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Lead exposure has long been one of the most important topics in global public health

because it is a potent developmental neurotoxin. Here, an eQTL analysis, which is

the genome-wide association analysis of genetic variants with gene expression, was

performed. In this analysis, the male heads of 79 Drosophila melanogaster inbred lines

from Drosophila Synthetic Population Resource (DSPR) were treated with or without

developmental exposure, from hatching to adults, to 250µM lead acetate [Pb(C2H3O2)2].

The goal was to identify genomic intervals that influence the gene-expression response

to lead. After detecting 1798 cis-eQTLs and performing an initial trans-eQTL analysis,

we focused our analysis on lead-sensitive “trans-eQTL hotspots,” defined as genomic

regions that are associated with a cluster of genes in a lead-dependent manner. We

noticed that the genes associated with one of the 14 detected trans-eQTL hotspots,

Chr 2L: 6,250,000 could be roughly divided into two groups based on their differential

expression profile patterns and different categories of function. This trans-eQTL hotspot

validates one identified in a previous study using different recombinant inbred lines.

The expression of all the associated genes in the trans-eQTL hotspot was visualized

with hierarchical clustering analysis. Besides the overall expression profile patterns, the

heatmap displayed the segregation of differential parental genetic contributions. This

suggested that trans-regulatory regions with different genetic contributions from the

parental lines have significantly different expression changes after lead exposure. We

believe this study confirms our earlier study, and provides important insights to unravel

the genetic variation in lead susceptibility in Drosophila model.
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INTRODUCTION

Expression QTLs (eQTLs)
One of the biggest challenges in biology is to understand how
genetic variation alters gene expression, which is also known
as genetical genomics (Mackay et al., 2009; Massouras et al.,
2012; Lagarrigue et al., 2013). Genetics of gene expression has
been studied in various species, such as maize (Schadt et al.,
2003), yeast (Brem et al., 2002, 2005; Yvert et al., 2003; Bing
and Hoeschele, 2005), roundworms (Francesconi and Lehner,
2014), flies (Gupta et al., 2007; Massouras et al., 2012; Zhou et al.,
2016, 2017), mice (Schadt et al., 2003; Huang et al., 2009), and
humans (Schadt et al., 2003; Mangravite et al., 2013; Zhang et al.,
2014). ExpressionQuantitative Trait Loci (eQTL) analyses, which
search for genomic loci that are responsible for the differential
gene expression levels, has shed light on the genetic structure
of transcriptional regulation. The first achievement in this field
was seen in the budding yeast, where differential gene expression
was shown to be segregated by parental genotypes (Brem et al.,
2002).

Significant eQTLs are often categorized into two sub-groups:
cis-eQTLs and trans-eQTLs. By their classical definitions, cis-
eQTLs refer to genetic variants that affect a locus expression only
on the same haplotype, while trans-eQTLs affect both haplotypes
(Hirsch et al., 2003; Joo et al., 2014). Therefore, cis-eQTLs tend
to be “local”—near the locus of the gene encoding the regulated
transcript, while trans-eQTLs tend to be “distant”—away from
the locus of the regulator (Hirsch et al., 2003; Joo et al., 2014).
During the past several years, multiple cis-eQTLs were detected
in human lymphoblastoid cell lines (Mackay et al., 2009; Pickrell
et al., 2010; Mangravite et al., 2013). Several disease-specific cis-
eQTLs were also detected, one of which proved the correlation
between a statin-related eQTL for the gene GATM (glycine
amidinotransferase), that encodes the rate-limiting enzyme in
creatine synthesis, and statin-induced myopathy (Mangravite
et al., 2013).

In contrast to the frequent identification of cis-eQTLs, fewer
trans-eQTLs were identified, let alone disease-specific trans-
eQTLs. A trans-eQTL hotspot is defined as one single location
that is associated with the regulation of multiple genes, regardless
of their transcript locations (Mangravite et al., 2013). Trans-
eQTLs are more difficult to detect than cis-eQTLs since trans
effects are often weaker than cis effects (Pierce et al., 2014). Trans-
eQTL hotspots are emphasized in this paper because they are
understudied in the field of toxicogenomics and because they
are potentially toxin-induced master regulatory nodes of many
downstream genes and pathways.

The existence of trans-eQTL hotspots was previously
confirmed in budding yeast in 2003, where the gene AMN1
(Antagonist of Mitotic Exit Network 1) was shown to trans-
regulate a cluster of 12 downstream genes, irrespective of
their transcript distances, and located throughout the yeast
genome. Trans-eQTL hotspots are usually described as
being eQTL in trans-regulatory factors, such as transcription
factors or signaling proteins, but these types of eQTLs have
been hard to identify outside of yeast, and require further
study.

Why Lead?
Lead exposure has long been one of the most important topics
in global public health. The major lead sources up until the
1970s, when they were restricted in the United States, were lead-
containing paint and leaded gasoline. The phase-out of these two
sources of lead in the US has resulted in dramatic reductions
in mean blood lead levels (BLL); however, lead exposure from
environmental contamination remains a major world public
health issue (Dietrich et al., 2001; Maglott et al., 2005). It was
reported by the World Health Organization (WHO) that lead
exposure is predicted to account for 143,000 deaths per year
throughout the world and it is considered as one of the highest
burdens in developing countries (WHOteam, 2015).

The long-term effects of developmental exposure to lead on
humans, especially on children, include damage to the nervous
system, heart, bones, intestines, kidney, and reproductive system
(Jedrychowski et al., 2011). In early 2012, the Centers for
Disease Control (CDC) lowered the reference blood lead level
for children and pregnant women from 10 to 5 µg/dl (Bellinger,
2013). Both the WHO and CDC have emphasized that no known
level of lead is considered as “safe,” suggesting the irreversible
danger of lead exposure (Bellinger, 2013; WHOteam, 2015). On
a biological cellular level, the direct effects of lead toxicity include
mitochondria damage, oxidative stress, disruption of calcium
homeostasis, alteration of neurotransmitter release, altered
function of neurotransmitter and receptors, and apoptosis.

