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Pyridoxal 5′-phosphate (PLP), the active form of vitamin B6, works as cofactor in
numerous enzymatic reactions and it behaves as antioxidant molecule. PLP deficiency
has been associated to many human pathologies including cancer and diabetes and
the mechanism behind this connection is now becoming clearer. Inadequate intake of
this vitamin increases the risk of many cancers; furthermore, PLP deprivation impairs
insulin secretion in rats, whereas PLP supplementation prevents diabetic complications
and improves gestational diabetes. Growing evidence shows that diabetes and cancer
are correlated not only because they share same risk factors but also because diabetic
patients have a higher risk of developing tumors, although the underlying mechanisms
remain elusive. In this review, we will explore data obtained in Drosophila revealing the
existence of a connection between vitamin B6, DNA damage and diabetes, as flies
in the past decade turned out to be a promising model also for metabolic diseases
including diabetes. We will focus on recent studies that revealed a specific role for PLP
in maintaining chromosome integrity and glucose homeostasis, and we will show that
these aspects are correlated. In addition, we will discuss recent data identifying PLP as
a putative linking factor between diabetes and cancer.
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VITAMIN B6

The biologically active form of the vitamin B6, the pyridoxal 5′-phosphate (PLP), acts as coenzyme
in about 160 distinct enzymatic activities mainly involved in amino acid, carbohydrate and lipid
metabolism, and plays key roles in the synthesis and/or catabolism of certain neurotransmitters
(Percudani and Peracchi, 2003; di Salvo et al., 2011). In addition, PLP works as antioxidant
molecule by quenching oxygen reactive species (ROS) (Ehrenshaft et al., 1999) and counteracting
the formation of Advanced Glycation End products (AGEs), genotoxic compounds associated with
senescence and diabetes (Booth et al., 1997). Mammals, differently from microorganisms, are not
able to synthesize PLP but they recycle it through a salvage pathway from B6 vitamers as pyridoxal
(PL), pyridoxamine (PM), and pyridoxine (PN) contained in food (McCormick and Chen, 1999).
In the cytoplasm PL, PM, and PN are converted into the 5′-phosphorylated vitamers by pyridoxal
kinase (PDXK), while the FMN-dependent pyridoxine 5′-phosphate oxidase (PNPO) converts PNP
and PMP into PLP.

Deficiency of vitamin B6 has been implicated in several clinically relevant diseases including
autism, schizophrenia, Alzheimer, Parkinson, epilepsy, Down’s syndrome, diabetes, and cancer.
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In this review we focus on the role of PLP in diabetes and cancer
suggesting more specialist readings for the other pathologies
(Hellmann and Mooney, 2010; di Salvo et al., 2012).

VITAMIN B6 IN CANCER AND DIABETES

Epidemiological studies and meta-analysis indicate an inverse
correlation between vitamin B6 and cancer development. For
example, high expression levels of PDXK have been positively
correlated with survival of non-small cell lung cancer (NSCLC)
patients (Galluzzi et al., 2012). Furthermore, vitamin B6 intake
and blood PLP levels were inversely correlated with the colorectal
cancer risk (Gylling et al., 2017). PLP has been proposed to
influence carcinogenesis through different pathways including
those involved in DNA metabolism, suggesting that antitumor
properties of vitamin B6 may be in part due to its protective
role against DNA damage (Ames and Wakimoto, 2002). Vitamin
B6 has also been associated to diabetes. However, it is not clear
whether low PLP levels represent a cause or an effect of diabetes
or both. Some studies report that low PLP levels can contribute
to cause diabetes (Toyota et al., 1981; Rubi, 2012), whereas others
show that diabetes decreases PLP levels (Bennink and Schreurs,
1975; Spellacy et al., 1977; Okada et al., 1999). Several groups
reported that B6 administration produces beneficial effects on
diabetic pathology and its complications (Cohen et al., 1984;
Solomon and Cohen, 1989; Ellis et al., 1991; Hayakawa and
Shibata, 1991; Jain, 2007), although underlying cellular and
molecular mechanisms are not completely understood.

