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Understanding the mechanisms underlying drug therapeutic action and toxicity is crucial
for the prevention and management of drug adverse reactions, and paves the way
for a more efficient and rational drug design. The characterization of drug targets,
drug metabolism proteins, and proteins associated to side effects according to their
expression patterns, their tolerance to genomic variation and their role in cellular
networks, is a necessary step in this direction. In this contribution, we hypothesize
that different classes of proteins involved in the therapeutic effect of drugs and in their
adverse effects have distinctive transcriptomics, genomics and network features. We
explored the properties of these proteins within global and organ-specific interactomes,
using multi-scale network features, evaluated their gene expression profiles in different
organs and tissues, and assessed their tolerance to loss-of-function variants leveraging
data from 60K subjects. We found that drug targets that mediate side effects are more
central in cellular networks, more intolerant to loss-of-function variation, and show a
wider breadth of tissue expression than targets not mediating side effects. In contrast,
drug metabolizing enzymes and transporters are less central in the interactome, more
tolerant to deleterious variants, and are more constrained in their tissue expression
pattern. Our findings highlight distinctive features of proteins related to drug action,
which could be applied to prioritize drugs with fewer probabilities of causing side effects.

Keywords: drug response, pharmacogenomics, adverse drug reaction, genomics, network biology, gene
expression

INTRODUCTION

Drugs exert their effect acting at different scales of biological organization. At the cellular level,
the effect of a drug is the result of its interaction with the target(s), which in time may lead to a
variety of cellular responses, such as the alteration of the expression of a set of genes, changes in
intracellular signaling pathways, or changes in the localization of proteins, that result in specific

Abbreviations: LoF, loss-of-function variants, including variants affecting splice sites, or stop codons; METAB, proteins
that are involved in the drug metabolism, absorption, distribution, metabolism, and excretion; OT, drug targets that do not
mediate side effects; OTP, proteins associated to side effects that are not drug targets; TARGET, drug targets; TOXPROT,
proteins associated to side effects; TT, drug targets that mediate side effects.
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cell phenotypic responses. At the organism level, drug absorption,
distribution, metabolism, and excretion (ADME) also contribute
to modulate the response to the drug. Nevertheless, our
understanding of the molecular events elicited by drugs, which
result on their therapeutic effects or adverse reactions, is still very
limited.

The response to drug treatment is also influenced by
the genetic background of an individual (Madian et al,
2012). Nowadays, for some drugs, the impact of genetic
variability is well established. More than 200 FDA approved
drugs include pharmacogenomic labeling (US Food and Drug
Administration'), and pharmacogenomic screenings for known
biomarkers are routinely carried out in large hospitals (Roden
et al, 2011; van der Wouden et al., 2017; Weinshilboum and
Wang, 2017). In particular, the genomic variation of genes
involved in drug metabolism and its impact on drug response
has been extensively studied (Shenfield, 2004; Pinto and Dolan,
2011; Kozyra et al., 2017) (for recent reviews see Ahmed et al.,
2016; Lauschke et al., 2018), Nevertheless, only few studies have
probed the role of the genomic variability of drug targets. The
results of these studies imply that there is a high frequency of
variants impacting protein function in drug targets (Schirfe et al.,
2017), pharmacogenes (Wright et al., 2018) and GPCRs (Hauser
et al., 2018) in the population. In spite of these studies, we still
lack a detailed characterization of the genomic variation of the
full spectrum of genes relevant for drug response, including drug
targets, ADME genes and genes associated to the side effects of
drugs, and their impact on drug response phenotypes.

In the field of systems pharmacology, the study of the
perturbations elicited by drugs within the context of cellular
networks has provided insight into the molecular mechanisms
leading to drug action, including their adverse reactions (Berger
and Iyengar, 2011). Network analysis of omics data has been used
to identify modules associated with drug response and toxicity
(Berger etal., 2010; Bauer-Mehren et al., 2012), to characterize the
therapeutic (Yildirim et al., 2007; Guney et al., 2016) and adverse
effect of drugs (Guney, 2017), and to explain the similarity of side
effects of different drugs (Brouwers et al., 2011).

A key goal of network analysis is to connect network structure
to function. For example, multi-scale network analysis allowed
distinction of different classes of disease genes based on their
connectivity patterns in the human protein-protein interaction
network, or interactome (Berenstein et al., 2015; Pifiero et al.,
2016a). The multi-scale network analysis involves the exploration
of the network properties of the proteins at local, meso and
global scales. Local properties of a protein in a network pertain
to its direct interactions with other nodes (Figure 1). Examples
of local properties are the degree of a node (the number of
direct neighbors), or the clustering coeflicient (the density of
links in the node’s immediate neighborhood). Global properties
consider the links across the whole network. An example is the
betweenness centrality (the proportion of shortest paths passing
through a node in a network). Finally, the meso-scale network
properties are related to the organization of the network into
clusters or modules, that represent functional units in the cell

Uhttps://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm

(Hartwell et al., 1999). Exploring the connectivity of proteins at
the meso-scale level can shed light on the modular organization
of the interactome, potentially revealing the regulation of cellular
processes.

Here we provide a comprehensive characterization of
genomic, transcriptomic and network topological features
of genes relevant to drug response. We carefully selected
three sets of proteins relevant to pharmacokinetics and
pharmacodynamics: drug targets, proteins associated to
phenotypes of drug toxicity, and proteins involved in the
transport and metabolism of drugs. By leveraging on data
from large scale genomic and transcriptomic initiatives and
the reconstructions of the human protein interactome, we
characterized the tolerance to deleterious genomic variability
across human populations, the multi-scale network properties,
and the expression across human tissues of proteins involved in
the therapeutic and toxic response to drugs.

