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The relationship between growth and immune phenotypes has been presented in
the context of physiology and energy allocation theory, but has rarely been explained
genetically in humans. As more summary statistics of genome-wide association studies
(GWAS) become available, it is increasingly possible to explore the genetic relationship
between traits at the level of genome-wide summary statistics. In this study, publicly
available summary statistics of growth and immune related traits were used to evaluate
the genetic correlation coefficients between immune and growth traits, as well as
the cause and effect relationship between them. In addition, pleiotropic variants
and KEGG pathways were identified. As a result, we found negative correlations
between birthweight and immune cell count phenotypes, a positive correlation between
childhood head circumference and eosinophil counts (EO), and positive or negative
correlations between childhood body mass index and immune phenotypes. Statistically
significant negative effects of immune cell count phenotypes on human height, and
a slight but significant negative influence of human height on allergic disease were also
observed. A total of 98 genomic regions were identified as containing variants potentially
related to both immunity and growth. Some variants, such as rs3184504 located in
SH2B3, rs13107325 in SLC39A8, and rs1260326 located in GCKR, which have been
identified to be pleiotropic SNPs among other traits, were found to also be related
to growth and immune traits in this study. Meanwhile, the most frequent overlapping
KEGG pathways between growth and immune phenotypes were autoimmune related
pathways. Pleiotropic pathways such as the adipocytokine signaling pathway and JAK-
STAT signaling pathway were also identified to be significant. The results of this study
indicate the complex genetic relationship between growth and immune phenotypes, and
reveal the genetic background of their correlation in the context of pleiotropy.
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INTRODUCTION

Both human growth and immune traits are influenced by
inherited genetic variants (Ogata, 2006; Roederer et al., 2015).
The heritability of growth traits ranges from moderate (e.g.,
40% for birthweight; Johnson et al., 2011) to high (e.g., 80% for
adult height; Silventoinen et al., 2003; Macgregor et al., 2006),
whereas a broader range of heritability has been observed for
immune traits, as they are differentially influenced by genetic and
environmental factors (Mangino et al., 2017). In recent decades,
studies of the associations between genotypes and phenotypes,
or genome-wide association studies (GWAS), have mapped 100s
of single nucleotide polymorphisms (SNPs) in association with
complex traits (Donnelly, 2008; Hindorff et al., 2009; Visscher
et al., 2017). For growth traits, a large number of variants relating
to human height (Wood et al., 2014), obesity (Larder et al., 2017),
and early growth have been identified, and have been curated
by some databases such as Early Growth Genetics Consortium
(EGG). Gene mapping studies have also successfully identified
immunity-related traits or diseases, and nearly all major immune-
mediated diseases have been studied by GWAS (Visscher et al.,
2017).

Meanwhile, the increasing number of GWAS indicates the
existence of underlying overlapping causal variants that play roles
in multiple traits, namely pleiotropy (Visscher et al., 2017). The
genetic relationships among multiple traits often result from
pleiotropy of a gene and linkage disequilibrium (LD) between
genes for different traits (Bolormaa et al., 2014). The former is
known as biological pleiotropy, whereas the latter is a type of
spurious pleiotropy (Solovieff et al., 2013). Several researches
have uncovered the relationship between immune and growth
traits. For example, in the context of physiology, several cytokines
such as interleukin-1 (IL-1), tumor necrosis factor alpha (TNFα),
and interleukin-6 (IL-6) that are released during the immune
response are either growth factors (Ozaki and Leonard, 2002) or
indirectly involved in the regulation of growth-related processes
(Klasing, 1988). On the contrary, receptors for growth hormone
(GH) and insulin-like growth factor type I (IGF-1) were found
to be distributed on immunological cells (Meazza et al., 2004).
The genetic relationship between growth and immunity has
been primarily studied on model organisms or livestock, and
this relationship has often proved to be inverse (Greer, 2008;
Clapperton et al., 2009; van der Most et al., 2011).

