, or death
(Cargnello and Roux, 2011; Kim and Choi, 2015). MeHg has
been shown to activate members of the MAPK kinase family,
especially the extracellular signal-regulated kinases 1/2 (ERK1/2)
(Sakaue et al., 2009; Lu et al., 2011), c-Jun N-terminal kinases
(JNKs) (Fujimura et al., 2009), and p38MAPK (Guida et al.,
2017; Heimfarth et al., 2018a). MeHg has also been reported
to down-regulate MAPK. A decrease in ERK 1/2 and JNK 1/2
phosphorylation in young rats in response to prenatal exposure to
MeHg has been noted (Heimfarth et al., 2018a,b). NGF-induced
ERK1/2 phosphorylation in PC12 cells was also attenuated by
MeHg (Parran et al., 2004; Fujimura and Usuki, 2015). Therefore,

it remains unclear whether MAPK activation is consistently
associated with MeHg-induced cell death, and the possibility that
the activation of these signaling pathways is associated with cell
defense mechanisms may not be excluded.

Takanezawa et al. (2016) have demonstrated that MeHg can
increase ERK 1/2, JNK, and p38MAPK phosphorylation, which
might be related to the induction of the autophagy process,
playing a protective role against MeHg toxicity (Figure 1). In
eukaryotic cells, autophagy is an important pathway responsible
for the degradation/elimination of misfolded and damaged
proteins, non-functional organelles and protein aggregates
(Mizushima, 2007; Twayana and Ravanan, 2018). Autophagy
regulation is a complex process that involves the regulation
of other signaling pathways besides MAPK activation, such
as the modulation of kinases such as: PI3K, mammalian
target of rapamycin (mTOR) and adenosine-monophosphate-
activated protein kinase (AMPK). It has been suggested that
the autophagy regulation by MAPK is an indirect process,
that involves the regulation of some of autophagy components
expression (Sridharan et al., 2011). ERK and JNK activation
could be associated to p62 induction, and also increases
Beclin-1 expression that promotes LC3-1 to LC3-II conversion,
which serves as an indicator of the autophagy process
progression (Mizushima, 2007; Sridharan et al., 2011; Zhou
et al., 2015; Twayana and Ravanan, 2018). Corroborating these
observations, pharmacological inhibition of JNK and ERK
activation attenuated the MeHg-induced increase in p62 and
LC3-II levels (Takanezawa et al., 2016) (Figure 1). Moreover,
it is noteworthy that the p62 role in cell function goes beyond
the autophagy regulation. p62 could interact with ubiquitinated
proteins favoring its autophagosomal degradation. However, it
has been reported that the KIR domain in p62 can interacts with
the Kelch domain in Keap1 structure inducing its degradation
and consequent Nrf2 stabilaztion and increase in gene expression
(Silva-Islas and Maldonado, 2018). Thus, it is reasonable
to speculate that MeHg regulates Nrf2 activity through p62
modulation, illustrating a crosstalk between Nrf2 modulation
and MeHg-induced autophagy, leading to cell survival against
metal-toxicity (Figure 1).

CONCLUSION

Many reports have set Keap1/Nrf2 pathway to dogma in
antioxidant/electrophile response. Like other electrophiles,
MeHg also activates Nrf2 through modification of Keap1 and
might induces p62-mediated autophagosomal degradation of
Keap1. However, as mentioned before, recent findings have
revealed that Keap1-independent signal pathways also contribute
to the cytoprotective response against MeHg exposure as Akt
phosphorylation (Akt/GSK-3β/Fyn-mediated Nrf2 activation
pathway) and PTEN/Akt/CREB pathway. However, it remains
unclear if all of these mechanisms are inherent to all cell
types exposed to MeHg or are cell-specific. In addition to
Keap1/Nrf2 pathway, Akt activation may sustain and expand
cytoprotective response against MeHg toxicity through nuclear
Nrf2 stabilization and CRE dependent (but not ARE dependent)
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target genes upregulation. It has been reported that the Nrf2
pathway can regulate Bcl-2 to block apoptosis (Niture and
Jaiswal, 2012), which may suggest a cross talk between these
pathways (Chuang et al., 2015; Mylroie et al., 2015). In this
regard, further studies would be necessary to elucidate if these
molecular events can occur in the context of MeHg exposure.
Specific modulation of these pathways may afford targets for
the development of new therapeutic strategies for the treatment
of MeHg intoxication in humans. Taken together, the data
discussed in this paper corroborate the pivotal role of Nrf2
up-regulation as a molecular mechanism in combatting MeHg-
induced toxicity and further alluding to novel directions for
future research in identifying molecular mechanisms associated
to MeHg exposure.
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