MATERIALS AND METHODS

The Data

Drug Targets (TARGET)

We compiled a comprehensive set of drug target proteins
(referred as TARGET hereafter) that mediates the therapeutic
effects of the drugs by integrating data from several repositories:
DrugBank, version 5.0.7 (Wishart et al., 2018), DrugCentral,
data downloaded on September, 2017 (Ursu et al., 2017),
DGIdb, version 3.0 (Cotto et al., 2017), and ChEMBL, version
23 (Bento et al., 2014). We then mapped all the drugs to
DrugBank identifiers, and all proteins to NCBI Gene identifiers.
From DrugBank, we included only targets for approved or
investigational drugs. From DrugCentral, we kept only targets
in the Tclin category. From DGIdb we considered drug-target
associations from “ChEMBL,” “GuideToPharmacology,” “Tdg
Clinical Trial,” “FDA; “TEND,” and “TTD.” From ChEMBL,
we kept the drug-target relationships for which we could find
a corresponding DrugBank identifier. Finally, we removed any
protein present in the METAB set (see below). The TARGET set
was composed of 1,934 proteins, targeting 2,829 drugs (Figure 2).

Drug Carriers, Transporters and Metabolism Enzymes
(METAB)

We retrieved the proteins that act as drug transporters, drug
carriers, and enzymes involved in drug absorption, distribution,
and metabolism from DrugBank. We mapped all proteins
to NCBI Gene identifiers. We thus obtained the METAB
set, composed of 470 proteins involved in the transport and
metabolism of 1,519 drugs (Figure 2).

Proteins Associated to Drug Toxicity (TOXPROT)

We assembled a set of proteins associated to the side effects or
toxicity phenotypes of the drugs included in this study. To do
this, we first collected drug side effects, and drug therapeutic
indications. The therapeutic indications were obtained from
SIDER, version 4.1 (Kuhn et al., 2016), AEOLUS (Shah, 2016),
CTD, revision 15142 (Davis et al., 2017), repoDB, version 1.2
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FIGURE 1 | Multi-scale network properties and cartographic roles. The multi-scale network analysis involves exploring the network properties of the proteins at
different scales, namely local, meso-scale, and global. The degree of a node is a local network property, since it considers the first direct neighbors of a node, while
the shortest path is a global network property, since we need to count paths between pairs of nodes across the whole network. Finally, the meso-scale network
properties represent the organization of the network into clusters or modules. The meso-scale connectivity features of each protein can be characterized with the
cartographic role classification scheme proposed by Guimera and Amaral, 2005, namely ultra-peripheral, peripheral, non-hub connector, non-hub kinless, provincial
hubs, connector hubs and kinless hubs (see Supplementary Figure S1 for more information). Thus, focusing on how individual nodes are positioned in the modular
(meso-scale) structure of the network, we can identify proteins that play different functions, such as mainly connected to other proteins within their modules (e.g.,

provincial hub), and those proteins that serve as bridges between modules (e.g., kinless hub).

(Brown and Patel, 2017), and ChEMBL, version 23. We mapped
drugs to DrugBank identifiers, and disease identifiers to the
Unified Medical Language System (UMLS, version 2016AB)
Concept Unique Identifiers (CUIs) (Bodenreider, 2004). We
only kept therapeutic indications reported by more than one
source. The data of Adverse Drug Reaction (ADRs) was retrieved
from 3 sources: Offsides (Tatonetti et al., 2012), AEOLUS, and
ORGANDB (Mannil et al., 2015) (all files were downloaded on
September, 2017). As we did with drug therapeutic indication
data, we used UMLS CUIs to harmonize phenotypes and
DrugBank identifiers to represent drugs.

Next, we filtered out phenotypes annotated to the UMLS
semantic types “Patient or Disabled Group,” “Professional or
Occupational Group,” “Therapeutic or Preventive Procedure,”
“Medical Device.” To produce a high confidence dataset, we
only kept associations reported by the three sources (Offsides,
AEOLUS, and ORGANDB). From this set of drug-ADRs we
removed the phenotypes/diseases that overlapped with the
therapeutic indications of drugs. This produced a list of 12,213
drug-side effects pairs involving 593 drugs and 718 side effects.
Finally, we used DisGeNET Curated (version 5.0) (Pifiero et al.,
2016b) to obtain a list of 4,160 genes associated to 452 ADRs,
which we refer as TOXPROT throughout the text (Figure 2).

Due to the overlap between the TARGET and TOXPROT sets
of proteins (see Figure 3) we separately assessed the properties
of the overlapping subset of genes (TT), the genes annotated
uniquely as drug targets (OT), and those annotated only as
associated to drugs toxicity (OTP).

TARGET, TOXPROT, and METAB Protein Classes

We used data from Pharos, version 4.6.2 (Nguyen et al,
2017) to classify the drug targets in seven categories: GPCR,
Transcription Factor, Enzyme, Kinase, Transporter, Ion Channel,
and Nuclear Receptor (NHR). We extended this classification to
the TOXPROT using the equivalent terms from the classification
from Panther database, version 13.0 (Mi et al., 2017) in the file*.
For METAB, we used the classification provided by DrugBank:
transporters, carriers, enzymes.