Studies of the genetic relationship between growth and
immune traits in humans have rarely been reported. This may be
so as they appear to be biologically distant. However, some studies
have shown that biologically unrelated traits are in fact genetically
correlated. For instance, in a study of genetic correlations across
human diseases and traits, height was found to be significantly
associated with coronary artery disease (Bulik-Sullivan et al.,
2015). Moreover, the availability of large numbers of summary
statistics from GWAS has enabled increasing numbers of meta-
analysis studies to explore the pleiotropy of variants, helping to
elucidate the genetic relationship among traits (Han et al., 2016;
Pickrell et al., 2016; Zhu et al., 2016).

The objective of this study was to employ the summary
statistics of growth- and immunity-related GWAS to explore the

genetic relationship between growth and immune traits, and the
underlying contribution of pleiotropy across the genome to this
relationship.

MATERIALS AND METHODS

Growth and Immune Summary Statistics
A total of 15 GWAS including summary statistics of 13 growth
traits and 13 immune traits were included in this study (Table 1).
Summary statistics were selected according to the following
standards: (1) non-sex-stratified European ancestry; (2) signed
summary statistics; (3) without adjusting for heritable covariates.
The growth summary statistics were mainly from the EGG
database, height (HEIGHT) (Wood et al., 2014) in the GIANT
database, together with two pediatric musculoskeletal traits, bone
mineral density (BMD) and total-body lean mass (LM) (Medina-
Gomez et al., 2017), distributed in GWAS Catalog database. The
immune phenotypes were all from the GWAS Catalog database,
and comprised a majority of immune traits belonging to the
innate immune system, including a variety of immune cell count
phenotypes (Astle et al., 2016). In addition, allergic disease (ALL)
(Ferreira et al., 2017), asthma (ATH) (Demenais et al., 2018),
and three immunity-related diseases, Crohn’s disease (CD),
inflammatory bowel disease (IBD), and ulcerative colitis (UC),
were also included. The summary statistics were reformatted
according to the 1000 Genomes (1000G) phase 3 using script
munge_sumstats.py implemented in ldsc software (URLs), as
described previously (Bulik-Sullivan et al., 2015).

Correlation of Effect Sizes Between
GWAS Summary Statistics for Immune
and Growth Traits
A cross-trait LD Score regression method (Bulik-Sullivan et al.,
2015) was used to evaluate the genome-wide genetic correlation
between growth and immune traits. The LD score for a SNP
is defined as the sum over all squared correlations between all
SNPs with the focal SNP, and indicates how likely a SNP tags
its neighbors affecting the phenotype. LD score regression for a
single GWAS with χ2 statistics of SNP as a dependent variable
can be used to estimate heritability. As instructed by Bulik-
Sullivan et al. (2015), the traits with Z scores of heritabilities
less than 4 were excluded in this step. When estimating genetic
correlation between traits, the dependent variable of LD score
regression is the product of two Z statistics. Unlike Mendelian
randomization, which simply employs significantly associated
SNPs (Davey Smith and Hemani, 2014), cross-trait LD Score
regression makes use of the effects of all SNPs to estimate the
correlation with the following formula:

E
[
z1jz2j

]
=

√
N1N2ρg

M
lj +

Nsρ
√
N1N2

Where Zij is the Z statistic for jth locus in study i, ρg is
the genetic covariance, lj is the LD Score for jth locus, Ns is
the number of overlapping individuals between studies, and ρ
is the phenotypic covariance, which equals genetic covariance
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TABLE 1 | Name, abbreviation, P-value threshold, and original publication for
each phenotype included in this study.