Lead’s ability to mimic as calcium makes it able to cross
the blood brain barrier (BBB) (Bradbury and Deane, 1992).
The effects of lead on neurotransmission include damage of the
synapse, alteration of neurotransmitter receptors and apoptosis
or necrosis in dopamine systems (Jabłonska et al., 1994). The

molecular targets and genetic mechanisms of lead remain
unclear, though N-methyl-D-aspartic acid receptors (NMDAR)

have been believed to contribute to lead neurotoxicity at the
synapse level (Baranowska-Bosiacka et al., 2012). NMDARs play
a key role in synapse function and in the process of learning

and memory. NMDARs are excessively stimulated by lead at

toxic levels and this leads to excess calcium flow thorough the
NMDARs, which could damage or kill the affected neurons

(Marchetti and Gavazzo, 2005; Baranowska-Bosiacka et al.,
2012).

To better understand how lead plays a role as a neurotoxin,

and to identify lead-responsive genes that might be involved
in lead neurotoxicity, we utilized the Drosophila melanogaster

model to study the genetic effects of lead exposure during

development. Our lab has already shown that Drosophila fed
with 250µM lead acetate in standard fly food, which results

in lead levels of 50–100 µg/dl in tissue (Peterson et al., 2017),
results in gene expression (Ruden et al., 2009), synaptic (He et al.,
2009), and behavioral (Gupta et al., 2007) changes. We have
previously found that lower lead levels in the food, 50µM lead
acetate, altered the uniformity of the synaptic match between the
size of the motor neuron terminal and muscle fibers at larval
neuromuscular junctions (Morley et al., 2003), and resulted in
behavioral changes including courtship (Hirsch et al., 1995) and
locomotor activity (Hirsch et al., 2003).
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In a recent study on Detroit children, our laboratory has
also shown that lead exposure could have multigenerational
epigenetic effects (Sen et al., 2015). However, identifying the
genetic mechanisms of lead induced neurotoxicity requires
more detailed studies of gene regulatory networks. Our lab has
previously used gene expression microarrays and eQTL analyses
by comparing lead-treated whole Drosophila males to control
ones and we have identified 12 genomic regions (5 in the control
males and 7 in the lead-treatedmales) at 11 different loci (one was
identified in both control and lead-treated males) that contain
potential lead-responsive master regulatory genes (Ruden et al.,
2009). While it was an intriguing result, this analysis only utilized
92 genotype markers, which was state-of-the-art at the time.
In addition, each of the 12 genomic regions we identified as
potential-trans-eQTL loci could only be restricted to a region of
5 centi-Morgans (cM), which hindered the ability to fine map the
targeted genomic location and verify potential master regulatory
genes.

To further validate the existence of trans-eQTL hotspots, our
lab used another set of the Drosophila recombinant inbred lines
(RILs), the Drosophila Synthetic Population Resource (DSPR), to
conduct additional RNA-seq expression analyses on Drosophila
heads instead of whole bodies. In this study, we used RNA-seq
and focused on genomic information on 11,768 genomicmarkers
(King et al., 2012b). Each sample from the DSPR was a mosaic
of eight parental strains, which were from different geographic
locations and should include a large swath of genetic variance. By
using this information, we could restrict the regulatory genomic
regions within 10 kb. In this paper, we present the results of
these findings and provide further validation of the existence of
lead-responsive trans-eQTL hotspots.

MATERIALS AND METHODS

Genotype Data
The eight founder strains of Drosophila Synthetic Population
Resource (DSPR) and their recombinant inbred lines (RILs) were
kindly provided by Dr. Stuart Macdonald from the University of
Kansas and Dr. Anthony Long from the University of California,
Irvine. The RILs were started with eight founder strains, A1–A8
that were of diverse geographic origins and may include a great
deal of the genetic variation in theDrosophila species (King et al.,
2012b). Strains were first intercrossed, A1 was crossed with A2,
A2 was crossed with A3, and this went on until A7 was crossed to
A8 (King et al., 2012b). Next, 10 F1 flies per genotype per sex were
mixed altogether and continued to produce offspring (King et al.,
2012b). Until the 50th generation of crossing, offspring were
separated and another ∼25 generations of sibling inbreeding
made the finished DSPR “A2 subpopulation,” consisting of ∼800
RILs that each contain only ∼1% of the heterozygous founder
genotype (King et al., 2012b).

The DSPR constructed 96-plexed restriction-site associated
DNA (RAD) libraries, which further resulted in the revelation
of 10,275 SNPs (King et al., 2012b). They used the hidden
Markov model (HMM) to convert the SNP data to estimate
the probability of the underlying founder genotype for the
Drosophila genome (genotyping error rate: 0.5%) (King et al.,

2012b). Since all RIL samples are mostly homozygous and they
have in total eight parents (marked as A1–A8), there are at most
eight possible genomic origins for any genomic position. The
Drosophila genome (only chromosome X, 2, and 3; chromosome
4 was excluded due to lack of genomic information from the
DSPR group) was divided into 11,769 10 kb genomic segments,
resulting in 11,768 markers at the junction point. The genotype
dataset at the DSPR website shows the founder name of each
of the 11,768 markers for all the samples (http://wfitch.bio.uci.
edu/~dspr/).

Sample Preparation
All the fly stocks were reared at 25◦C in 35ml vials containing
10ml of standard Drosophilamedium. To mimic lead poisoning,
the medium was mixed to a final concentration of 250µM PbAc
[Pb(II)(C2H3O2)2] for lead-containingmedium or 250µMNaAc
[Na(C2H3O2)] for control medium. This makes the Drosophila
brain contain 50–100 µg/dl lead content (Peterson et al., 2017).
Our lab has long been using NaAc as the control for PbAc for
nearly a decade, and was recommended by leaders in the lead
toxicology field (Ruden et al., 2009). Also, 250µM PbAc was
considered as a mild dosage for Drosophila melanogaster and
there was no immediate lethality upon lead poisoning in this
study. Previous papers also mentioned that the survival rate to
adulthood was not affected by the 250µM lead exposure (Cohn
et al., 1992). Recently, the Mackay and Anholt laboratories found
that developmental time and viability are not generally affected in
most Drosophila strains until PbAc concentrations are at 500µM
or higher (Zhou et al., 2016).