The Network Analysis

Protein Interaction Data

We built two high-confidence protein-protein interaction
networks (PIN) using data from INBIOMAP (Li et al., 2017)
and from HIPPIE (Alanis-Lobato et al., 2017), two resources that

“ftp://ftp.pantherdb.org/sequence_classifications/current_release/PANTHER _
Sequence_Classification_files/PTHR13.1_human
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FIGURE 2 | The assembly of the three sets of proteins relevant for drug
response: the drug target set (TARGET), the proteins involved in drug
transport and metabolism (METAB), and the proteins associated to side
effects (TOXPROT).

integrate information from several other sources, and provide
a reliability score that allows to filter the interactions. To build
the INBIOMAP network, we downloaded the file* (version
2016_05_31). We removed predicted interactions, and kept only
interactions with score greater than 0.15. In the case of the
HIPPIE-based network, we downloaded the file* (version 2.1).
To produce a high confidence network, we filtered out all
interactions with score smaller than or equal to 0.7 (keeping
~25% of HIPPIE). From both PINs, to obtain a biologically
meaningful modular representation of the network, we removed
genes with degree higher than 300, such as chaperones and
ubiquitins.

We also compiled 4 organ-specific interactomes using GTEx
data (version 7.0) for brain, liver, kidney and heart. Briefly,
we first mapped the ENSEMBL gene identifiers in the GTEx
expression matrix to NCBI Gene identifiers. In the cases of brain,
and heart, we merged the gene expression of different zones, and
computed the median value of expression for each gene (Melé
et al., 2015). Then, we removed from the PINs all interactions
involving at least one gene with TPM < 1 in the corresponding
tissue.

Network Cartographic Roles

To assign cartographic roles in the PINs to each protein, we
computed the z (within-module degree) and P (participation
coefficient) of each gene following the protocol described
in Piflero et al. (2016a). Briefly, we clustered the PINs
using the Infomap algorithm (Rosvall and Bergstrom, 2008)

3https://www.intomics.com/inbio/map/#downloads
“http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/hippie_current.txt

and calculated z and P using equations (1) and (2),
respectively.

_ ki — ke

7 (1)

o ki

where k; is the number of links of node i to other nodes in its

module, k is the mean degree of all nodes in cluster ¢;, and o k; is
the standard deviation of the degree of the nodes in the cluster ¢;

z kic ?
ne1-3 5]
c=1
where k;. the number of links of node i to nodes in the cluster ¢, k;
is the total degree of node I, and M is the total number of modules
in the network.

According to Guimera and Amaral (2005) the genes were
assigned to one of the following roles: ultra-peripheral nodes,
peripheral, non-hub connector, non-hub kinless, provincial
hubs, connector hubs, kinless hubs. These seven different
roles are heuristically defined, using their localization in the
different regions of the z—P parameter space (see Supplementary
Figure S1). Nodes with z > 2.5 are classified as module
hubs and nodes with z < 2.5 as non-hubs. Both hub and
non-hub nodes are then further characterized by using their
participation coefficient. Non-hub nodes can be divided into
four different roles: ultra-peripheral nodes; that is, nodes with
all their links within their module (P < 0.05); peripheral
nodes; that is, nodes with most links within their module
(0.05 < P < 0.62); non-hub connector nodes; that is, nodes
with many links to other modules (0.62 < P < 0.80); and
non-hub kinless nodes; that is, nodes with links homogeneously
distributed among all modules (P > 0.80). Similarly, hub
nodes are assigned to: provincial hubs; that is, hub nodes with
the vast majority of links within their module (P < 0.30);
connector hubs; that is, hubs with many links to most of the
other modules (0.30 < P < 0.75); and kinless hubs; that is,
hubs with links homogeneously distributed among all modules
(P > 0.75).

The Analysis of Genomic Features

We used the data on germline variants detected across 60,706
exomes from the Exome Aggregation Consortium, version
0.3.1(Lek et al., 2016). To evaluate the tolerance of different sets
of genes to variants in the human germline, we downloaded the
data of Functional Gene Constraint’.

Specifically, for each human protein coding gene, we obtained
the pLI (defined as the probability of being loss-of-function
intolerant, including both heterozygous and homozygous LoF
variants), and the pNull (defined as the probability of
being tolerant to both heterozygous and homozygous LoF
variants).

B ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_
constraint/README_fordist_cleaned_exac_r03_z_data_pLI_2016_01_13.txt
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METAB set, constituted of 470 proteins that are involved in drug absorption, distribution, metabolism, and excretion; the drug target set (TARGET), composed of
1,930 proteins; and the set of 4,160 proteins associated to side effects (TOXPROT); the intersections among these categories are represented with the filled dots in
the matrix. The TARGET set shares 1,021 proteins with the TOXPROT set and we refer to those drug targets associated toxicity as the TT set. The OT (only targets)
set are the TARGET proteins that are not included in the TOXPROT set (913 proteins). The only TOXPROT proteins (OTP) set is composed by 3,139 TOXPROT
proteins that are not in the TARGET set. In the figure, it corresponds to the two bars marked as OTP.
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Gene Expression Data in Healthy

Tissues/Organs Across Individuals

We used gene expression data from GTEX (version 7.0) to
analyze the pattern of expression of the different sets of genes.
For GTEX tissues, we mapped the ENSEMBL gene identifiers to
NCBI Gene identifiers, and kept the genes with TPM > = 1. We
used the information for 53 tissues in GTEX, which represent all
tissues covered except Cells.EBV.transformed.lymphocytes and
Cells.Transformed.fibroblasts.