Phenotype Abbreviation P thresholda Publication

Immune phenotypes

Any diseases ALL 5 × 10−8 Ferreira et al., 2017

Asthma ATH 5 × 10−8 Demenais et al., 2018

Crohn’s disease CD 5 × 10−8 de Lange et al., 2017

Eosinophil counts EO 8.31 × 10−9 Astle et al., 2016

Granulocyte count GRAN 8.31 × 10−9 Astle et al., 2016

Inflammatory bowel
disease

IBD 5 × 10−8 de Lange et al., 2017

Lymphocyte counts LYMPH 8.31 × 10−9 Astle et al., 2016

Monocyte count MONO 8.31 × 10−9 Astle et al., 2016

Myeloid white cell count MWBC 8.31 × 10−9 Astle et al., 2016

Neutrophil count NEUT 8.31 × 10−9 Astle et al., 2016

Ulcerative colitis UC 5 × 10−8 de Lange et al., 2017

White blood cell count WBC 8.31 × 10−9 Astle et al., 2016

Growth phenotypes

Birth length BL 1 × 10−5 van der Valk et al., 2014

Bone mineral density BMD 5 × 10−8 Medina-Gomez et al.,
2017

Childhood body mass
index

BMI 5 × 10−8 Felix et al., 2015

Birthweight BW 5 × 10−8 Horikoshi et al., 2016

Gestational weight gain
(maternal)

GWGM 1 × 10−5 Warrington et al., 2018

Gestational weight gain
(offspring)

GWGO 1 × 10−5 Warrington et al., 2018

Childhood head
circumference

HC 1 × 10−5 Taal et al., 2012

Height HEIGHT 5 × 10−8 Wood et al., 2014

Leptin levels LEP 1 × 10−5 Kilpeläinen et al., 2016

Total-body lean mass LM 1 × 10−5 Medina-Gomez et al.,
2017

Birthweight (maternal) MBW 5 × 10−8 Beaumont et al., 2018

Childhood obesity OBESITY 5 × 10−8 Bradfield et al., 2012

Pubertal growth PG 5 × 10−8 Cousminer et al., 2013

aThe significance threshold used for the GWAS for each phenotype, which was
normally from the original study, but was lowered to 1 × 10−5 when the number of
GWS SNPs was too low.

plus residual covariance between studies. Thus, the overlapping
samples between GWAS only affect the intercept from the
regression, but not the slope containing the genetic correlation
between traits. In this study, we downloaded the LD Score (URLs)
that had already been calculated for European ancestry using ldsc
software.

Mendelian Randomization Based on
Summary Statistics of Immune and
Growth Traits
To determine whether there is a cause and effect relationship
between each pair of growth and immune traits and to
identify the upstream causal factor and the downstream
consequence, a bi-directional Generalized Summary-data based
Mendelian randomization (GSMR) was performed using GSMR
software (Zhu et al., 2018). GSMR belongs to the category

of two-sample Mendelian randomization, but also allows bi-
directional Mendelian randomization analysis (Zheng et al.,
2017). This method first tests for causal associations (bxy)
between a risk factor (x) and an outcome (y) based on
summary statistics of each SNP (z) for x (bzx) and y (bzy),
and then the bxy estimates of all the SNPs are integrated
by generalized least squares. Here, pleiotropy is a potential
confounding factor for GSMR, because it inflates the cause and
effect relationship between exposure and outcome. Therefore, a
method called HEIDI-outlier implemented in GSMR was utilized
to exclude clear pleiotropic effects on the exposure and outcome
phenotypes. As GSMR assumes no overlapping samples between
GWAS, the pairs of growth and immune phenotypes that shared
overlapping cohorts were excluded. GSMR requires independent
genome-wide significant (GWS) SNPs in the analysis, which were
identified based on the significance threshold. The threshold for
each GWAS is listed in Table 1 according to its original reference,
except for birth length (BL), gestational weight gain (maternal)
(GWGM), gestational weight gain (offspring) (GWGO), head
circumference (HC), leptin levels (LEP), and LM, for which the
thresholds were lowered to 1 × 10−5 due to the small number
of GWS SNPs for these phenotypes. Then, the near-independent
GWS SNPs were identified using the clumping algorithm in
PLINK 1.9 (Purcell et al., 2007) for each trait [with 0.1 as cut-
off for r2 in windows predefined by independent LD blocks
for European ancestry (URLs)]. The allele frequency and LD
information used for GSMR was from the European population
in the 1000G Project. The bi-directional causation was then
explored by treating growth phenotypes or immune phenotypes
as exposures or outcomes alternately.