In our experiments, 79 randomly selected DSPR samples were
fed, from egg to adult, either control food or lead-containing
food until the heads were harvested when the adults were 3–7
days old. Fifty heads from each strain were manually collected
by tweezers and immersed in RNAlater R© solution to stabilize
and protect the cellular RNA. The heads were collected in the
morning around 10 a.m. We did not have any technical head or
biological replicates, since we wanted the maximum inclusion
of the RILs. Fifty heads of adult male flies (5–10 days old) in
each of the 79 strains were collected and TruSeqTM Cluster RNA
sample prep kits from Illumina were used to prepare the samples.
One micrograms of RNA was used after RNA isolation. The
High Sensitivity D1K ScreenTapeTM on the Agilent TapeStationTM

instrument and quantitative PCR on the QuantStudioTM 12K
Flex were used to make sure the quality of the library was
adequate. RNA expression analyses were performed with 50-
cycle paired-end RNA-seq on the HiSeq2000TM instrument from
Illumina. General read quality was verified using FastQCTM

(Hirsch et al., 1995). The average coverage is 23million read pairs,
and the RNA-seq data are available on the NCBI GEO accession:
GSE83141.

Expression Profiling
Tophat2TM (V2.0.8) was used to map reads against the known
Drosophila melanogaster (UCSC/dm3) transcriptome (Kim et al.,
2013). The transcript assembly tool CufflinksTM and differential
expression tool CuffdiffTM were utilized for gene discovery and
comprehensive expression analysis of RNA-seq data (Trapnell
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et al., 2012). After the CufflinkTM pipeline, we assembled all the
expression data and quantile normalized to the overall average
empirical distribution across all samples first, then across all
genes. When doing the differential expression analysis, we used
the RIL information as a covariate (Y ∼ treatment + RIL).
Gene Ontology (http://geneontology.org/) (Kent et al., 2002;
Young et al., 2010) was used for the GO enrichment analysis
for the differentially expressed genes upon lead exposure and GP
categories of “Molecular Function” and “Biological Process” were
selected.

Genome-Wide eQTL Mapping
A data analysis R package called DSPRqtlDataA (http://wfitch.
bio.uci.edu/~dspr/index.html), provided by the DSPR group
(King et al., 2012b), was used to extract the genotype dataset
indicating the genomic origin at 10,768 loci for each sample. Like
what the DSPR group did, we performed a multiple regression—
regressing gene expression profiles on the eight additive genotype
probabilities with zero covariate.

H0 :Y = µ + ε

H :Y = µ +
∑

Gi + ε

Where µ is the grand mean, Gi is the ith parental genotype
probability.

The LOD score, which is the logarithm of odds base 10, was
used to quantify the likelihood of association between 10,768
genomic locations and 13,381 gene expression profiles among 79
paired samples (one control and one lead-treated). It compares
the likelihood of obtaining the test data if the two loci are indeed
associated to the likelihood of observing the same data purely by
chance. Positive LOD score favors the presence of correlation.

LOD score = log10(Likelihood of H1)− log10(Likelihood of H0)

After obtaining the LOD score between each genomic location
and each gene expression level, we determined the significance
threshold for each gene via 1,000 permutations on its expression
levels.

For each of the genes, the expression levels for all samples
were extracted, randomly shuffled, and a new LOD score was
calculated for all loci based on the shuffled expression list. This
process was repeated for 1,000 times and 1,000 LOD scores
were produced for each gene. Based on the 1,000 permutation,
an empirical null distribution could be generated and an
eQTL p-value for the gene/locus association could be calculated
accordingly. This permutation-based p-value is defined as the
quantile of the observed LOD score on the empirical permutation
based null distribution.

p− value for gene x =

numbers of permutations for whose LOD score

≤ observed LOD score

total number of permutations (= 1000)

After obtaining all the eQTL p-values, we defined significant
eQTLs as p-value ≤ 0.05, defining cis-eQTL genes as the ones
have significant associations with at least one genomic location

within 1 cM geographic distance and trans-eQTL genes as those
have significant associations with genomic locations outside of
1 cM. The “qvalue” function in R was used to transform p-value
into FDR. p-value ≤ 0.05 is equivalent to FDR ≤ 11% for the cis-
eQTLs. The cis-eQTLs are adjusted for multiple testing, however
few trans-eQTLs would survive this adjustment.

As the King et al. pointed out, we might not have the power
to detect individual trans-eQTLs (King et al., 2012a), that is why
we proceeded to look for loci that may have trans-eQTL hotspots
with an enrichment-like type of analysis for hotspots with an
unusually high number of trans-eQTL (loci with excess of low p-
values < 0.05 at distant regions). For the trans-eQTL hotspot we
calculate the enrichment “hotspot p-value” that seeks to answer
the question of whether the number of genes associated with
a given locus is much higher than what would be expected by
chance. To answer this question, we used a statistical measure:
the number of genes associated with the locus (# eQTL p-value
< 0.05, vertical band on Figure 2). To generate an empirical
null distribution for this number, we permuted 1,000 times the
eQTL results across the different loci (i.e., vertical bands). This
empirical distribution is then used to calculate the permutation
based “hotspot p-value.”

Given that multiple nearby genomic locations had similar
numbers of associated genes and were all considered as
significant, we wondered whether these hotspots were indeed
genetically separable. To test this, we tested the associations
of nearby trans-eQTL hotspot peaks by multiple regression
and combined hotspots that have similar influence over
the downstream genes. According to this threshold, we re-
categorized the trans-eQTL hotspots (Table S1) and had 14
trans-eQTL hotspots as a result. The trans-eQTL hotspots were
presented in the format of a region, which had a starting location,
an ending location and a peak location, which has the most
associated genes (details in Table S1).