Statistical Analysis

To compute the deviation of the value of each network feature
for each set of genes, we randomly sampled 10,000 sets of
genes from the network of the same size of the set under
analysis in each case. Then, we computed the mean value of
each sampled feature (degree, betweenness, clustering coeflicient,
participation coefficient, and within-module degree) for each of
the 10,000 randomly sampled gene sets. From this distribution
of means a z-score was estimated for every gene set for every
feature. The same was done to compute the deviation of
the value of the genomic features and of the expression of
each gene set from their expected distribution, but genes were
sampled from the entire list of human protein coding genes
in this case. The statistical analysis were carried out using R,
version 3.4.0 (R Core Team, 2017) and the network analysis
were performed using the iGraph Library, version igraph_1.1.2

(Csardi and Nepusz, 2006). Additionally, the following packages
were employed: UpSetR_1.3.3 (Conway et al., 2017), to produce
Figure 3, showing the intersects between the different protein
sets evaluated in the paper, and clusterProfiler_3.6.0 (Yu et al,,
2012) to compare the pathways in which are involved the
proteins in the class “enzyme” in the TARGET set and in the
METARB set.

RESULTS

More Than Half of the Proteins That Are
Targets of Drugs, or Involved in Drug
Metabolism Are Associated to Side
Effects

We compiled three sets of drug-associated proteins as detailed
in Methods (Figure 2). The first comprised 1,934 proteins
that are well-established drug targets (TARGET set); the
second comprised 470 proteins involved in drug transport
and metabolism (METAB set); the third was composed of
4,160 proteins associated to Adverse Drug Reactions, or ADRs
(TOXPROT set). Twenty-five percent of the proteins in the
TOXPROT set are also targets of drugs (TOXPROT-TARGET,
TT set). More than half of drug target proteins and of proteins
involved in drug metabolism are associated to side effects
(Figure 3).
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The Distribution of Cartographic Roles Is
Preserved Across Organ-Specific

Interactomes

For this study, we assembled two different global human
interactomes and several organ-specific interactomes from two
different resources, INBIOMAP (Li et al., 2017) and HIPPIE
(Alanis-Lobato et al., 2017). We focused on brain, heart, kidney,
and liver due to the relevance of these organs in drug toxicity.
Throughout the paper, we illustrate the results obtained with the
INBIOMAP interactomes, but all analyses were replicated in the
HIPPIE-based interactomes.

The INBIOMAP global interactome is composed of
12,967 nodes and 107,787 edges. The number of proteins
in organ-specific interactomes varies between 8,800 and
9,800 nodes, and the final networks contain around 80% of
the interactions of the global interactome (Supplementary
Table S1).

To uncover the modular organization of the global human
interactome and the organ-specific interactomes, we employed
the Infomap procedure (Rosvall and Bergstrom, 2008), one of the
best performing network community recognition methodologies,
which has produced biologically relevant partitions of the human
interactome (Berenstein et al., 2015). After partitioning the
interactome into modules, we characterized the meso-scale
connectivity features for each protein in the network using
the within-module degree (z) and the participation coefficient
(P) parameters (Guimera and Amaral, 2005). The z parameter
standardizes the degree of a node in relation with the degree
of nodes that belong to the same cluster, and the P parameter
quantifies the fraction of links that a given node projects to other
clusters. We further categorized each network node according
to the universal cartographic role classification scheme proposed
by Guimera and Amaral (2005): ultra-peripheral, peripheral,
non-hub connector, non-hub kinless, provincial hubs, connector
hubs and kinless hubs (Supplementary Figure S2). Thus,
focusing on how individual nodes are positioned in the modular
(meso-scale) structure of the network, we can identify proteins
that play different functions, such as those only connected to
proteins within their modules, and those proteins that serve as
bridges between different modules.

The cartographic analysis of the global human interactome
and four organ-specific interactomes (brain, heart, kidney and
liver) is shown in Supplementary Figures S1, S2, respectively,

and summarized in Table 1 and Supplementary Table S2.
Most of the proteins in the global network have roles with
within-module degree smaller than 2.5, that is kinless (14.7%),
connector (28.4%), peripheral (27.5%) and ultra-peripheral
(26.6%). Nodes with hub roles account for 2.8% of the network.
The nodes with the higher z, also have high P, resulting in
their classification as connector hub or kinless hub nodes. This
distribution of genes across cartographic roles is preserved in the
organ-specific networks (Table 1). In other words, the proportion
of nodes with different roles in the network does not change
substantially when we take into account only the genes expressed
in each tissue to construct the networks, although there is a small
decrease in the percentage of nodes in the ultra-peripheral role
in organ-specific networks. A similar behavior is observed for the
HIPPIE global interactome, and its organ-specific interactomes
(Supplementary Table S2). Taken together, these findings point
to a conserved network structure and connectivity patterns at the
meso-scale level in the interactome across tissues.

Targets That Mediate Side Effects and
Side Effect Proteins Are Important for
Connecting Different Modules in the

Network

Next, we studied the multi-scale network properties of the sets
of genes relevant for drug response within the context of the
global and the organ-specific interactomes. The coverage for
the different gene sets in the interactomes varies between 70
and 90% in the INBIOMAP global interactome (Supplementary
Table S3). Eighty percent of the TARGET and TOXPROT sets
are present in the global networks, while METAB proteins
coverage is the lowest (around 70%). The coverage in the
organ-specific networks ranges between 50 and 60% depending
on the protein set and the tissue. Similar coverage is observed for
the HIPPIE-based interactomes (Supplementary Table S3).