Detection of Pleiotropy Along the
Genome Between Immune and Growth
Traits
A hierarchical method was used for co-localization of signals
associated with immune and growth traits (Giambartolomei
et al., 2014; Pickrell et al., 2016). This method estimates the
regional Bayes factors for independent genomic regions along the
genome for four models: (1) a genetic variant influencing trait 1
is contained in the region; (2) a genetic variant influencing trait
2 is contained in the region; (3) the region contains a variant
that impacts both trait 1 and trait 2; (4) 2 different variants
that influence 2 traits separately are contained in the region. In
this study, the genomic regions were predefined by independent
blocks based on patterns of LD in the European populations as
used in GSMR analysis. The software gwas-pw v0.21 (Pickrell
et al., 2016) was used to calculate the posterior probability of each
genomic region for each pair of immune and growth GWAS. In
addition to Z scores, gwas-pw requires variance of effect size of
each SNP. The allele frequencies of European ancestry individuals
in the 1000G Project were therefore used to estimate the variance
of effect size estimates. For pairs of growth and immune GWAS
that shared overlapping samples, the genetic correlation between
each pair of phenotypes calculated by LD score regression was
offered to specify the expected correlation in summary statistics
under the null. The genomic regions with posterior probabilities
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≥0.9 were considered to be candidate regions containing variants
influencing the pairs of traits simultaneously. Meanwhile, the
SNPs involved in these candidate regions and had the highest Z
scores for the 2 traits, respectively, were annotated functionally
based on RefSeq transcripts using ANNOVAR (Wang et al.,
2010).

Identification of KEGG Pathways Shared
Between Immune and Growth Traits
In order to capture the shared pathways between each pair
of immune and growth traits that were beyond the spatial
restriction of pleiotropy located on the sharing parts along the
genome, enriched KEGG pathways were identified for each trait
using GSA-SNP2 software (Yoon et al., 2018). This method is
a powerful competitive pathway analysis tool that only requires
the P-values of the SNPs in each GWAS. Compared with other
methods, GSA-SNP2 can control type I error and maintain higher
statistical power, and uses gene scores that indicate accurate
pathway analysis results (Yoon et al., 2018). In this study, 218
KEGG pathways included in the GSA-SNP2 software were used
as gene sets for enrichment analysis. GSA-SNP2 controls type
I error via the SNP-count adjusted gene scores, and corrects
for multiple-testing P-values by the false discovery rate (FDR).

KEGG pathways with FDR ≤ 0.05 were considered to be
significant. The overlapping significant pathways between each
pair of immune and growth phenotypes were extracted, and the
P-values for overlaps were calculated based on the empirical
distributions using permutation with 1000 iterations.

RESULTS

Correlation of Effect Sizes Between
Growth and Immune Traits
Z scores of heritabilities for two growth traits, GWGM and
GWGO that were less than 4 were excluded in the calculation
of genetic correlation between growth and immune traits
using cross-trait LD score regression. The pattern of genetic
correlation coefficients is shown in Figure 1, and the values
can be found in Supplementary Table S1. The P-values were
corrected by FDR. The largest correlation coefficient (0.172)
was between HC and eosinophil counts (EO). The most
significant (FDR = 8.21 × 10−7) genetic correlation (-0.164) was
between BW and white blood cell count (WBC). The significant
correlation coefficients were predominately observed between
BW, BMI, and several immune cell count phenotypes, and these

FIGURE 1 | Heat map of genetic correlation coefficients between immune and growth phenotypes. The P-values of correlation coefficients were corrected by FDR.
Genetic correlations with FDR less than 0.05 are indicated by one star, whereas correlations with FDR less than 0.01 are indicated by two stars.
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correlation coefficients were all negative. ALL and ATH often had
positive correlations with growth traits, although they were not
statistically significant. This pattern was also true for pubertal
growth (PG) and LM, which were positively correlated with
immune phenotypes.

Bi-directional Mendelian Randomization
Between Immune and Growth Traits
After the filtration, GSMR calculated bxy for 206 pairs of
exposure and outcome, and the Bonferroni cut-off for statistically
significance was therefore set as 0.05/206. Finally, five pairs of
exposure and outcome were significant for GSMR analysis with
HEIDI-outlier correction (Supplementary Table S2). HEIGHT
was the only growth-related phenotype involved, and it was
influenced by four immune cell exposures: myeloid white
blood count (MWBC), neutrophil count (NEUT), granulocyte
count (GRAN), and WBC. Meanwhile, a significant effect from
HEIGHT on ALL (bxy =−0.036, SE = 0.01, P = 1.45× 10−4) was
also observed. These causal relationships were all negative, and
the most significant effect was observed from WBC on HEIGHT
(bxy =−0.077, SE = 0.013, P = 2.27× 10−9, Figure 2).

