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MicroRNAs (miRNAs) are a conserved class of non-coding RNAs of 22 nucleotides that
post-transcriptionally regulate gene expression through translational repression and/or
mRNA degradation. A great progress has been made regarding miRNA biogenesis
and miRNA-mediated gene regulation. Additionally, an ample amount of information
exists with respect to the regulation of miRNAs. However, the cytoplasmic localization
of miRNAs and its effect on gene regulatory output is still in progress. We provide a
current review of the cytoplasmic miRNA localization in metazoans. We then discuss the
dynamic changes in the intracytoplasmic localization of miRNAs as a means to regulate
their silencing activity. We then conclude our discussion with the potential molecules
that could modulate miRNA localization.
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INTRODUCTION

MicroRNAs (miRNAs) are an important group of non-coding RNAs (ncRNAs) of 17–22 nt
in length that regulate gene expression post-transcriptionally typically by binding to the 3′

untranslated regions (UTR) of mRNAs (Bartel, 2018). The first example of miRNAs, lin-4, was
identified in C. elegans during a screen for genes that are important for developmental timing
(Lee et al., 1993; Wightman et al., 1993). Expressed in a variety of species ranging from viruses
to primates (Griffiths-Jones et al., 2006), miRNAs are now recognized as micromanagers of
post-transcriptional gene expression both in development and diseases (Bartel and Chen, 2004).

In the canonical pathway (Figure 1), miRNA genes are transcribed by RNA polymerase II
with a 5′ cap and a 3′ tail (Lee et al., 2004). The first processing step takes place in the nucleus
where the primary miRNA transcript is trimmed into a stem-loop structure by Drosha (Lee et al.,
2003). The stem-loop structure with a 2 nt overhang is then transported to the cytoplasm through
Exportin-5 (Lund et al., 2004) where it is converted into a 22 nt duplex by Dicer (Chendrimada
et al., 2005). The strand with the more unstable 5′-end is usually selected for loading onto miRNA-
induced silencing complex (miRISC) (Iwasaki et al., 2010). miRISC is a microribonucleoprotein
complex that are composed of AGO proteins, glycine-tryptophan protein of 182 kDa (GW182)
and some other proteins (Krol et al., 2010). Based on the complementarity between the miRNA and
its target, RISC-bound miRNAs induce target RNA degradation and/or translational suppression
(Yekta et al., 2004; Filipowicz et al., 2008). The carboxy-terminal part of GW182 is involved in
the recruitment of poly A binding protein (PABP) and the deadenylases CCR4 and CAF1. mRNA
degradation is initiated through deadenylation by the PAN2-PAN3 and CCR4-NOT complexes
followed by DCP2-mediated decapping and degradation by the 5′–3′ exonuclease XRN1 (Jonas
and Izaurralde, 2015). In this process, GW182/TNRC6 proteins coordinate interactions between
AGOs and the PAN2-PAN3 and CCR4-NOT complexes. The CCR4-NOT complex may also
induce translational repression but the repression may also involve the release of eIF4A1 and
eIF4A2 from target mRNAs (Fukao et al., 2014; Fukaya et al., 2014). miRISCs contain a number of
additional factors that might modulate miRNA activity or miRISC localization (Zhang et al., 2007;
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Krol et al., 2010). miRNAs may also be generated through
alternative pathways, such as Drosha-DGRC8-independent and
TUTase-dependent pathways (Yang and Lai, 2011). In this review,
we will discuss miRNA localization, focusing on polysomal
association and re-distribution of polysome-associated miRNAs
as a means to regulate miRNA silencing activity.

