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The identification of causal relationships between random variables from large-scale

observational data using directed acyclic graphs (DAG) is highly challenging. We

propose a new mixed-effects structural equation model (mSEM) framework to estimate

subject-specific DAGs, where we represent joint distribution of random variables in the

DAG as a set of structural causal equations with mixed effects. The directed edges

between nodes depend on observed exogenous covariates on each of the individual

and unobserved latent variables. The strength of the connection is decomposed into

a fixed-effect term representing the average causal effect given the covariates and a

random effect term representing the latent causal effect due to unobserved pathways.

The advantage of such decomposition is to capture essential asymmetric structural

information and heterogeneity between DAGs in order to allow for the identification

of causal structure with observational data. In addition, by pooling information across

subject-specific DAGs, we can identify causal structure with a high probability and

estimate subject-specific networks with a high precision. We propose a penalized

likelihood-based approach to handle multi-dimensionality of the DAGmodel. We propose

a fast, iterative computational algorithm, DAG-MM, to estimate parameters in mSEM and

achieve desirable sparsity by hard-thresholding the edges. We theoretically prove the

identifiability of mSEM. Using simulations and an application to protein signaling data,

we show substantially improved performances when compared to existing methods and

consistent results with a network estimated from interventional data. Lastly, we identify

gray matter atrophy networks in regions of brain from patients with Huntington’s disease

and corroborate our findings using white matter connectivity data collected from an

independent study.
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1. INTRODUCTION

Directed acyclic graphs (DAGs) are used to represent the causal
mechanisms of a complex system of interacting components,
such as biological cellular pathways (Sachs et al., 2005),
gene regulatory networks (Ud-Dean et al., 2016), and brain
connectivity networks (Friston, 2011). The ability to identify
causal relations between variables in observational data is highly
challenging. Specifically, given a set of centered random variables
M = (M1, · · · ,Mp)

′, referred to as nodes, the causal relationship
between these nodes in a DAG can be represented by a structural
equation model (SEM) (Pearl, 2009):

Mj = fj(pa(j), εj), j = 1, · · · , p,

where pa(j) is the set of parental nodes of Mj, and εj is a
random variable representing unexplained variation. In many
applications, M is assumed to follow a multivariate Gaussian
distribution satisfying a linear SEM,

Mj =
∑

k∈pa(j)

θjkMk + εj, εj ∼ N(0, σ 2
j ); j = 1, · · · , p, (1)

where B = (θjk) is referred to as an adjacency matrix.
Estimation of DAG structure (i.e., parental sets pa(j)) is

non-deterministic polynomial-time hard (NP-hard) because the
number of possible DAGs grows super-exponentially with the
number of nodes (Robinson, 1971). Mainly two types of methods
are proposed to tackle this challenge, namely, independence-
based (e.g., Spirtes et al., 2000) and score-based (e.g., Heckerman
et al., 1995) methods. The independence-based approaches
calculate the partial correlation between any pair of nodes and
perform statistical tests to assess the conditional dependence.
A popular method is the PC algorithm (Spirtes et al., 2000),
which has been proven to be uniformly consistent for estimating
ultra high-dimensional, sparse DAGs (Kalisch and Bühlmann,
2007). The PC algorithm was modified as PC-stable to remove its
dependence on node ordering (Colombo and Maathuis, 2014).
A limitation of the PC algorithm is that it does not provide the
proper level of multiple comparison correction and thusmay lead
to a large number of false positives in practice. To remedy this
limitation, a hybrid, two-stage approach was proposed (PenPC,
Ha et al., 2016) that first estimates a sparse skeleton based on
penalized regression and then performs a modified PC-stable
algorithm on the skeleton.

The score-based approach searches for the DAG using a
pre-specified score criterion, such as Bayesian Information
Criterion (BIC) or penalized likelihood function. As it is not
computationally feasible to search through the space of all DAGs,
a two-phase greedy equivalence search algorithm explores an
equivalence class based on BIC by adding and deleting edges.
With additional information on node ordering, the estimation of
DAG is equivalent to neighborhood selection for which several
penalized likelihood approaches have been developed (Shojaie
andMichailidis, 2010; Yuan et al., 2012). More recently, attempts
have been made to estimate a DAG without knowing the node
ordering (Aragam and Zhou, 2015; Han et al., 2016). Other

recent developments include leveraging asymmetric information
between nodes (Shimizu et al., 2006; Luo and Zhao, 2011)
or exploring the invariance property of causal relation using
combined observational and interventional data (Meinshausen
et al., 2016). Simulation studies suggest that independence-based
methods perform adequately for identifying the skeleton of a
DAG from observational data (Smith et al., 2011). However, these
methods may perform worse for identifying the causal direction
than some search-and-score methods that exploit the asymmetric
distributional information (Smith et al., 2011).