Pleiotropic Variants Between Immune
and Growth Traits
There were 98 genomic regions potentially containing
variants related to immune and growth traits simultaneously
(Supplementary Table S3). If a region was identified to be
related to more than one pair of immune and growth GWAS,
then it could be related to more than two phenotypes. Some
regions might contain variants related to multiple phenotypes.
For instance, a region (24.69–26.89 Mb) on chromosome 2
contained 5 SNPs related to three growth traits of childhood BMI
(BMI), childhood obesity (OBESITY), pubertal growth (PG), and
two immune diseases, CD and IBD (Supplementary Table S3).
The causal genes might be ADCY3 and DNAJC27 (Table 2),
which have previously been identified to be related to obesity
(Stergiakouli et al., 2014) and pubertal growth (Cousminer et al.,
2013), respectively. Figure 3 shows the numbers of pleiotropic
regions between pair-wise immune and growth phenotypes.
The pleiotropic regions were more frequently observed between
the growth traits BW, HEIGHT, and birthweight (maternal)
(MBW), and the immune traits WBC, CD, and IBD (Figure 3).
Some regions contained causal pleiotropic variants that had
previously been identified to be pleiotropic (Pickrell et al.,
2016). For instance, rs13107325 located in the exonic region
of zinc transporter SLC39A8 was related to ALL (Z = 4.51,
P = 6.6× 10−6), CD (Z = 7.06, P = 1.66× 10−12), IBD (Z = 4.98,
P = 6.44 × 10−7), BMI (Z = 5.70, P = 1.19 × 10−8), and
HEIGHT (Z = −5.11, P = 3.3 × 10−7); rs1260326 located in
the exonic region of GCKR was related to CD (Z = −6.54,
P = 6.31 × 10−11), granulocyte count (GRAN) (Z = −8.62,
P = 6.81 × 10−18), IBD (Z = −5.33, P = 9.61 × 10−8),
lymphocyte counts (LYMPH) (Z = −7.03, P = 2.11 × 10−12),
MWBC (Z = −7.83, P = 4.95 × 10−15), NEUT (Z = −9.07,
P = 1.15 × 10−19), WBC (Z = −9.35, P = 8.75 × 10−21), and
HEIGHT (Z = 6.76, P = 1.4× 10−11). Table 2 lists some potential

genetic variants that are both significant for immune and growth
traits in these regions and genes affected by these variants.
Some pleiotropic variants had opposite Z statistics for immune
and growth traits. For example, the SNP (rs3184504) located
in the exon of SH2B3 (Figure 4 and Table 2) was significantly
associated with MBW (Z = 6.168, P = 6.9 × 10−10) and LYMPH
(Z =−24.624, P = 6.93× 10−134).

KEGG Pathways Shared Between
Immune and Growth Traits
Figure 5 shows the proportions of the number of overlapping
KEGG pathways between immune and growth phenotypes
accounting for the size of the union set of KEGG pathways
between the pair-wise phenotypes. The significant overlaps
were mainly observed between growth traits BMI, GWGM,
HC, HEIGHT, and PG, and immune phenotypes. Although
the relationship between BW and immune phenotypes was
evident in the results of cross-trait LD score regression and
pairwise GWAS pleiotropy mapping, no significant overlapping
KEGG pathways could be identified between BW and immune
traits. Supplementary Table S4 lists the number of pathways
that were included in significant overlaps between immune
and growth traits. Many disease pathways are present in
the top of the list, including the autoimmune diseases
[systemic lupus erythematosus (hsa05322), graft-versus-host
disease (hsa05332), autoimmune thyroid disease (hsa05320), and
asthma (hsa05310)], as well as viral myocarditis (hsa05416)
and type I diabetes mellitus (hsa04940). Some pathways were
associated with immunity and growth simultaneously, such as the
adipocytokine signaling pathway (hsa04920) (Ogunyemi et al.,
2013; Procaccini et al., 2013) and JAK-STAT signaling pathway
(hsa04630) (Wong and Fish, 2003).