After the discovery of these hotspots, surrogate variable
analysis (SVA) was used to control for potential confounders
when analyzing trans-eQTLs (Pickrell et al., 2010), and the
following model was used to identify eQTLs with Gene-by-
Environment interaction:

H0 :Y = µ + S+
∑

Gi + E+ ε

H :Y = µ + S+
∑

Gi + E+
∑

Gi∗E+ ε

where E represents two conditions: control or lead-treated, and S
represents the surrogate variables.

Common Motif Search by GenomatixTM

Promoter sequences of the 89 anticipated downstream genes
at Chr 2L: 6,250,000 were obtained by using the software
program Gene2Promoter (GenomatixTM software package used
for retrieval and analysis of promoters) at default settings, 500
bp upstream of the first TSS and 100 bp downstream of last
TSS. CoreSearchTM was then used by input of these sequences
in FASTA format to screen for any unknown common motifs
among the sequences (Wolfertstetter et al., 1996). It creates
a novel position weight matrix from the input sequences.
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TomtomTM was also performed to search for matches with the
existing pool of motif databases (Gupta et al., 2007). Interactions
browser was used in search for protein-protein interactions
(http://flybase.org/cgi-bin/get_interactions.html) (Wolfertstetter
et al., 1996).

RESULTS

Differential Expression Caused by Chronic
Lead Poisoning
In order to further understand and validate the trans-eQTL
hotspots detected in our 2009 microarray paper on the
neurotoxicity of lead in Drosophila (Ruden et al., 2009), we
collected RNA-seq data from the heads of 79 recombinant inbred
lines (RILs) selected from the Drosophila Synthetic Population
Resource (DSPR) (King et al., 2012b). The DSPR was composed
of a panel of ∼1,600 Drosophila lines (King et al., 2012b). The
lines were initiated with eight parental strains A1–A8 that are
from different geographic origins and should include a good
mix of genetic variation in the Drosophila species which were
intercrossed for 50 generations and then inbred for another
25 (King et al., 2012b). We randomly selected 79 lines from
the synthetic population and offspring were fed, from egg to
adult, either control food (containing 250µM NaAc) or lead-
treated food (containing 250µM PbAc). Fifty heads of adult
male flies (5–10 days old) in each strain were collected and RNA
expression analyses were performed (see section Materials and
Methods). Thus, we had 79 control and 79 lead-treated RNA-seq
samples from heads from the same lines that we could analyze for
differentially expressed genes.

Dramatic effects were seen on gene expression profiles
after lead poisoning: 2,698 among the 13,381 expressed genes,
including 68 exhibiting over 50% change in expression levels.
[20%, false discovery rate (FDR) < 0.0001, 0.214 ± 0.223
mean absolute log2 change ± s.d.] (Figure S1, see Methods).
Among the responders, 2,038 genes were upregulated after
lead treatment, among which nervous system development and
neurogenesis were the topmost enriched gene ontology (GO)
categories (Figure S2). On the other hand, among the 660
genes downregulated upon lead exposure, developmental growth
and synaptic target recognition were among the most enriched
GO categories (Figure S2). These results were consistent with
our expectation, since only Drosophila heads were collected on
sample preparation and the neurotransmitters at the synaptic
levels has long been considered as the main targets for lead
neurotoxicity (Baranowska-Bosiacka et al., 2012). Genes that
are metal responders, like Metallothionein B, C, D, and E, and
neuro-related genes like Nacalpha, dhd, and RpS5b were among
the strongest responders. N-Methyl-D-Aspartate (NMDA1 in
Drosophila) and its Receptors (NMDAR1 and NMDAR2),
previously identified as lead target at the synapse level (Marchetti
and Gavazzo, 2005; Baranowska-Bosiacka et al., 2012), were also
among the differentially expressed genes [NMDA1: log2FC =

7.809, FDR = 0.014; NMDAR1: log2FC = 1.004 (i.e., ∼2-fold
increase), FDR = 0.005; NMDAR2: log2FC = −1.150, FDR =

0.004].

Identification of cis- and trans- eQTLs
After identifying genes that were affected by lead treatment,
we worked on identifying expression quantitative trait loci
(eQTLs)—the genomic region with genetic variants that affect
gene expression levels. In most eQTL studies (Ruden et al.,
2009; Mangravite et al., 2013), SNPs were used to represent the
genotype. However, in our study, each sample was a mosaic of the
eight parental lines (A1–A8) (details in Materials and Methods)
and we used directly the information provided by the DSPR—
the genetic contribution by the parental genotypes, which means
the parental line a certain genomic region of the offspring was
inherited from.With this type of genotype information, the eQTL
was defined as a genomic location where gene expressions were
associated with differential parental contribution.

The readily available DSPR R package was designed for
single gene eQTL search (http://wfitch.bio.uci.edu/~dspr/Tools/
Tutorial/index.html); therefore, we re-structured it to allow
multiple gene eQTL searches (see section Materials and
Methods). By using the newly modified R program, we computed
the LOD score to quantify the likelihood of strong association
between genomic locations and gene expressions. One thousand
permutations were run to estimate the threshold of statistical
significance (see section Materials and Methods).

After searching for all possible associations among 13,381
gene expression profiles against 11,768 genomic locations, we
visualized the entire significant associations with an eQTL
map (Figure 1A for control panel, Figure 1B for lead-treated
panel and Figure 1C for the merged panel). Each of the
colored dots represents one significant correlation between
the genetic location displayed on the x-axis and the gene on
the y-axis (significance at 0.05 for 1,000 permutation). There
was a prominent diagonal band in both control and lead-
treated map. It showed that transcript locations of this band
of genes were equal to the eQTL location, thus the cluster
of genes belong to cis-eQTLs. On the other hand, there were
also some distinguished vertical bands, indicating any one of
these genomic regions was associated with genes across the
entire chromosome. These genomic loci with a high density
of eQTLs are usually called trans-eQTL hotspots (Joo et al.,
2014; King et al., 2014) or trans-eQTL bands (Rockman and
Kruglyak, 2006). In total, we got six control and eight lead-
treated trans-eQTL hotspots (see Method for more details,
Figure 3, Table S1). Among them, ten were lead-sensitive
hotspots (Table S1).