The analysis of the proteins belonging to each set according
to their cartographic role showed that TARGET proteins are
significantly enriched for nodes that play kinless and kinless hub
roles in the network (Table 2). The enrichment of TOXPROT
proteins is more apparent for nodes of the network that play
kinless, kinless hub and marginally connector roles. As a matter
of fact, the overrepresentation of targets in the kinless and
kinless hub nodes is almost completely explained by the subset
of TT amongst them (targets that are associated to side effects).

TABLE 1 | Cartographic partition of the nodes in the INBIOMAP interactomes (the global interactome, and the four organ-specific PINs).

Cartographic role Global Brain

Heart Kidney Liver

Provincial hub 9 (0.07%)

119 (0.92%)

5 (0.05%)

Connector hub 68 (0.69%)

Kinless hub 236 (1.82%) 216 (2.2%)
Kinless 1903 (14.68%) 1718 (17.52%)
Connector 3686 (28.43%) 2891 (29.48%)
Peripheral 3570 (27.53%) 2604 (26.56%)

Ultra-peripheral 3444 (26.56%) 23083 (28.49%)

6 (0.06%)

72 (0.78%)

196 (2.12%)
1560 (16.88%)
2808 (30.38%)
2528 (27.35%)
2074 (22.44%)

8 (0.08%)

67 (0.69%)

202 (2.07%)
1603 (16.43%)
2911 (29.84%)
2660 (27.27%)
2303 (23.61%)

6 (0.07%)
73 (0.82%)
187 (2.1%)
1524 (17.13%)
2692 (30.26%)
2403 (27.01%)
2011 (22.61%)

The number of nodes in each cartographic role for each network is shown, with its percentage between parentheses.
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TABLE 2 | Enrichment analysis of the cartographic roles of each set of genes in the INBIOMAP global interactome.

Cartographic role TARGET TT oT METAB TOXPROT OTP

Kinless hub 3.4 (1.2e —14) 4.2 (8.7e —15) 1.7 (0.09) 0.66 (1.0) 26 (1.1e—11) 1.3 (1.1e = 01)
Connector hub 1.4 (2.2e — 01) 2.2 (1.9e — 02) 0.46 (1.0) 0.32 (1.0) 1.4 (1.0e — 01) 1(7.8e — 01)
Provincial hub 3.5 (2.0e — 01) 1.6 (7.9e — 01) 5.1 (0.19) 0(1.0) 1.4 (7.8e — 01) 1.2 (8.5e — 01)
Kinless 1.7 (1.5e — 13) 1.9 (1.7e — 12) 1.3 (0.02) 1(0.78) 2 (3.5e — 40) 1.8 (3.8 — 23)
Connector 1.1 (1.0e — 01) 1.1 (1.1e —01) 1.1 (0.54) 0.86 (1.0) 1.2 (1.7e — 03) 1.1 (1.6e — 02)
Peripheral 0.85 (1.0) 0.74 (1.0) 1 (0.6736) 0.93 (1.0) 0.8 (1.0) 0.86 (1.0)
Ultra-peripheral 0.55 (1.0) 0.49 (1.0) 0.69 (1.0) 1.3 (0.06) 0.55 (1.0) 0.62 (1.0)

The fold enrichment of the Fisher’s exact test is shown with the corresponding p-value corrected by the Benjamini and Hochberg method between parentheses. The
cartographic partition of the different gene sets in the INBIOMAP and HIPPIE interactomes is provided in Supplementary Table S3.

METAB proteins are not particularly enriched in any role in the
network. The results are similar in organ-specific interactomes
(Supplementary Figure S3) and for networks derived from
HIPPIE, except for the case of METAB proteins, which play
peripheral roles in the global and the liver HIPPIE PINs
(Supplementary Figure S3). The distribution of the gene sets
across the seven cartographic roles is shown in Supplementary
Table S4.

A more detailed analysis of other network properties of the
sets of genes shows that TARGET, TOXPROT, and TT sets tend
to have a significantly higher degree, participation coefficient,
within-module degree, and betweenness than the other genes
in the network (Figure 4). They also have a lower clustering
coefficient. We note, however, that most of the effect observed
for the TARGET and TOXPROT sets is explained by their shared
TT subset. On the other hand, METAB proteins have significantly
lower degree, and within module degree than expected and
significantly lower participation coefficient in most organ-specific
interactomes (Figure 4). METAB proteins are more specialized,
thus it would make sense that they play less central roles in the
network, with less interaction partners in the interactome. Similar
results are obtained for HIPPIE interactomes (Supplementary
Figure S4).

Drug Targets, and Toxicity Proteins Are
Highly Sensitive to Loss of Function
Mutations, While Proteins Involved in
Drug Metabolism Are Tolerant

Next, we analyzed the tolerance of drug related proteins to
LoF variants using exome sequence data from 60K “healthy”
subjects provided by the ExAC consortium (Lek et al., 2016).
We employed two gene constraint metrics developed by the
EXAC team: pLI and pNull. pLI is the probability of a
gene to be intolerant to heterozygous LoF mutations (LoF
variants are nonsense and essential splice site variants). It
separates genes into LoF intolerant (pLI > 0.9) or LoF tolerant
(pLI < 0.1). On the other hand, pNull is the probability of a
gene to be tolerant to both heterozigous and homozigous LoF
variation.

We found that METAB genes have significantly lower pLI than
the other genes in the genome (Table 3). In other words, METAB
genes are more tolerant to LoF variation than the average human
genes. On the other hand, TARGET and TOXPROT genes have

significantly greater pLI value than average human genes. Since
genes intolerant to LoF variation are likely to be dosage sensitive
(Lek et al., 2016), TARGET and TOXPROT sets might contain
haploinsufficient genes. The results for the pNull are consistent
with those of the pLI, but with the opposite meaning: genes with
high pNull are tolerant to LoF variation.