DISCUSSION

Summary Statistics of Immune and
Growth Traits
Although the relationship between immune and growth traits
has not been explored specifically in human genetics, their
cryptic association has been observed and explained in other
contexts. For instance, Urlacher et al. (2018) identified the
negative effect of immune activity on growth in a sample of
261 Amazonian forager-horticulturalist Shuar children, because
immune function is an energetically costly physiological activity
that consumes calories that are needed for less immediately
essential life activities such as growth (Urlacher et al., 2018).
However, the aim of the current study was to explore their
relationship in the context of genetics. Many growth and
immune phenotypes were included as growth and immune traits
encompass wide biological concepts. Growth is the enlargement
of a tissue or organism; thus, the consequence of growth is
not only size (HEIGHT, BL, HC, PG, BMD), but weight-related
or obesity-related traits (BW, GWGO, GWGM, LM, MBW,
OBESITY, BMI, LEP). Some of the relationships among growth
traits were negative. For instance, BMI, a ratio trait defined by
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FIGURE 2 | Plots of effect sizes of independent lead SNPs for WBC (bzx ) on the x-axis and effect size for HEIGHT on the y-axis (bzy ). The dotted line represents a
line with a slope of (bxy ).

body weight divided by the square of height, was negatively
related to HEIGHT from its definition. This is also the case for
LEP, as the increase of LEP levels results in decrease of obesity. In
contrast, the relationships among immune traits involved in this
study were simple, for the reason that a high level of immune cells
in serum is often a marker of autoimmune diseases.

Genetic Correlation Between Immune
and Growth Phenotypes
The result of cross-trait LD score regression (Figure 1
and Supplementary Table S1) indicated significant negative
correlations between BW and immune cell counts, but there
appeared to be no correlation between BW and autoimmune
diseases. The original study from which the summary statistics
of BW were obtained also recorded a nearly zero correlation
coefficient between BW and autoimmune diseases using cross-
trait LD score regression (Horikoshi et al., 2016). It has also been
confirmed that children with low birthweight are prone to have
low immune capacity but higher levels of serum inflammation
factors (Raqib et al., 2007). Low birthweight often results from
fetal insult or nutritional insufficiency and manifests an increase
in immune blood cells, which can cause allergic diseases such as
asthma in child- or adulthood (Shaheen et al., 1999). In contrast,
the most significant positive correlation was observed between
HC and EO. HC appears to have some positive relationships
with autoimmune diseases, which has been affirmed in a
previous study (Eviston et al., 2015), where a positive correlation
between childhood allergy and in utero head circumference
was reported. Negative significant correlations were observed
between BMI and immune cells (Figure 1 and Supplementary
Table S1), but the correlation coefficients between BMI and
autoimmune diseases were all positive, although they were
not significant. This inconsistent relationship might also help
to explain the complex U-shaped pattern of the relationship
between BMI and autoimmune diseases, suggesting that low and
high BMI are both positively related to high risk of autoimmune

diseases (Harpsøe et al., 2014). In addition, the significant genetic
correlations were mainly between immune phenotypes and
growth phenotypes measured in early age, such as BW, HC, and
childhood BMI, indicating that early growth measurements may
be suitable indicators for human immunity or allergic disease
susceptibility in child- or adulthood. Even though the direction of
these correlations varied in different pairs of phenotypes, obesity,
low BW, and long HC were generally able to predict immunity
problems.