Along the diagonal, we detected 1798 cis-eQTLs (FDR ≤

11%) (Figure S3A). Among the genes with cis-eQTLs, 997 genes
were shared among control and lead-treated, along with 405
control-specific and 396 lead-specific (Figure S3A). One example
of the control-specific cis-eQTL was shown in Figure 2A. In this
example, left two panels showed all the LOD scores for the gene
CG2807 at each of the 11,768 evenly divided genomic locations
for both control and lead-treated status. Therefore, the high
peak in the control panel indicated strong association with the
corresponding genomic location on the x-axis but this signal
disappeared after lead treatment (Figure 2A, second to the left
panel). Also near the strongest peak, we found it does overlap
with the gene location (green dashed line) and this indicated that
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FIGURE 1 | eQTL Map. All significant associations were shown in an eQTL map with eQTL locations (genomic loci) on x-axis and transcript locations (gene loci) on

y-axis. (A) Associations for control samples only. Each of the green dots indicates a significant association between the corresponding eQTL location and the gene at

the transcript location. (B) eQTL Interactive Map for lead-treated samples only. Each of the red dots indicates a significant signal. (C) eQTL Interactive Map combining

both control and lead-treated samples. Shared significant signals were marked as brown, with lead-specific signals as red and control-specific ones as green.

the gene CG2807 is not only a control-specific eQTL but also a
cis-eQTL.

To further explore the parental contribution of the genomic
location at the highest peak in control, we sub-grouped the
gene expression levels according to their parental genotypes at
this peak location (Chr 2L: 1,770,000) and used a boxplot to
show their expression pattern (Figure 2A, right two panels).
From the figure, samples originally from A2, A3, and A4 have
significantly higher expression levels than samples from A5, A6,
and A7 in control, while this phenomenon was greatly reduced
in lead-treated samples. This allelic heterogeneity was also widely
seen in DSPR female head eQTL study (King et al., 2014). In
addition to the control-specific cis-eQTLs, there is an example of
lead-specific cis-eQTL in Figure 2B.

Outside of the main diagonal, we will still have 4376 potential
trans-eQTLs (Figure S3B) (1,000 permutation p-value < 0.05).
Among the 4,376 genes with trans-eQTLs, 1,851 genes were

shared among control and lead-treated, along with 1,058 control-

specific and 1,467 lead-treated (Figure S3B, one examples of
control-specific trans-eQTLs in Figure 2C and one for the lead-

specific trans-eQTLs in Figure 2D). Few trans-eQTL associations

would survive adjustment of multiple test correction. King et al.

suggested that the power to map a 10% QTL with 100 DSPR lines
is potentially about 15% for recombinant inbred lines (RILs) and
less than 5% for pA-pB cross F1 hybrids (King et al., 2012a).
Therefore, it is challenging to map trans-eQTLs, even if their
effects are relatively large, with 79 RILs. To attempt to solve the
problem, we used the recombinant inbred lines (RILs) rather
than F1 hybrids, and used 1,000 permutations to obtain a well
calibrated p-value. Rather than focusing on individual trans-
eQTLs that would not survive multiple hypothesis correction, we
focused on bands where p-values< 0.05 were enriched. Along the
diagonal we can see the cis-eQTLs, but we also see vertical bands
that may represent trans-eQTL hotspots. Here, we developed a
secondary analysis that focuses on locus that may be a trans-
eQTL for many genes and we found 14 trans-eQTL hotspots as
a result (Figure 3, Table S1).

Genetic Dissection of the trans-eQTL
Hotspots
To further explore the mechanism of the trans-eQTL hotspots,
we first looked at the stable trans-eQTL hotspots, meaning
they were present in both control and lead-treated (one
example in Figure 4). A hierarchical clustering heatmap (Eisen
et al., 1998) was used to display the expression patterns of
all the associated genes (Figure 4). This type of clustering
analysis uses statistical algorithms to re-order genes according
to the similarities of their expression patterns. In Figure 4,
all associated genes with the locus of Chr 3R: 5,580,000
were arranged into three groups (J1, J2, and J3) for genes
(right list) and another three groups (B1, B2, and B3) for
samples (bottom list). Interestingly, the segregation of samples
according to the expression pattern overlaps with the genetic
contribution of the parental genotypes (the color-coded bar
above the heatmap): samples originally from A3 (blue) showed
lower J1+ J2 expression pattern and higher J3 expression
pattern, while samples from A4 (dark green) had the opposite
pattern.

Not only did we find the correlation between expression traits
and parental contribution at the stable trans-eQTL hotspots, but
also in lead-responsive ones. Here, we used the one that located at
Chr 2L: 6,250,000 and contained the most associated genes as our
example for lead-sensitive trans-eQTL hotspots in the following
study. We wanted to focus this paper on the trans-eQTL at Chr
2L: 6,250,000 because the other trans-eQTLs are either less robust
or located near centromeric, which are non-recombinogenic
regions of the genome.

Hierarchical clustering analysis was used again to present
expression data graphically (Figure 5) and it showed that all
the hotspot-associated genes were divided into two groups (G1,
G2) and all the samples were divided into two groups (S1, S2)
according to the nearby dendrograms. It appeared that genes
from G1 exhibited lower expression levels in sample group S1
but higher in S2, while genes from G2 presented the opposite
phenomenon. With the help of the color-coded bar on top
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FIGURE 2 | Examples of cis- and trans- eQTLs. (A) One example of control-specific cis-eQTL. In the left two panels, the x-axis represents the Drosophila genomic

locations and y-axis represents the LOD score of the gene. The red horizontal line indicates the threshold for p-value to be 0.05 after 1,000 permutation test. The

green dash vertical line indicates the location of the gene. If it overlaps with the peak, which suggests strong correlation between the gene and the corresponding

location, it is referred as a cis-eQTL, meaning the regulator is near the downstream gene. Since this phenomenon only occurred in control data but not in lead-treated

one, this genomic location Chr 2L: 1,770,000 is a control-specific cis-eQTL for gene CG2807. In the right two panels, association of the Chr 2L: 1,770,000 location,

which has the highest LOD score in control samples, with quantile normalized CG2807 expression levels following control (not significant) and Lead-treated (p-value <