All of the existing DAG estimation methods assume
homogeneity of the causal effect of the underlying DAG
model in (1) (i.e., θjk is common across individuals in the
population). However, there is a growing body of evidence
suggesting that biological networks may depend on subject-
specific characteristics such as genomic markers (Brown et al.,
2011; Bohlken et al., 2016; Langfelder et al., 2016). For
mental disorders, individual differences in edge strength in
comorbidity networks have been widely observed (Fleeson et al.,
2010). Modeling heterogeneity of network effects may improve
interpretability, biological relevance, and predictability. This area
is much less explored with the exception of a few methods
proposed to study subject-specific undirected graphical models.
For example, a conditional Gaussian graphical model with
covariate-adjusted mean but homogeneous precision matrix
has been considered (Yin and Li, 2011; Cai et al., 2013).
To characterize heterogeneous dependence structure between
groups, Guo et al. (2015) jointly estimated graphical models that
share common structure but also allowed for differences between
networks. Recently, instead of modeling groups separately,
Cheng et al. (2014) directly incorporated covariates into an
Ising model in order to build a covariate-dependent undirected
graph. A common assumption of these approaches is that the
dependence between two nodes is fully explained by the observed
exogenous covariates. Such an assumption may not be satisfied
in many biological and clinical applications due to the presence
of unexplained latent residual heterogeneity representing hidden
pathways between nodes. Shimizu and Bollen (2014) proposed a
Bayesian approach to estimate DAG by including non-Gaussian
latent variables in a linear SEM, but does not estimate individual-
specific graphs.

Our goal in this article is to develop a novel method and
an efficient estimation procedure to study covariate-dependent
DAGs with latent effect modification in multi-dimensional
settings. Our method is based on mixed-effects SEM (mSEM)
and penalized likelihood to obtain DAG structure and causal
effects simultaneously. The covariates are treated as exogenous
variables, and their joint distribution is not of interest. The
key difference between mSEM and current approaches is that
the causal effect, θjk in Model (1), is random and varies across
individuals. To capture variation of the manifestation of causal
relationship among individuals, our model allows the magnitude
of the edge strength to be heterogeneous across subjects, while
keeping the direction of causal relationship to be homogeneous.
The heterogeneous causal magnitude is modeled by both fixed
effects that depend on observed covariates and random effects
that capture unexplained heterogeneity.
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We propose a two-stage approach to estimatemSEM, whereby
the first stage performs neighborhood selection by maximizing
a penalized likelihood to identify a sparse skeleton, and the
second stage searches for the DAG by solving an approximate
ℓ0-penalty problem via hard-thresholding within the identified
skeleton, followed by an easily implemented DAG-checking
procedure. We show theoretical proof of the identifiability (the
graph is unique) of our model. Through extensive simulations
and application to a well-known protein signaling study (Sachs
et al., 2005), we show substantially improved performance in
terms of robustness and accuracy when compared to existing
methods, including PC (Spirtes et al., 2000) and penPC (Ha
et al., 2016), and consistent performance when compared to
analysis using interventional data. Lastly, we apply the proposed
method to discover the causal dependence relationship among
regions of brain atrophy from patients with Huntington’s disease
(HD) (Paulsen et al., 2014) and corroborate our findings in an
independent study (McColgan et al., 2017).

2. METHODOLOGY

For the ith subject, let Mi = (Mi1,Mi2, · · · ,Mip)
′

denote p random variables or nodes in a DAG. Let
Xi = (1,Xi1,Xi2, · · · ,Xiq)

′ denote a q + 1-dimensional
vector including a constant and q exogenous covariates that
may modify the causal network among components in Mi.
We consider a mixed-effects model in which the causal effect
depends on both fixed effects of observed variables Xi and
unobserved random effects {γijk}. For the jth node, the mSEM is
given by:

Mij =
∑

k∈pa(j)

(βT
jkXi + γijk)Mik + εij, (2)

where β jk is the vector of fixed effects (including an intercept
and effects associated with Xi), and γijk is the unexplained
heterogeneity of causal effects beyond Xi. We assume that γijk

are independent and follow N(0, σ 2
jk
) and the independent error

terms εij follow N(0, σ 2
εj
). The SEM in (2) assumes that for

each edge in the DAG, the causal effect is decomposed into a
subject-specific fixed-effect term that depends on the exogenous
covariates (i.e., βT

jkXi) and a subject-specific random-effect term

that captures residual heterogeneity in causal effects due to other
latent factors beyondXi (i.e., γijk).When β jk = 0 and σ 2

jk
6= 0, the

causal dependence between j and k is explained by unobserved
latent factors but not Xi. No causal effect between node j and k
corresponds to β jk = 0 and σ 2

jk
= 0.