Furthermore, in the absence of original information regarding
the measurement of these traits, these genetic correlations might
not be completely accurate simply based on summary statistics,
and they should not be fully applied in other populations in
different environments, as the different LD patterns and genotype
by environmental interaction can cause variation in genetic
correlation in different ethnic populations. In this study, we
focused on the genetic correlation between immune and growth
traits in European ancestry. A previous GWAS study performed
in a Japanese population showed a significant positive genetic
correlation between BMI and asthma, but a negative genetic
correlation between BMI and rheumatoid arthritis. In addition,
human height was negatively correlated with two autoimmune
diseases, Graves’ disease and rheumatoid arthritis, although these
correlations were not significant (Kanai et al., 2018). These results
are generally consistent with the pattern of genetic correlation
in our study, in which positive and negative correlations were
both observed between BMI and some immune phenotypes, and
negative but not significant correlations were observed between
HEIGHT and immune phenotypes, indicating the accuracy of
our results to some extent.

Cause and Effect Relationship Between
Immune and Growth Phenotypes
The GSMR results show that HEIGHT was negatively affected
by different phenotypes of immune cell count. This is consistent
with the energy allocation theory, which proposes that activation
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FIGURE 3 | Heat map of the number of pleiotropic regions shared between immune and growth phenotypes.

TABLE 2 | Pleiotropic SNPs influencing multiple immune and growth phenotypes.

SNP Location Gene Traits

rs11676272 Exonic ADCY3 CD, IBD, BMI, PG, OBESITY

rs1172294 UTR3 DNAJC27 CD, IBD, BMI, PG, OBESITY

rs1260326 Exonic GCKR CD, GRAN, IBD,LYMPH, MONO,
MWBC, NEUT, WBC, HEIGHT

rs13107325 Exonic SLC39A8 ALL, CD, IBD, BMI, HEIGHT

rs3184504 Exonic SH2B3 ALL, BASO, CD, EO, GRAN, IBD,
LYMPH, MONO, MWBC, NEUT,
UC, WBC, BW, MBW

of immune system has a negative effect on growth (Rauw,
2012). Meanwhile, a unique significant effect of growth on
immune phenotype was determined between HEIGHT and
ALL. Previous studies have found that allergic diseases such
as moderate or severe asthma can cause a delay in puberty
stretch and affect final adult height (Hauspie et al., 1976,
1977; Preece et al., 1986; de Góes Antonio et al., 2003). The
significant cause and effect between HEIGHT and ALL did
not comport with these findings, indicating the complexity of
their relationship. The results of GSMR were not consistent
with the results that indicated no significant genetic correlation
between HEIGHT and immune phenotypes. This might be
because the cause and effect relationship between human height
and immunity was explored by GWS SNPs shared between

the two traits, while the genetic correlations were calculated
using overlapping SNP effects across the whole genome. The
statistical power of the GSMR analysis increases with the
number of instrumental SNPs (Zhu et al., 2018). The small
numbers of GWS SNPs for many growth phenotypes were not
sufficient for GSMR (at least 10 independent GWS SNPs are
required to perform the test); thus, except for HEIGHT, no
significant causation relationship was identified for all other
growth traits. In addition, with the HEIDI-outlier filtering
pleiotropic SNPs, GSMR would further reduce the number of
GWS SNPs used. HEIDI-outlier was used to filter SNPs that
deviated from the hypothesis under the causal model that the
expected values of estimated effects from exposure on outcome
were identical for any instrumental SNP. Only five significant
pairs were identified after HEIDI-outlier filtration, indicating
that the link between growth and immunity might not fully be
a cause and effect relationship. HEIDI-outlier was designed to
reduce the inflation of GSMR, but not for identification of the
true pleiotropic loci that have effects on multiple phenotypes
simultaneously.

Identification of Pleiotropic Variants
In this study, we used a hierarchical method to identify
pleiotropic SNPs between pairs of immune and growth
phenotypes. Methods such as moloc (Giambartolomei et al.,
2018), which can identify pleiotropic loci for more than two traits,
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FIGURE 4 | Regional association plot of a 100 kb window surrounding the pleiotropic SNP rs6569648 related to (A) HEIGHT and (B) LYMPH.