0.001). Samples originally from A2, A3, and A4 parental lines exhibited higher expression levels, while samples from A5, A6 and A7 parental lines showed lower

expression levels in control. After lead was introduced, the phenomenon disappeared. (B) One example of Lead-specific cis-eQTL. (C) One example of

control-specific trans-eQTL. (D) One example of Lead- specific trans-eQTL.

of the heatmap, a segregation was shown among some of the
samples based on their original parents: the expression pattern
of samples from A2 (green) and A3 (blue) was in contrast
with that of samples from A6 (purple) and A7 (gold). However,
not all parents show unique influences on downstream genes,
such as A1 (red) and A4 (dark green). This suggested that
different strains of Drosophila species might respond differently
to lead exposure and this was reflected by regulation of one

key eQTL locus and its downstream gene expression levels.
Compared with the lead-specific trans-eQTL hotspot containing
89 associated genes, only 28 associated genes were observed with
the same genomic locus by using control expression data. If we
replaced the heatmap (Figure 5 left panel) with control data but
keeping the order of gene list and sample list same as the lead
data, we noticed an entire disruption of the expression pattern
present after lead exposure (Figure 5 right panel). This confirmed
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FIGURE 3 | The distributions of trans-eQTL hotspots among the Drosophila genome. Six for control (green, above the genomic axis) and 8 for lead-treated (red,

under the genomic axis) trans-eQTL hotspots were detected in total. Chr 4 and heterochromatic chromosomes were excluded due to lack of genomic information

from the DSPR group. Chr X has no trans-eQTL hotspots. All the trans-eQTL hotspots were numbered and the length of each arrow roughly represents the number of

the associated genes. Details about these hotspots were shown in Table S1.

this hotspot at Chr 2L: 6,250,000 was only present after lead
exposure.

In order to take a deeper look at the genes associated with
the Chr 2L: 6,250,000 genomic location upon lead exposure,
we searched for their GO enrichment categories (Attrill et al.,
2015). Genes could be categorized into five groups: neuro-related,
metal-related, response to stimuli and immune system, other
metabolic processes, and unknown function (Table S2A). We
noticed that genes in G1weremainly related to neuronal function
(18 out of 61, 30%), while genes in G2 were mostly metabolic
processes (18 out of 28, 64%) (Details in Table S2A). We also
recognized that genes in G1 (52 out of 61, 85%) were lead-specific
eQTLs at Chr 2L: 6,250,000 (Table S2B, examples in Figure S2D,
Figures S4A,B), while genes in G2 (22 out of 28, 78%) were
more likely in closer proximity of the eQTL locus and were stable
eQTLs (Table S2B, examples in Figures S4C,D). Among the rest
of the signals, a few were Pb-specific eQTLs (Table S2A, one
example from G1 in Figure S4E and one example from G2 in
Figure 2B).

It has long been proposed that a transcription factor is
a natural candidate for being the regulator of the trans-
eQTL hotspots (Yvert et al., 2003). It has been hypothesized
that the eQTL location may have influence over the affinity
of a certain linked transcription factor and the transcription
factor has multiple associations with downstream genes. This
hypothesis serves as a perfect candidate explanation for trans-
eQTL hotspots. However, it has been controversial ever since
and not many studies have discussed about it. Yvert et al. (2003)
mentioned that few trans variations have strong correlations

with known or predicted transcription factors in their yeast
research. In our case, we searched for common nucleotide
motifs of the downstream genes at the trans-eQTL hotspot.
Promoter sequences of all the 89 downstream genes at Chr
2L: 6,250,000 were extracted by using Gene2Promoter function
(a tool to retrieve promoter sequences from the genome, see
Methods) from the GenomatixTM Computer software suite
(GmbH, 1998) and AAAAAYA (Y: C or T) was the most common
motif generated after searching among the retrieved promoter
sequences by using another GenomatixTM function CoreSearchTM

(Figure S5). We also used TomtomTM software for quantifying
similarity between query motif and motifs from the existing
databases to see whether this identified motif would match
with any of the previously discovered ones (Gupta et al., 2007).
It turned out that hunchback (hb) has shared motif with the
AAAAAYA (p-value = 8.11e-04, Figure S5D). The hb gene,
which encodes a Zn-finger transcription factor in the gap-gene
class, locates at Chr 3R—one of its developmental functions
involves neuroblast fate determination (Isshiki et al., 2001; Tran
et al., 2010; Attrill et al., 2015). hb, as a transcription factor, has
been shown to be necessary for regulation of the first-born glial
cell fates, leading a sequence of transcription factors at the cell
fate specification stage (Isshiki et al., 2001). Interestingly, the hb
locus was not detected to be an eQTL by itself (Figures S5E,F).
There were also no known protein-protein interactions between
hb protein and any of the proteins encoded by the associated
genes at the trans-eQTL hotspot.

Our next consideration was to verify the existence of the trans-
eQTL hotspot at Chr 2L: 6,250,000. For eQTL analysis, one of the
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FIGURE 4 | Stable trans-eQTL hotspot at Chr 3R: 5,580,000 (p-value < 0.05

at 1,000 permutation threshold). Hierarchical clustering analysis was done

according to the expression profiles of the Chr 3R: 5,580,000 associated

genes (p-value < 0.05). Plotted by using the lead-specific trans-eQTL, the

bottom list indicates all the sample names and the right list indicates all the

associated genes. The color-coded bar above the heatmap and below the

dendrogram indicates the original parent of each sample listed at the bottom

for this specific location. Color legend in the color-coded bar: red: A1, green:

A2, blue: A3, dark green: A4, light blue: A5, purple: A6, gold: A7, darkgray: A8.

major concerns is expression heterogeneity (EH) (Pickrell et al.,
2010; Joo et al., 2014).We used Surrogate Variable Analysis (SVA)
to test whether the trans-eQTL hotspot could still be considered
as significant after controlling for EH (see Methods) (Pickrell
et al., 2010). The trans-eQTL hotspot at Chr 2L: 6,250,000 locus
was still one of the strong peaks after SVA processing (Figure S6).
This indicated that the lead-sensitive trans-eQTL hotspot could
be considered as a true positive result.