Pyridoxal 5′-phosphate deficiency might impact on diabetes
in different ways. For example, it could act on the pathway that
converts tryptophan into nicotinic acid as PLP is a cofactor
of some enzymes that work in this pathway (Bennink and
Schreurs, 1975; Spellacy et al., 1977; Oxenkrug, 2013). It has
been shown that metabolites produced when this pathway does
not work properly can interfere with biological insulin activity
(Kotake et al., 1975) causing insulin resistance, a hallmark of
type 2 diabetes. Moreover, it has also been proposed that PLP
may impact on insulin resistance by controlling the expression
of genes involved in adipogenesis (Moreno-Navarrete et al.,
2016). Another hypothesis is that PLP deficiency might cause
insulin resistance through an increase of homocysteine due
to impairment of enzymes such as cystathionine-β-synthase
(CBS) and cystathionine-γ-lyase (CGL), which require PLP as a
coenzyme (Liu et al., 2016).

Cancer and diabetes are correlated as they share some risk
factors. Growing evidence shows that diabetic patients have an
increased risk to develop some malignance throughout multiple,
not fully elucidate mechanisms, including DNA damage (Noto
et al., 2011; Dankner et al., 2016). Interpret the cause-effect
relationships in humans is difficult for unavailability of controls
and high costs of human research. Researches in the field thus
rely on model organisms as well as human 3D cultures and stem
cell based systems (Riminucci et al., 2006; Simao et al., 2016).
In this review we show how Drosophila has turned out to be a
useful model not only to investigate the role of vitamin B6 in
cancer and in diabetes but also to connect these two pathologies.

Furthermore, we present evidence from flies suggesting that
incorrect PLP intake could represent a cancer risk factor for
diabetic patients, as it enhances DNA damage.

PLP SAFEGUARDS GENOME INTEGRITY
IN Drosophila

Using Drosophila as a model system we demonstrated that PLP
plays a crucial role in genome integrity maintenance (Marzio
et al., 2014). Drosophila dPdxk gene encodes the ortholog of the
PDXK enzyme, which is required for vitamin B6 biosynthesis.
Mutations in dPdxk gene produce, in larval neuroblasts,
chromosome aberrations (CABs) (∼6 vs. 0.5% in controls), which
are fully rescued by PLP. Dividing larval neuroblasts represent
a suitable system to study CABs in Drosophila as they exhibit
morphologically well defined chromosomes that can be stained
by a variety of procedures (Gatti and Goldberg, 1991). CABs
have been previously observed after X-ray treatment (Gatti et al.,
1974) and as a consequence of mutations in genes which control
chromatin structure (Mengoli et al., 2014) or different steps of
DNA repair (Bianchi et al., 2017; Merigliano et al., 2017). Vitamin
B6 antagonists, namely 4-deoxypyridoxine hydrochloride (4-
DP), penicillamine, cycloserine, or isoniazid, produce high CAB
frequencies (ranging from 3 to 19%) in wild type cells, further
confirming that PLP plays an essential role in genome integrity
maintenance. The aforementioned function is evolutionarily
conserved in humans as the depletion of the human PDXK
counterpart induces CABs and a copy of the human PDXK
gene inserted in a Drosophila dPdxk1 background is capable
to rescue CABs (Marzio et al., 2014). Also in Saccharomyces
cerevisiae mutations in BUD16 gene, encoding PDXK, result
in gross chromosomal rearrangements. Altogether these data
support the hypothesis that low PLP levels may promote cancer
initiation and progression throughout the formation of CABs,
which represent a cancer prerequisite (Mitelman et al., 2007;
Aguilera and Gomez-Gonzalez, 2008; Bunting and Nussenzweig,
2013).