miRNA LOCALIZATION

miRNAs, miRNA-targeted mRNAs and associated proteins were
traced to determine the intracellular location of miRISCs. Earlier
studies that involved injection of labeled miRNAs or in situ
hybridization revealed that miRISC is primarily localized in the
cytoplasm (Pillai et al., 2005; Bhattacharyya et al., 2006). The use
of luciferase reporter mRNA with miRNA binding sites showed
localization of target mRNA to processing bodies (PBs) in a
miRNA-dependent way (Liu et al., 2005; Pillai et al., 2005). These
studies also detected AGO proteins in the cytoplasm, clearly
documenting the cytoplasmic localization of tested miRNAs,
their targets and associated proteins. Considering the fact that
miRNA maturation and loading onto AGO proteins occur in
the cytoplasm, the cytoplasmic localization of miRISC has been
widely accepted as a general rule of thumb. P bodies, stress

granules (SGs), multivesicular bodies (MVBs), endoplasmic
reticulum (ER) and mitochondria are considered to house
miRISCs in the cytosol (Leung, 2015). Interestingly, genome-
wide small RNA profiling studies demonstrated that mature
miRNAs exist in the nucleus and associate with AGO proteins
(Meister et al., 2004; Jian-You et al., 2010; Jeffries et al., 2011).
We will primarily focus on the cytoplasmic re-arrangement of
miRISC and thus refer the readers to the excellent reviews that
deal with nuclear functions of miRNAs (Catalanotto et al., 2016;
Liu et al., 2018).

NON-MEMBRANEOUS CYTOPLASMIC
FOCI

Cytoplasm contains various non-membraneous compartments
that may serve as important sites for RNA biology, including
miRNA-mediated gene regulation. Among the best characterized
non-membraneous compartments are PBs, SGs, germ granules,
and neuronal granules (Figure 1).

Processing bodies, which contain various proteins associated
with mRNA decay, translational control and RNA interference,
were termed based on their content of proteins to carry out
decapping of mRNAs (Sheth and Parker, 2003). Both AGO

FIGURE 1 | Potential intracytoplasmic destinations of miRISCs. Following transcription and processing in the nucleus, some miRISCs are destined for the nucleus
(not shown). Cytoplasmically localized miRISCs can be localized in distinct sites such as: (1) rough endoplasmic reticulum; (2) mitochondria; (3) various types of
messenger ribonucleoprotein granules such as P bodies and stress granules; (4) golgi; (5) multivesicular bodies; (6) free polysomes and (7) cytoskeleton-bound
polysomes. Organelles and complexes are not drawn to scale.
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and GW182 proteins co-localize with PBs (Liu et al., 2005).
In earlier studies on EGFP-AGO2-transfected cells under
non-physiological forced expression conditions, approximately
1.3% of the total fluorescence intensity stemmed from PBs
(Leung et al., 2006), suggesting the existence of other sites
for miRNA-mediated translational repression or mRNA
decay (Leung and Sharp, 2013). Although these data point
to the possibility that PBs are probably not the sole sites of
action for miRNA-mediated gene regulation, a plethora of
evidence exists for PBs as storage sites of miRNA targets
(Bhattacharyya et al., 2006; Krol et al., 2010; Jonas and
Izaurralde, 2015). Although the absence of poly(A) tails
in PB-stored mRNAs questions the involvement of PBs
in miRNA-mediated storage of target mRNAs and their
subsequent translation (Aizer et al., 2014), a fluorescence-
activated particle sorting of endogenous PBs provided
strong evidence for GW182-dependent, AGO2-mediated
translational repression in P bodies (Hubstenberger et al.,
2017).

Stress granules are messenger ribonunleoprotein (mRNP)
granules that include mRNAs stalled in translation initiation
or disassembling from polysomes (Protter and Parker, 2016).
Thus, stress granules are characterized by the presence of
translation initiation factors and RNA-binding proteins as well
as 40S ribosomal subunits (Anderson and Kedersha, 2008).
Stress granules are formed mainly under stress conditions as an
adaptive response by temporary and global stall in translation
of cellular mRNAs with the aim of optimizing RNA metabolism
toward damage repair (Ron and Walter, 2007). One can
then hypothesize that miRNA-mediated translationally blocked
mRNAs could potentially end up in SGs until the stress invoking
condition goes away. In fact, two important components of SGs,
fragile X mental retardation protein and PABP1, interact with
the miRNA machinery (Jin et al., 2004; Moretti et al., 2012).
Along this line, quantitative analysis of the kinetics of AGO2
localization revealed that AGO2 is normally distributed diffusely
in the cytoplasm under physiological conditions but is recurited
into newly formed SGs under stress conditions (Leung et al.,
2006). However, more studies are required to delineate the fate
of AGO-interacting mRNAs in the SGs.