In addition to the SVA processing, the best way to validate
a trans-eQTL hotspot is by using another set of lead-treated
expression data and see if similar expression patterns exist in
the independent dataset. Our lab does have another set of lead-
treated Drosophila gene expression data in the form of gene-
expression microarray data that we published from whole-male
lead-exposed Drosophila melanogaster that we published in 2009
(Ruden et al., 2009). In contrast to the eight-way RNA-seq data
we currently have, the microarray dataset was a two-way eQTL
analysis, meaning the samples were originally from two parents
(comparison of the two experimental designs is in Table S3).

We applied our current methodology to the microarray
expression dataset from 2009, and found that the marker 27B,
which is the closest to Chr 2L: 6,250,000, included several genes
that showed similar changes in expression in response to lead. To
be specific, when we extracted all expression levels of the available
microarray probes for the 89 genes identified by the current
RNA-seq data and compared them to the hierarchical clustering
heatmap at 27B, we found similar expression segregation patterns

as previously. In the left panel (lead-treated) of Figure 6, genes
could be divided into three groups: g1, g2, and g3 according to
the similarity of the expression pattern. We noticed that most
genes from g1 (10 out of 12, 83.3%) and g3 (29 out of 34, 85.3%)
belong to RNA-seq G1 group (Figure 5), while most genes from
g2 (20 out of 29, 70.0%) were the same as G2. The right panel
of Figure 6 was created by keeping the order of the sample and
associated genes but replacing lead-treated expression data with
control ones.

Like the results of the RNA-seq data, the 2009 microarray
results showed that the coherent expression patterns formed in
lead-treated data were disrupted, and apparently made more
random, in control data. By “coherent” we mean that the gene
expression patterns in the lead data, but not the control data,
cluster into blocks of higher-expressed genes or lower-expressed
genes. In other words, the genes forming coherent expression
patterns could only be observed at equivalent expression levels
after lead exposure. This suggested that the segregated expression
patterns at the trans-eQTL locus at 27B were found in both
RNA-seq data and in microarray data.

However, the color-coded bar above the heatmap in the 2009
microarray data, indicating the original parent of origin at this
27B location (Figure 6), showed no significant difference based
on parental origin. This indicates that two parental lines in the
2009 data—Oregon R and Russian 2B (which are not included in
the eight parental lines used in the RNA-seq analyses), have no
differential influence over associated gene expression profiles at
the 27B (Chr 2L: 6,250,000) locus. This probably explains why
this location was not detected as a trans-eQTL hotspot in the
microarray experiment in the original experiments from 2009.
This also indicates that eight-way analysis, which includes more
genetic variation than two-way analysis, is more robust and likely
includes more trans-eQTLs.

DISCUSSION

Here we investigated gene expression in Drosophila heads from
79 eight-way RILs to identify lead-responsive cis- and trans-
eQTLs. We also went one step further to provide the additional
evidence for the existence of the lead-responsive trans-eQTL
hotspots. With the help of the clustering analyses, we confirmed
that the expression traits of the progeny could be sub-grouped
based on the genetic contributions of the parents.

There are several advantages of this eight-way eQTL analysis
using RNA-seq compared with our previous two-way study by
using Microarrays. First, although RNA-seq might have bias
during alignment process (Munger et al., 2014), it avoids the
possibility of false positive reads due to the limitation of the
microarray technology. For example, a SNP at a probe site in
one line but not another could be misinterpreted as differential
expression in microarray data, but not in RNA-seq data (Xiao
et al., 2002; Fadiel and Naftolin, 2003). Second, the advantage of
RNA-seq lies in its independence to prior sequence knowledge.
This enables the detection of structural variations such as
alternative splicing and novel transcripts. And we successfully
used this set of RNA-seq data to search for splicing QTLs
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FIGURE 5 | Trans-eQTL hotspot at Chr 2L: 6,250,000 (p-value < 0.05 at 1,000 permutation threshold). Hierarchical clustering analysis was done according to the

expression profiles of the Chr 2L: 6,250,000 associated genes (p-value < 0.05). On the left heatmap plotted by using the lead-specific trans-eQTL, the bottom list

indicates all the sample names and the right list indicates all the associated genes. The right heatmap was created by keeping the order of the sample names and

associated gene names in the lead-treated plot on the right but replacing with control expression data. The expression patterns formed in lead-treated data

disappeared in control data, suggesting this trans-eQTL hotspot could only be observed in expression levels after lead exposure. Color-coded bar above the heatmap

and below the dendrogram indicates the original parent of each sample listed at the bottom for this specific location. Color legend for the color-coded bar: red: A1,

green: A2, blue: A3, dark green: A4, light blue: A5, purple: A6, gold: A7, darkgray: A8.

(sQTLs)—QTLs that were associated with splicing events, both
cis-sQTLs and trans-sQTLs (Ruden et al., 2017). Third, the
abundant genotype information in RNA-seq data, which includes
11,768 underlying parental haplotype structures, makes it more
likely to pinpoint the precise eQTL locus, while the previous
microarray eQTL analysis only contain 92 genomicmarkers, each
of which was at least 5 cM wide (Ruden et al., 2009). Fourth,
this time we have more parental lines involved (eight-way vs.
two-way), which should include more genetic variation that are
present in Drosophila species.