In order to explore in more detail the features of different
classes of TARGET proteins, we classified them using categories
from the drug target ontology (Lin et al., 2017) (Figure 5). We
used similar categories to classify the TOXPROT set (for more
details see Methods section), and we classified METAB genes
into carriers, enzymes, and transporters using the information
from DrugBank. We found that among METAB genes, enzymes
display the lowest pLI and highest pNull, while carriers and
transporters are not significantly different than expected in terms
of pLI (Figure 5). In the TARGET set, kinases are the most
intolerant subset to LoF variation, with a mean value more than
12 SD greater than the expected mean pLI value, followed by
transcription factors (z-score = 9.04) and TARGET enzymes (z-
score = 7.51). It is worth noting that the enzymes within the
TARGET set are related to signaling pathways, and core cellular
metabolic processes, while the enzymes in the METAB set are
proteins mainly participating in the metabolism of xenobiotics
(Supplementary Figure S5). The remaining groups of TARGET
genes are also intolerant to LoF but to a lesser extent, with the
exception of GPCRs, that are more tolerant to LoF variation
than expected (Figure 5). Again, the results for pNull are
consistent with those of pLI, except for the case of ion channels,
which are marginally intolerant to LoF variation, but do not
show differences with the rest of the genes with respect to
pNull.

Within the TOXPROT set, transcription factors exhibited
the highest intolerance to LoF variants, followed by kinases.
Nevertheless, the enzymes were not different than the rest of the
genes, but they do show a lower pNull, indicating that they are
less tolerant to LoF than the background.

Proteins Associated to Side Effects Are
Highly Expressed Across Tissues

Next, we characterized the expression patterns of each gene
set across normal human tissues, using GTEx data (Figure 6).
TOXPROT genes are more expressed than other genes in the
genome across all tissues, with the exception of some areas of the
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FIGURE 4 | Multi-scale network features of the gene sets (INBIOMAP interactomes). We plot the z-score of the network features (degree, P: participation coefficient,
Z: within-module degree, BET: betweenness, CC: clustering coefficient) resulting from 10,000 randomizations. The asterisks indicate that the z-score is statically
significant (p-value < 0.05). TARGET: drug targets, METAB: proteins that are involved in the drug metabolism, absorption, distribution, metabolism, and excretion.
TOXPROT: proteins associated to side effects. TT: genes in common between drug targets and toxicity genes. OT: only TARGET proteins. OTP: only TOXPROT

Z BET CC degree P z degree P Z BET CC

TABLE 3 | Genomic features of the sets of genes.

Gene set pLI pNull
pLI z-score p-value pNull z-score p-value

TARGET 0.380 8.87 7.31E-19 0.167 —5.829 5.58E-09
TOXPROT 0.365 10.9 1.16E-27 0.146 —13.604 3.79E-42
METAB 0.214 —4.92 8.65E-07 0.260 3.843 1.22E-04
T 0.399 7.84 4.51E-15 0.153 —5.607 2.06E-08
oT 0.358 4.15 3.32E-05 0.183 —2.239 0.0251559
OoTP 0.354 7.45 9.33E-14 0.143 —12.108 9.58E-34

We show the value of the feature, the z-score resulting from 10,000 randomizations, and its associated two-sided p-value.
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ION CHANNEL v2.97" -1.69 .2.46’ -0.70 172 |-1.61 .3.27* X ’2.15* E
UNCLASSIFIED |3.59* -2.64* 2.68* |-2.46* 2.33* [-1.25 m
pLl  pNull pLI pNull pLI  pNull pLI pNull pLI  pNull

FIGURE 5 | Genomic features of the sets of genes, and of the protein classes. We plot the z-score resulting from 10,000 randomizations. The asterisks indicate that
the z-score is statically significant (p-value < 0.05). TARGET: drug targets, METAB: proteins that are involved in the drug metabolism, absorption, distribution,
metabolism, and excretion. TOXPROT: proteins associated to side effects. TT: genes in common between drug targets and toxicity genes. OT: only TARGET
proteins. OTP: only TOXPROT proteins. See Figure 1 for more details. It is worth noting that while 90% genes from the total of 1,934 TARGET genes are classified in
the 7 target classes, 40% of the TOXPROT set belongs to other protein classes (Unclassified set).

brain (that do not show statistically significant differences with
the other genes), and the testis (where they show a lower level
of expression than other genes of the genome). TARGETs also
tend to be more highly expressed than other genes of the genome
across most tissues. The tissues with the most significantly higher
expression are blood, lung, spleen, liver, adipose tissue, and heart.
Drug targets are not significantly over or under expressed in
any brain area. A closer look at this set shows that TT tend to
behave like the TARGET set, with the exception of few brain
areas, such as cerebellum and cerebellar hemisphere. On the other
hand, OTs are not expressed at higher levels than other genes of
the genome, with very few exceptions, which exhibit marginal

significance. Probably, drug targets that are expressed in more
tissues throughout the body, at higher levels than the rest of
the proteins are more likely to elicit side effects. The broader
the expression of the target, the higher is the risk of adverse
reactions when the drug is administered systemically (Gashaw
etal, 2011).

As expected, metabolic enzymes exhibited most significantly
higher expression in liver, and to some extent in kidney, but
they tend to show significantly lower expression in most tissues.
Interestingly, the levels of expression of all sets of proteins (except
OTP) in testis are significantly lower than the other genes in the
genome.