Germ granules are another example of mRNP granules that
are primarily associated with germ cell lineage functions (Gallo
et al., 2008). miRISC components are known to co-purify with
germ granule proteins (Wu et al., 2017). Interestingly, mRNP
formation in germ granules involves scanning and recognition
of target sites by miRISC followed by CCR4-NOT recruitment
and particle nucleation. Neuronal granules are also a type of RNP
granules that are formed in neurons as transport granules since
neurons require long-distance transport of mRNAs along axons
and dentrites (Kiebler and Bassell, 2006). The fact that translation
of mRNAs is suppressed during the transport of mRNAs to their
destination (Krichevsky and Kosik, 2001) raises the possibility
that these mRNAs could be translationally stalled by miRISCs.
Fragile X mental retardation protein is a key component of
neuronal granules (Kiebler and Bassell, 2006) and its interaction
with miRNAs and RISC suggests the localization of at least some
miRNAs in neuronal granules (Zalfa et al., 2006).

ENDOMEMBRANE AND
MITOCHONDRIA FOR miRNA ACTION

Because SGs, germ granules, and neuronal granules are
formed under special conditions or in special cell types
and P bodies are not the sole sites of miRISCs in the
cytoplasm, there must be other cytoplasmic foci that harbor
miRISC complexes. Such potential foci are, but not limited to,
endomembranes that include ER, golgi, and MVBs in addition
to a non-membraneous organelle, mitochondria (Kim et al.,
2014).

As an organelle specialized in protein translation, ribosomes
on rough ER translates ER-bound proteins, which are docked
onto the rough ER through the recognition of N-terminal signal
peptides during active translation by the signal recognition
particle (SRP) localized on the ER (Schwartz, 2007). ER could
house at least the miRNAs that regulate gene expression
at the protein translation level. In fact, serum starvation
triggers the assembly of a number of miRISCs on polysome-
bound mRNAs in Drosophila S2 cells and some of these
miRISCs sediment together with the ER component (Wu
et al., 2013). Also, the AMP1 gene in Arabidopsis modulates
miRNA-mediated gene expression and it is localized on the
rough ER together with AGO1 (Li et al., 2013). A recent
work by Sahoo et al., showed that annulate-lamellae-associated
Nup358, which is a nucleoprotein, binds to AGO proteins
and facilitates mRNA:miRISC intereaction through its SUMO-
interacting motifs (Sahoo et al., 2017). Although Nup358
depletion has no detectable effect on AGO2 localization to
rough ER, Nup358-positive annulate-lamellae structures are
associated with PBs and SGs, indicating a potential role
for annulate lamella in coordinating the cytoplasmic face of
miRISCs. We would like to refer the readers to an excellent
review by Kim et al. (2014), on connections between miRNA-
mediated silencing and endomembranes that include ER,
endosomes, MVBs, lysosomes, autophagosomes, vacuoles and
golgi. Multivesicular bodies are the last stage of endosomes
involved in the trafficking of molecules to lysosomes, plasma
membrane or golgi for various purposes. Interference with
the assembly or turnover of MVBs affects miRNA-mediated
regulation, suggesting a potential role for MVBs in miRISC
dynamics (Gibbings et al., 2009). Considering the importance
of exosome-bound miRNAs in regulating gene expression in the
recipient cells (Janas et al., 2015), MVBs could play a central
role in the assembly and sorting of exosome-bound miRNAs. It
remains to be unraveled how miRNAs are specifically targeted
into late endosomes and more importantly what determines the
cytoplasmic fate of late endosomes that contain different miRNA
cargos.