DNA DAMAGE IS CAUSED BY HIGH
GLUCOSE LEVELS IN PLP DEFICIENT
CELLS

We obtained evidence that in Drosophila PLP is involved
in glucose metabolism as dPdxk1 mutants display, in their
hemolymph, higher glucose concentrations compared to wild
type individuals. dPdxk1 mutants have normal insulin levels,
but a weakened ability to respond to insulin signaling (Marzio
et al., 2014). Remarkably, in dPdxk1 mutants, high glucose
levels and CABs are correlated. In dPdxk1 mutant brains,
indeed, 1% glucose in vitro treatment strongly increases CAB
frequency (from 6 to 20%); in contrast sugar treatment of wild
type larvae and brains did not result in detectable effects on
chromosome integrity. The relationship between glucose and
CABs, in PLP depleted cells, is evolutionarily conserved as
glucose supplementation enhances chromosome damage also in
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PDXK depleted HeLa cells (Marzio et al., 2014). In addition, the
wild type PDXK human gene, inserted in dPdxk1 flies, is able
to reduce hyperglycemia. Hyperglycemia triggers the formation
of AGEs that in turn produces ROS, which are harmful for
DNA. It has been shown that ROS, even at low levels, can cause
DNA damage that further leads to DNA double strands breaks
(DSBs) (Sharma et al., 2016) and that CABs are mainly generated
by unrepaired or improperly repaired DSBs. Repairing complex
DSBs may result in genomic instability that can be involved in
the etiology of a wide variety of human diseases including cancer
(Khanna and Jackson, 2001; Kasparek and Humphrey, 2011).

dPdxk1 mutant cells accumulate AGEs and treatment of
dPdxk1 mutants with alpha lipoic acid (ALA), a known AGE
inhibitor, rescues not only AGEs but also CABs, suggesting
that PLP protects from DNA damage Drosophila cells by
counteracting AGE formation (Marzio et al., 2014). To the best
of our knowledge only our work (Marzio et al., 2014) showed
the cause effect relationship between AGEs and CABs in flies.
However, Drosophila represents a good model to study AGEs
as flies accumulate significant AGEs over their lifespan (Oudes
et al., 1998) and, in addition, an AGE-rich diet results in ROS
accumulation (Tsakiri et al., 2013). AGE formation is at the
basis of many diabetic complications (Thorpe and Baynes, 1996;
Brownlee, 2001; Vlassara and Palace, 2002) and it also can
contribute to diabetes onset (Vlassara and Uribarri, 2014). Our
data are consistent with studies indicating that vitamin B6 is
beneficial for diabetes complication as, for example, nephropathy
(Hayakawa and Shibata, 1991) and retinopathy (Ellis et al., 1991)
and with in vivo studies showing that PLP is able to reduce
AGE accumulation and protein glycation (Cohen et al., 1984;
Solomon and Cohen, 1989). How PLP counteracts AGEs is not
completely understood but it has been proposed that it may trap
3 deoxyglucosone (3-DG), an AGE’s metabolism intermediate
(Nakamura et al., 2007), although other mechanisms are possible.
Besides to its antioxidant role, PLP also works as cofactor for
serine hydroxymethyltransferase enzyme, which takes part to
the thymidylate synthase cycle by converting dUMP in dTMP
(Florio et al., 2011). However, whereas PLP depletion in yeast
compromises DNA synthesis (Kanellis et al., 2007), in Drosophila
it does not seems to have the same effect. Although in dPdxk1
mutants there is an altered dTMP/dUTP ratio DNA syntesis is
not the main cause of CABs as dPdxk1 mutant are only slighty
sensitive to Hydroxyurea, a drug that interferes with replication
(Marzio et al., 2014). However, considering the wide range of
enzymatic reactions regulated by vitamin B6, we cannot exclude
that in addition to block AGE formation PLP may prevent CABs
also through other mechanisms.

Drosophila AS TYPE 2 DIABETES MODEL

Drosophila represents a good model to study diabetes as flies
and humans largely share mechanisms involved in glucose
homeostasis maintenance (Graham and Pick, 2017). In addition,
fly genome possess well characterized orthologs of most genes
working in the insulin signaling pathway that controls the glucose
uptake and storage (Garofalo, 2002).