Frontiers in Genetics | www.frontiersin.org

September 2018 | Volume 9 | Article 412


https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Pifero et al.

Omics Characterization of Drug Response Genes

Whole.Blood 10.5* QIS 4.5* 8.0* 4.7* -2.1* ] 15
Testis -2.8* -3.0*
Pancreas B BY3 | |
. Liver 5105 6 — 10
. . Kidney.Cortex 4.8% 5 UF 10.0* B 27
. Brain.Spinal.cord.cervical.c.1 -2.0* | 4.6* 5.0*
Brain.Nucleus.accumbens.basal.ganglia 3.0% GE
Brain.Caudate.basal.ganglia 2.4* 4.4% 4.5% 5
Brain.Putamen.basal.ganglia A5 4.2* 5.6*
Brain.Cerebellar.Hemisphere E— 25 225
Brain.Cerebellum 2L 2.1 | 0
Brain.Hypothalamus | 35" 4.8*
Brain.Substantia.nigra 4.1F 1Tk
. Brain.Cortex | 2.6* BI5E =
Brain.Frontal.Cortex.BA9 2.8% I 5
. o Brain.Amygdala | 2 Bl 4.1*
Brain.Anterior.cingulate.cortex.BA24 A0k N 825
rain.Hippocampus -2.2% | PRIE 205 3.6*
Pituitary I 4.3* 5.5% 38 |
. Adrenal.Gland 25t b 5.9%
Skin.Not,Sun.Exposed.Suprapubic R 28 i 6.8* -2.5%
Skin.Sun.Exposed.Lower.le o I 6.9% -2.4%
Minor.Salivary.Gland | o0 28 * .67 -2.1*
Artery.Aorta 3.4* SN/ i 6.9*
Artery.Coronary 4.4* 0Ll E =i
rtery.Tibial a7 3.7F * 6.9% -2.1* |
~ Nervé.Tibial 20 21F 9.2% el -2.2% |
Heart.AtnaI.Af? endage Lok 4.2% N/ 9.0% 75
Heart.Left.Ventricle 3.6% 2.4* 27 s B3t
Muscle.Skeletal 28F 2.3 S 4.6*
Prostate b o [P -2.0% |
Esophagus.Gastroesophageal.Junction 228 6.9% -2.1% |
Esophagus.Mucosa 6.6* @72
Esophagus.Muscularis 0% N 8.0* A -2.2* |
. .Stomach 7.4% B
Small.Intestine. Terminal.lleum 355 3.9* 8.8* j7ASE
Colon.Transverse 2. 30 8.2% LI1*
Colon.Sigmoid A0 7 A -2.9*
 Bladder 253E 3125 8.8* 7.9* -2.2*
Fallopian.Tube 2oF b H 4L 8.6* e 1 -2.3*
Ovary | 572 [55723 :
Uterus A0 O/ SI9% i
. Vagina 2.4* 2268 828 7553 23k
Cervix.Ectocervix TS 6.9% -2.3*
Cervix.Endocervix b7 jASE AL -3.0*
i X Spleen 7.0* 6.1* &7 BiSE B 5*
Adipose.Visceral.Omentum 6.3 6.3* 2.0* 1.8* 8.9%
Adipose.Subcutaneous 4.9* Hi5H 0.6* e
Breast.Mammary.Tissue | 3.9* AS5E ey LBF
Thyroid SE5E B 7E 6.0* -2.6* |
ung 7.8* Biba 225 11.9* DIOS
TARGET TT oT TOXPROT OTP METAB
FIGURE 6 | Characterization of the expression level by tissue of the sets of genes. We plot the z-score resulting from 10,000 randomizations. The asterisks indicate
that the z-score is statically significant (p-value < 0.05). TARGET: drug targets, METAB: proteins that are involved in the drug metabolism, absorption, distribution,
metabolism, and excretion. TOXPROT: proteins associated to side effects. TT: genes in common between drug targets and toxicity genes. OT: only TARGET
proteins. OTP: only TOXPROT proteins.

DISCUSSION

There is a pressing need to identify “good” targets for safer
drug development, patient treatment, and better management of
drug toxicity. In this contribution, we propose that leveraging
large scale genomic, transcriptomic, and interactomic data can
support this goal. We show that drug targets, targets associated
to side effects, and proteins associated to side effect display
higher level of centrality measures (degree, betweenness, z, P and
lower clustering coefficient) in the protein interaction network,
indicating that they occupy central positions in the network.
This centrality is evidenced not only at the local network level
(evidenced by the degree and clustering coefficient), but more
importantly, they are key nodes for connecting different modules
in the network. On the other side, proteins participating in drug
metabolism are characterized by lower degree and within-module
degree, and their role is confined to their own modules in the
network.