An interesting site for the nuclear-encoded miRNAs is
mitochondria (Kren et al., 2009). Both pre-miRNAs and mature
miRNAs exist in mitochondria, suggesting the mitochondrial
existence of miRNA biology (Barrey et al., 2011). However, only
a fraction of miRNAs exist in mitochondria and they mainly
coordinate mitochondria-related functions such as mitochondria
morphology, mitochondrial metabolism and cell death (Li et al.,
2012).
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POLYSOMAL AND NON-POLYSOMAL
SITES FOR miRNA ACTION

The cellular translation machinery may be fractionated into
different types of sub-fractions based on their translational
status by taking advantage of sucrose-density fractionation
(Tu and Akgül, 2005). In this approach, the cytosolic
complexes are fractionated based on their molecular weight
through centrifugation on a sucrose density gradient. Such a
fractionation typically yields four sub-fractions, which are (1)
translationally silent mRNP; (2) 40S/60S ribosomal subunits; (3)
80S monosomes, and (4) polysomes.

Polysomes are formed during active translation through the
sequential assembly of ribosomes on mRNAs. Non-polysomal
mRNA complexes typically carry less than two ribosomes while
polysomes carry two or more ribosomes. Considered as the
cellular translation machinery, polysomes are classified into
three groups based on their intracytoplasmic location (1) free
polysomes; (2) ER-bound polysomes, and (3) cytoskeleton-
bound polysomes (Reid and Nicchitta, 2015). Accordingly,
each type of polysome synthesizes different types of mRNAs.
For example, free polysomes are involved in the translation
of cytosolic proteins whereas cytoskeleton-bound polysomes
primarily translate asymmetrically distributed mRNAs that are
enriched in a subcellular location (Lerner et al., 2003).

Taking into account the fact that miRNA-mediated regulation
partially involves translational repression and translation-
coupled mRNA decay, the polysome-bound state of a miRNA
could provide valuable information about its potential regulatory
function. More importantly, recycling miRISCs between
polysome-bound and non-polysome-bound (e.g., messenger
ribonucleoprotein) target mRNA could be a potential regulatory
mechanism. Although it has been challenging to uncouple mRNA
degradation from translational repression, ribosome profiling
has been used to demonstrate mRNA degradation to have
the dominant effect in post-embryonic cells (Guo et al., 2010;
Eichhorn et al., 2014). It is also widely accepted that miRNAs
suppress translation at early points following their expression
(Filipowicz et al., 2008). In fact, when a miRNA is over-expressed,
translational repression precedes mRNA degradation (Béthune
et al., 2012). However, by the time the full miRNA-mediated
repression is manifested, mRNA destabilization takes over the
silencing effect. Quantitative studies in mammalian cells showed
that 6–26% of the repression occurs through translational
repression without any contribution from mRNA degradation
(Eichhorn et al., 2014). However, counting in the translation-
coupled mRNA degradation, this percantage could be higher. On
the other hand, miRNA-mediated silencing involves translation
repression in embryos (Bazzini et al., 2012), suggesting that
the consequence of miRNA repression is different in embryos
probably due to the context of post-transcriptional regulatory
mechanisms unique to embryos.

Polysome association of miRNAs was reported as early as
1999 (Olsen and Ambros, 1999). Later polysomal association
of miRNAs has been reported in various mammalian cell types
(Kim et al., 2004; Maroney et al., 2006; Nottrott et al., 2006;
Petersen et al., 2006). However, not all miRNAs sediment with
polysomes (Nelson et al., 2004), suggesting the presence of