FIGURE 5 | Heat map of the proportions of the number of overlapping KEGG pathways between immune and growth phenotypes accounting for the size of union
set of KEGG pathways between pair-wise traits. The significant overlaps with Bonferroni-corrected P-values less than 0.05 are indicated by stars.

have high computational demand, and were thus not suitable
given the fact that 26 phenotypes were involved in this study.
In addition, gwas-pw has the potential to locate pleiotropic loci
related to multiple traits. For instance, if the pairwise scan for
phenotypes A and B, and phenotypes B and C were both indicated

in the same region, it can be counted as those three phenotypes
(A, B, and C) sharing an association in the same region (Pickrell
et al., 2016). Some multiple-trait sharing regions were consistent
with previous results, and some pleiotropic SNPs in this study
were also detected in a previous study that explored pleiotropy
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among many different kinds of phenotypes (Pickrell et al., 2016),
such as rs3184504 located in SH2B3, rs13107325 in SLC39A8
gene and rs1260326 located in GCKR. The identification of the
pleiotropy of these SNPs for immune and growth traits extended
their functional spectrum in different traits. This also means
that some pleiotropy among different traits can be explained
by the same genetic variants (Visscher et al., 2017). In the
era of precision medicine or genome editing, this pleiotropy
indicates that it is not adequate to simply focus on a single
phenotype, especially when the variants play opposite roles in
various phenotypes (Parkes et al., 2013; Gratten and Visscher,
2016). However, for some quantitative phenotypes with polygenic
backgrounds, pleiotropy mapping can be helpful not only in
guiding drug development or genome editing to avoid loci with
opposite functions on multiple phenotypes, but also to focus on
the loci that contribute to the multiple phenotypes of interest
simultaneously.

Several genes containing pleiotropic SNPs were indeed
associated with growth and immune traits. For instance, SH2B3
(Figure 4) is known to regulate cytokine and growth factor signals
(Mori et al., 2014). Some pleiotropic findings were in causal
genes, which support energy allocation theory for the relationship
between immunity and growth. For instance, ADCY3, an obesity
related gene, plays a role in energy homeostasis (Saeed et al.,
2018). Meanwhile, it can catalyze the formation of cyclic AMP
and regulate dendritic cells in the immune response (Chinn
et al., 2016). In addition, gwas-pw could not distinguish a single
causal variant that is pleiotropic (model 3) from 2 independent
causal variants (model 4) if there existed strong LD between the
two variants (Pickrell et al., 2016), although these variants could
explain the genetic correlation between phenotypes in the context
spurious pleiotropy (Solovieff et al., 2013).

Mediated Pleiotropy Indicated by
Sharing Pathways
Mediated pleiotropy is another type of pleiotropy (Solovieff et al.,
2013) that describes different traits-related genes interacting with
each other in pathways or networks (Zhang et al., 2016). The
significantly shared pathways (Figure 5) helped complement
the genetic explanations of the correlation between immune
and growth traits. Although significant genetic correlations were
observed between BW and immune traits, there was no pathway
significantly shared between them, indicating that the genetic
correlation between them primarily results from biological
or spurious pleiotropy. The most frequent KEGG pathways
included in significant overlaps between immune and growth
phenotypes were associated with autoimmune diseases, such
as systemic lupus erythematosus (hsa05322) (Supplementary
Table S4). Some studies have suggested the relationship between
obesity and autoimmune diseases (Harpsøe et al., 2014; Versini
et al., 2014). Thus, as a risk factor, obesity might influence
autoimmune disease through these pathways. In addition, the
growth and immune functions can play roles in common
diseases, as in the case of type I diabetes mellitus (hsa04940),
which was affected by GH (Holly et al., 1988) and immune
dysfunction (Geerlings and Hoepelman, 1999). These findings

again indicate the importance of growth measurement for
diagnosis of immunity-related diseases, and vice versa.

CONCLUSION

In this study, we explored the genetic correlation between growth
and immune phenotypes using summary statistics of a number
of different GWAS. The results show that the directions of these
correlations varied in different pairs of phenotypes. In addition,
there was a negative cause and effect relationship between height
and some phenotypes of immune cell count or allergic disease,
which bolsters the energy allocation theory of the relationship
between growth and immune traits. The identification of several
pleiotropic variants, genomic regions, and pathways extend the
pleiotropy of some SNPs and is helpful in our understanding of
the genetic background of the relationship between growth and
immune traits, and is meaningful for disease diagnosis and drug
development.
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