We then assessed how the observed differences in these
network properties are related to the tolerance of each set of
genes to LoF variation. We observed that genes which play more
central roles in the network exhibit significantly lower tolerance

to LoF variants, indicating that they are under stronger purifying
selection. These results are in agreement with observations across
genes related to different disease classes (Pifiero et al., 2016a).
On detail, we found that disease genes that play central roles
in the network, such as cancer genes and genes associated
to autosomal dominant diseases show less tolerance to likely
deleterious variants than genes associated to autosomal recessive
diseases, which play peripheral roles in the network (Pifiero et al.,
2016a). Figure 7 shows the separation between METAB genes,
and TARGET and TOXPROT in terms of the gene constraint
metrics (pLI and pNull) and the multi-scale network features.
We found that TT genes are more central in the network,
(indicated by their higher z, degree and P, and lower clustering
coefficient), than OT genes. In particular, the observed higher P
indicates that these proteins play an important role in connecting
different modules within the network, suggesting that they are
pleiotropic and participate in diverse biological processes, which
could explain why they are mediators of both, therapeutic and
side effects of drugs. These results are in line with those of Perez-
Lopezetal. (2015) who showed that drug targets that mediate side
effects are better spreaders of perturbations in a human global
interactome, than targets of drugs having no reported side effects,
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FIGURE 7 | Relationship between the network features (degree, betweenness, clustering coefficient, participation coefficient, and within-module degree) and the
tolerance to LoF variation (pLI and pNull) of the gene sets in the INBIOMAP global interactome. We plot the z-scores of the genomic and the network features
resulting from 10,000 randomizations. TARGET: drug targets, METAB: proteins that are involved in the drug metabolism, absorption, distribution, metabolism, and
excretion. TOXPROT: proteins associated to side effects. TT: genes in common between drug targets and toxicity genes. OT: only TARGET proteins. OTP: only

TOXPROT proteins.

and non-target proteins. Our results also support those of Kotlyar
et al. (2012) who showed that drug targets and drug-regulated
genes have higher degree and betweenness, and lower clustering
coefficients.

Drug targets and drug targets that cause side effects are
significantly LoF intolerant, while METAB proteins are relatively
tolerant to LoF variants and to homozygous LoF variants
(Figure 7). These results agree with those of a recent study
(Wright et al., 2018) that found high-confidence LoF variants
in more than half of the pharmacogenes under analysis. The
relatively high tolerance of METAB proteins may be at least
partially explained by their degree of paralogy (Pan et al., 2016),
and overlapping substrate specificity across these enzymes (Zhou,
2008). In detail, there are 32 cytochromes in the METAB dataset,
and their drug specificity ranges from 1 to over 600 drugs.
They are all characterized by their relatively high tolerance to
LoF mutations (e.g., low pLI values and high pNull values). An
example of redundancy in these enzymes is CYP3A5 (pLI = 5.2
e-11). It has been reported that CYP3A5 deficiency occurs
in approximately 75% of white persons and 50% of African
descent populations because of a single nucleotide polymorphism
(CYP3A5*3, 6986A > G) within intron 3 that introduces a
premature stop codon and truncation of the protein (Kuehl et al.,
2001). Because many drugs metabolized by CYP3A5 are also
substrates of CYP3A4, truncating mutations in either of these
proteins might produce no visible phenotype.

The intolerance to LoF variation observed in the TARGET set
is mainly driven by TT genes, as shown by the smaller z-scores of
pLL and pNull of OT genes (Figure 7). GPCRs behave differently

than the other TARGET classes. They possess lower pLI and
higher pNull values than the rest of the genes. A closer look at this
set of proteins shows that GPCRs that do not directly mediate side
effects (OT set, 89 genes with ExAC data) are responsible for this
trend, since GPCRs in the TT set (123 genes with ExAC data) have
no significantly different pLI values than the rest of the genes.
GPCRs do not seem to play central roles in the network at the
global and meso-scale level (although they display low clustering
coefficient, see Supplementary Figure S6), which suggests that
they are not under strong negative selection and therefore would
be more tolerant to functional variants. A recent study of the
pharmacogenomics of 108 GPCRs targeted by FDA approved
drugs (Hauser et al., 2018) showed that GPCRs have, on average,
LoF mutations in 9 different positions per receptor, and at least
1 LoF variant has been observed in each of the GPCRs under
study. The mechanisms that might explain the compatibility
of these drastic genomic alterations with normal phenotypes
could be heterozygosity, epistasis, and allele-specific expression.
Nevertheless, it is also possible that some of the receptors with
low pLI have functional redundancy.

The fact that drug targets that mediate side effects tend to be
more intolerant to LoF variation is in line with the finding that
the inter individual genomic variability of drug targets is a strong
predictor of the withdrawal of drugs (Lee et al., 2016). This study,
using several metrics to estimate the deleteriousness of variants
in 2,504 publicly available genomes from the 1000 Genomes
Project, found a high person-to-person variability of deleterious
variants among drug-related genes. They also designed a genomic
deleteriousness score that they found to be significantly lower for
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withdrawn drugs, and US FDA pharmacogenomic biomarkers
than for other drug-related proteins.

Finally, we have characterized the expression of drug related
genes across healthy human tissue, showing differences in the
pattern of expression among the different gene sets. To the best
of our knowledge, this is the first study that performs such
analysis.

Our results show that there is a relationship between the
role in the cellular network of genes involved in different
drug effects and their tolerance to LoF variation. We have
uncovered a scenario in which proteins that mediate side effects
are more central, tend to be more intolerant to LoF mutations,
and are highly expressed in most of the human tissues. The
subset of drug targets that mediate drug adverse reactions
occupy more central positions in the network —not only because
they have a high degree, but because they connect different
network modules-, and they also exhibit higher sensitivity to
LoF variants. In contrast, drug targets that do not mediate
side effects do not exhibit any significant pattern of network
centrality, and appear to be under weaker negative selection.
The case of ADME proteins is particular, because they are less
central, tolerate LoF mutations, and show a very specific tissue
expression pattern. The integrated analysis of different omics
data reveals distinct features of proteins associated to drug
response, which is relevant in the context of drug development
and pharmacogenomics.
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