miRNAs on non-polysomal mRNPs. Disassembly of polysomes
as a result of translational repression triggers the formation of
mRNP complexes that sequester mRNAs in a translationally
inactive state. P bodies and SGs (and probably neuronal granules
and germ granules) are examples of such mRNPs that serve as a
hub for sorting of mRNAs for their subsequent fates. It is widely
accepted now that there is a functional link among polysomes,
SGs and PBs (Protter and Parker, 2016; Chantarachot and Bailey-
Serres, 2018). Re-arrangement, then, of the miRISC localization
between different types of polyribosomes and mRNPs could be
a regulatory mechanism to control miRISC activity. In fact, a
switch between polysomes and exosomes has been proposed as
a regulatory process in which miRISC localization is used to
modulate miRNA silencing capacity. In this example, polysome
association of miRNAs results in an impaired miRNA export,
suggesting a potential regulatory mechanism that might involve
re-arrangement of miRNA localization between exosomes and
polysomes (Ghosh et al., 2015).

The long-standing dispute over miRNA-mediated
translational repression at the translation initiation versus
elongation has been resolved in favor of translation initiation
(Pillai et al., 2005; Chu and Rana, 2006; Petersen et al., 2006;
Jonas and Izaurralde, 2015). eIF4A1 and eIF4A2 are replaced by
miRISC complex to inhibit translation initiation (Fukao et al.,
2014; Fukaya et al., 2014). A major question related to miRNA-
mediated translational repression is the site at which translational
repression takes place although polysome-association is typically
correlated with translational repression (Maroney et al., 2006).
miRISCs appear to exist in high molecular weight complexes
(HMWCs, e.g., polyribosomes) as well as low-molecular weight
complexes (LMWCs, e.g., non-polysomal mRNPs) (La Rocca
et al., 2015). Apparently, miRISC complexes exist in LMWCs
in most healthy tissues while they exist in HMWCs in cell
lines. Interestingly, in resting T cells, miRISCs are not actively
engaged in target repression as they exist in LMWCs. Upon
T cell activation, miRISCs are geared toward HMWCs (La
Rocca et al., 2015). Messenger ribonucleoprotein complexes
are dynamic structures that are formed from non-translating
mRNAs through the binding of a number of proteins that
determine the fate of mRNAs, e.g., translation, localization or
turnover (Buchan, 2014). mRNPs are not merely formed as a
consequence of polysome dissociation. Rather, the assembly
of a fraction of it involves an orderly scanning and target site
recognition by miRISC followed by the recruitment of additional
factors such as the CCR4-NOT complex (Wu et al., 2017). Thus,
as certain mRNP granules are formed as a result of polysome
disassembly (e.g., under stress conditions), some could be formed
de novo from non-translating mRNAs. Dynamics changes in
the polysomal versus non-polysomal association of miRISCs
suggests that the action site for each miRISC could be different
based on its target, cell type or phenotypic context.

An in-dept analysis of small RNA profiling, preferably in
conjuction with proteomics, based on their association with
sucrose density fractions and comparison of such profiles
between different conditions (e.g., different developmental
stages or health versus disease) may provide insight into
the potential role of polysomes in coordinating miRISC
silencing activity. Göktaş et al. (2017) took advantage of
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the existence of extensive post-transcriptional gene regulatory
networks in Drosophila melanogaster embryos to track the
intracellular small RNA dynamics. Sucrose density fractionation
of polysomes followed by small RNA profiling revealed (1)
the presence of certain miRNAs non-selectively throughout
all fractions; (2) the abundance of certain miRNAs in either
polysomal or non-polysomal fractions; (3) the transition of
certain miRNAs from polysomal fractions to non-polysomal
ones or vice versa following the maternal-to-zygotic transition
(Coşacak et al., 2018). A side-by-side analysis of small RNAs
in total RNA and fractionated RNAs showed the dynamic
re-distribution of miRNA in the cytoplasm irrespective of
a potential change in the transcriptional output. Molotski
and Soen (2012) observed a similar differential polysomal
occupancy of miRNAs between human embryonic stem cells
and foreskin fibroblast cells (Molotski and Soen, 2012).
Even more interestingly, differential polysomal association of
miRNAs was reported to involve the formation of diverse
miRNA effector complexes regulated by extracellular signals
(Wu et al., 2013). One interpretation of this finding is that
the stimulus-mediated switch from a polysomal to a non-
polysomal miRISC state may result in the formation of
different effectors. Such a scenario is possible, for example,
when different complexes are formed during de-repression
from miRNA-mediated down-regulation (Orang et al., 2014).
Then, the remaining question is, considering the polysomal
and non-polysomal sites, which one is the actual site of action
and which one the site of relief? One caveat of small RNA
profiling approaches is that not all miRNAs or AGO proteins
may be bound to each other, suggesting that miRNAs may
be bound to their targets in the absence of AGO proteins
(Wang et al., 2009; Janas et al., 2012). One should be careful
in the intepretation of miRNA location when using RNA-
seq data to localize functionally active miRISC after sub-
cellular fractionation. Thus, the quantitation of all existing
miRNAs could not necessarily represent the functional miRISC
complexes. AGO-bound miRNAs should be analyzed in any
cellular sub-compartments to isolate potentially functional
miRISC complexes, avoiding merely mRNA-bound, AGO-free
miRNAs.