Another criterion worth mentioning is the sample size.
Because of the cost, we could only afford to analyze 79x2 RNA-
seq samples (control and lead) with no replicates. We probably
would have identified more trans-eQTL hotspots if we included
more recombinant inbred lines or replicates. In general, with
the cost being a major limiting factor, most investigators believe
that more eQTL can be identified by increasing the number of
recombinant inbred lines analyzed rather than increasing the
number of replicates of each line. If one considers the unit of
replication being a haplotype rather than a recombinant inbred
line, then the number of replicates for each haplotype will be the
number of times that haplotype was sequenced in the experiment.
For example, if 100 recombinant inbred lines were sequenced,
and two haplotypes are present for one locus, then each haplotype
would be replicated approximately 50 times if the haplotype was
randomly distributed in the lines.

There is some concern that our data does not overlap in some
respects with a recently published study with some of the same
DSPR lines. For example, the DSPR group mapped genome-wide

expression variation in 2014 in their eight-way cross lines. They
generated an eQTL interactive map and found two trans-eQTL
hotspots. However, they did not have an exposure model, and
the trans-eQTLs did not overlap with the hotspots identified in
our study. This could be explained because their experiments
included more genetic differences: heterozygotes from parental
population groups A and B (both A1, A2 and B1, B2) (King
et al., 2014), while we only considered a subset of homozygotes
in one parental subgroup, A2. Furthermore, they worked with
heterozygotes due to inbreeding depression (King et al., 2014).
In contrast, our experiments used only A1–A8 and each of our
RILs was a homozygous mosaic of the eight parental lines. The
consistent finding is that most of the eQTLs were multiallelic
(King et al., 2014), i.e., many of the genes with eQTLs are
expressed at more than two different levels in the 16 founder
lines, and the same phenomenon has been observed in our
study.

In contrast to the DSPR group, we included developmental
lead poisoning as a perturbation and searched for lead-responsive
eQTLs. We have successfully identified lead-responsive trans-
eQTL hotspots in our 2009 study. We found that some trans-
eQTL hotspots were formed in response to lead poisoning and
some trans-eQTL hotspots disappeared after lead treatment.
The clustering analysis has shown the samples from different
parental genetic origins responded differently in downstream
gene expression profiles before or after lead exposure.

One of our most important findings is that the differential
gene expression pattern upon Pb exposure found in the RNA-
seq data was replicated in the microarray data. And for the
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FIGURE 6 | Trans-eQTL hotspot at 27E (nearest to Chr 2L: 6,250,000). Expression levels of candidate downstream genes detected with RNA-seq were extracted

from the microarray data and hierarchical clustering analysis was done afterwards. In the left panel (lead-treated), genes could be roughly divided into three groups g1,

g2, and g3. Most genes from g1 and g3 belong to G1 from the RNA-seq data, while most genes from g2 were the same as G2. The right heatmap was created by

keeping the order of the sample names and associated gene names in the lead-treated plot on the right but replacing with the control expression data. The expression

patterns formed in lead-treated data disappeared in control data, suggesting the genes forming expression patterns could only be observed in expression levels after

lead exposure. The color-coded bar above the heatmap and below the dendrogram indicates the original parent of each sample listed at the bottom at this specific

location. Color legend in the color-coded bar: red: Oregon R (ORE), green: Russian 2B (2B), blue: heterozygous. No segregation based on the parental origin was

seen, suggesting these two parental lines do not differ in expression levels and this also explains why this has not been detected as a trans-eQTL hotspot in the

microarray data.

two groups of genes, G1 was mostly Pb-specific eQTLs and
their functions were linked with neuronal and response to
stimuli, while G2 was mostly metabolic-related stable eQTLs.
Previous papers have hypothesized that gene expression profiling
patterns associated with trans-eQTL hotspots reflect biological
pathways (Wu et al., 2008); however, in this hotspot, we did
not ended up with any enriched pathways among the associated
genes.

At the trans-eQTL hotspot we focused on in this paper at
27B, we found a conserved nucleotide motif among the regulated
genes’ promoter sequences—AAAAAYA (C: C or T). This motif
matches corresponds to the binding site for the transcription
factor Hunchback. Our next steps will include identifying and
knocking down candidate genes responsible for the trans-eQTL
hotspots, such as hb, and determining whether the expression
levels of the proposed downstream genes are influenced. Such
“perturbation analyses” are needed to validate candidate trans-
eQTLs (Yvert et al., 2003).

Detailed analyses of the cis-eQTL, such as allele-specific
expression (ASE) and transposase-accessible chromatin using
sequencing (ATAC-seq) analyses of brains from heterozygous
flies after Pb exposure (Buenrostro et al., 2015), are in progress
and will be presented in a future paper. Also in progress in
our laboratory are single-cell RNA-seq (scRNA-seq) experiments
of Drosophila brains after lead exposure. Recently, scRNA-seq

experiments with Drosophila brains have identified over 50 brain
cell types (Croset et al., 2018; Davie et al., 2018). We anticipate
that scRNA-seq of Drosophila brains, as well as other model
organisms such as mouse (Zeisel et al., 2015; Karlsson and
Linnarsson, 2017; Rosenberg et al., 2018), will identify specific
neuronal and glial cell types that are most deleteriously affected
by Pb exposure. We also plan to include behavioral data to
determine if the differential expression changes in different
parental strains could provide a protectivemechanism to respond
to lead poisoning. We acknowledge that both the current and
the previous studies used a chronic lead exposure throughout
larval development to the adult stage and that many, if not
most, of the gene expression changes could reflect global “re-
organization” of transcription in the adult head that reflects
events very much downstream of the actual mode of action
of the toxicant. To address this issue, future studies will also
investigate the effects of acute effects of lead on gene expression
and chromatin organization.

In conclusion, RNA-seq technology is a powerful tool in
obtaining genome-wide expression profiles and identifying
cis-and trans-eQTLs in Drosophila. The hierarchical clustering
analyses display the expression patterns of the eQTL-associated
genes and show that they segregate by genotype. We have
successfully made progress in understanding how trans-eQTL
hotspots alter the genomic/transcriptomic response to Pb
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exposure. This might help us understand downstream events
that cause Pb-induced toxicity, thus opening a gate toward
understanding the neurotoxicity of lead.
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