In humans and mice mutations in insulin pathway genes cause
severe insulin resistance syndromes and type 2 diabetes (reviewed
in Boucher et al., 2014). In Drosophila type 2 diabetes models
can be generated by two different strategies: by downregulating
conserved genes working on insulin pathways as for example the
insulin receptor InR, the insulin substrate receptor chico/IRS1,
Akt1, PI3K, and by feeding flies with a high sugar rich diet (Alfa
and Kim, 2016). In both cases resulting flies exhibit diabetic
hallmarks as hyperglycemia and insulin resistance allowing the
study in flies of various aspects of diabetes and related human
disorders. In addition, a diabetic fly model also enhances the
ability to identify genes and discover functional interactions that
can be exploited for disease treatment.

PLP DEPLETION AS NEW CANCER RISK
FACTOR IN DIABETIC CELLS

Meta-analysis and epidemiological studies indicate that diabetic
patients have an increased risk to develop several solid and
hematologic malignancies (including liver, pancreas, colorectal,
kidney, bladder, endometrial, and breast cancers, and non-
Hodgkin’s lymphoma) although the molecular mechanisms are
not completely clarified (Vigneri, 2009; Noto et al., 2011; Dankner
et al., 2016). However, some risk factors have been identified
including hyperinsulinemia and hyperglycemia that might rise
cancer risk in diabetic patients by promoting cell growth (Shikata
et al., 2013). Besides triggering cell division hyperglycemia also
causes oxidative stress as glucose in excess promotes, through
different pathways, ROS formation which in turn induces DNA
and cellular damage (Rains and Jain, 2011). In addition, in cells
from diabetic patients an impaired DNA repair, combined to
a weakened antioxidant defense, contributes to enhance DNA
damage (Blasiak et al., 2004). Consistently, oxidative damage and
DNA strand breaks have been found in both type 1 and type
2 diabetic patients (Goodarzi et al., 2010; Tatsch et al., 2012;
Anand et al., 2014). We have recently shown in Drosophila that
PLP deficiency can further increase DNA damage in cells from
diabetic individuals (Merigliano et al., 2018). Using two different
type 2 diabetes models, the first obtained by downregulating
genes involved in insulin signaling such as InR, chico (IRS1),
and Akt1, and the second by feeding wild type flies with a
high sugar diet (Musselman et al., 2011), we showed that the
treatment of larval neuroblasts with the strong PLP inhibitor 4-
DP produced a very high CAB frequency ranging from 60 to 80%
(vs. 25% in wild type cells). Accordingly, genetic analysis revealed
a synergistic interaction between Akt1 and dPdkx1 mutations
in CAB formation (Merigliano et al., 2018). AGEs are in part
responsible for CABs in Drosophila diabetic PLP depleted cells as
they accumulate in these cells and, more strikingly, ALA rescues
either AGEs and CABs (Merigliano et al., 2018). These findings
indicate that, in diabetic cells, low PLP levels heavily impact
on genome integrity. Thus, if translated to humans, these data
suggest that low PLP levels may contribute to increase cancer risk
in diabetic patients. Although PLP deficiency is a rare condition
caused by excessive alcohol consumption, unwanted effects
of some drugs (i.e., isonyazide, cycloserine penicillamine), or
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celiac disease and renal dialysis (Clayton, 2006), it has been
demonstrated, in murine models and by epidemiological studies,
that it can also be associated to diabetes (Leklem and Hollenbeck,
1990; Okada et al., 1999; Ahn et al., 2011; Nix et al., 2015). All
evidence suggests the importance to maintain under strict control
PLP levels in diabetic patients to avoid the chance to increase
DNA damage, which could in turn contribute to cancer initiation
and progression.

CONCLUSION

Several studies have shown that insufficient intake of vitamin B6
is associated with increased cancer risk and growing evidence
indicates that diabetes patients have a higher risk of developing
various types of cancer. The findings reviewed here, obtained in
Drosophila, provide a mechanistic link between aforementioned
studies by suggesting that PLP deficiency accompanied by
hyperglycemia can lead to DNA damage and may contribute to

cancerogenesis. Thus, Drosophila has proved to be a useful model
system to shed light on a novel and important role of vitamin B6
deficiency in the pathogenesis of cancer and diabetes. In addition,
this model organism allowed identifying PLP deficiency as one of
the risk factors that contribute to correlating diabetes to cancer.
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