An interesting question regarding miRISC localization is how
various miRISCs are assembled and cargoed in a selective manner
to polysomal or non-polysomal sites. There are several miRISC
accessory proteins that may modulate the intracytoplasmic fate
of miRISCs (Krol et al., 2010). For example, HSP90 is a crucial
regulator of AGO2 localization in non-polysomal foci such as
PBs and SGs (Pare et al., 2009). Also, AGO2 post-translational
modifications, such as hydroxylation or phosphorylation, may
modulate the localization of miRISCs in PBs (Qi et al., 2008;
Zeng et al., 2008). It is unknown at this point whether specific
intracytoplasmic localization of miRISCs is associated with
unequal target abundance in the cytoplasm. Although Coşacak
et al. (2018) did not find any correlation between target abun-
dance and miRNA re-arrangement, Molotski and Soen (2012)
reported the significance of the seed sequence in the polysome
occupancy (Molotski and Soen, 2012; Coşacak et al., 2018). Along
the same line, target-dependent biogenesis of miR-122 during

stress reversal has been reported in HEK293 cells (Bose and
Bhattacharyya, 2016). Thus, it needs to be resolved whether
it is the mRNA target location that determines the miRISC
location or vice versa. Assuming that the switch between
polysomal and non-polysomal fractions under two different
phenotypes is because of selective trafficking of target mRNAs
(not because of the difference in mRNA identity), an intracellular
or extracellular stimulus should be responsible for re-localization
of miRISCs. Such a scenario could be facilitated through
post-translational modification of protein components or post-
transcriptional editing of RNA component of RISC. Indeed,
AGO2 phosphorylation at S387 results in its re-localization to PB,
favoring translational repression (Horman et al., 2013).

CONCLUDING REMARKS

miRISC complexes are distributed throughout the cell, both
in the nucleus and cytoplasm depending on the cell type
and cellular phenotype. However, more evidence exists for the
involvement of PBs in AGO2-mediated regulation of miRISC
activity. Interestingly, the cytoplasmic location of miRISCs
appears to correlate with their fate. For example, ER harbors
miRISCs, which appear to regulate the translation of mRNAs
destined for ER and golgi while P bodies house miRISCs
associated with mRNAs targeted for degradation. An interesting
observation from recent studies is the dynamic changes in the
localization of miRISCs between polysomal and non-polysomal
(e.g., SGs or P bodies) structures. Although small RNA profiling
following cytoplasmic fractionation provides some indirect
evidence for such re-arrangement of miRISC complexes, more
direct evidence would require the tracing of labeled miRNAs
under two different states (e.g., two development states or health
states) to eliminate the target heterogeneity as the potential
cause of re-localization. More importantly, it begs for more
research to delineate the protein and/or miRNA components
of miRISCs that are critical for shuffling miRISCs between
polysomal and non-polysomal complexes as part of miRISC
regulation.
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