In this work, we assume that the ordering of causal
dependence or the parental sets are unknown, and propose
methods to simultaneously learn the ordering and structure of
DAG and the parameters in the SEM. Previous literature has
pointed out that qualitative capacity claims about causal effects
are invariant across different populations of subjects, whereas
the quantitative claims in SEM often are population-specific
(e.g., Woodward, 2005, Chapter 7). Thus, we assume that the
qualitative causal dependence (set of nodes and directed edges)

is homogeneous among subjects while the magnitude of the edge
strength varies across subjects. Presence of an edge from Mik to
Mij is defined as β jk 6= 0 or σ 2

jk
6= 0; otherwise, there is no

causal effect from Mik to Mij. Note that when the components
of β jk associated with covariates Xil are zero and σ 2

jk
are zero,

the subject-specific DAGmodel in (2) reduces to a homogeneous
DAG model in (1). We express the model for Mi given γijk in
matrix form as

Mi =
(
B(Xi)+ Ŵi

)
Mi + εi (3)

where B(Xi) is a matrix of fixed effects with entry (j, k) as βT
jkXi

and the diagonal elements as zeros, Ŵi is a matrix of random
effects with entry (j, k) as γijk and the diagonal elements as zeros,
and εi = (εi1, εi2, · · · , εip)

′ is a vector of error terms. Note that
the joint distribution of M in Model (3) is non-Gaussian due to
random effects in Ŵi, where the asymmetric information on the
distribution between nodes can facilitate inference on the causal
network from the observational data.

To estimate a DAG, we use a likelihood-based approach.
Given the random effects Ŵi, the conditional likelihood function
ofMi is given by

p(Mi;Xi|Ŵi) ∝ |E|−1/2|I − B(Xi)− Ŵi|×

exp

(
−
1

2
M

T
i (I − B(Xi)− Ŵi)

T
E
−1(I − B(Xi)− Ŵi)Mi

)
,
(4)

where Cov[εi] = E is a diagonal matrix of σ 2
εj
. The derivation of

(4) is given in the online Supplementary Material Section S1.
To simplify presentation, we introduce the notation for the

vectorized Ŵi and define non-zero components of vectorized Ŵi

as γ i = {γijk : σ 2
jk

> 0}. Then, Ŵi can be expressed as a linear

combination of components in γ i as Ŵi =
∑

σ 2
jk
>0 γijkHjk, where

Hjk is a single-entry matrix with one entry (j, k). Denote by

Cov[γ i] = diag{σ 2
12, . . . , σ

2
jk
, . . . , σ 2

pp−1} = G the covariance

matrix of γ i. The observed likelihood function is given by

n∏

i=1

∫

γ i

p(Mi;Xi|γ i)p(γ i)dγ i, (5)

where p(γ i) ∝ |G|−1/2 exp
(
−γ T

i G
−1γ i/2

)
.

Under the DAG assumption of no directed cycle, B(Xi) + Ŵi

can always be transformed into an upper diagonal matrix after
some unknown permutation of the rows and columns. Therefore,
the determinant |I − B(Xi)− Ŵi| in the likelihood function (4) is
one. The integral in the likelihood (5) can be explicitly calculated
up to a constant and the negative log-likelihood function is given
by

ln =

n∑

i=1

p∑

j=1




(
Mij −

∑
k 6=j

(
βT
jkXi

)
Mik

)2

∑
k 6=j σ

2
jk
M2

ik
+ σ 2

εj

+ log


∑

k 6=j

σ 2
jkM

2
ik + σ 2

εj





 , (6)
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where the detailed derivations are given in the online
Supplementary Material Section S1. Based on the objective
function (6), the parameter estimation for each node in the
likelihood is separable, leading to significant computational
advantage. Note that for node j, the negative log-likelihood
function (6) is equivalent to the objective function of a weighted
least squares. Therefore, to obtain initial values, one can use
weighted least squares to update {β jk : j = 1, · · · , p; k =

1, · · · , p} and use the Newton-Raphson algorithm to update
{σ 2

jk
: j = 1, · · · , p; k = 1, · · · , p} and {σ 2

εj
: j = 1, · · · , p} until

convergence. The identifiability of parameters in the model is
shown in Theorem 1 in section 2.3.

2.1. Initial Sparse Graph
With a large number of nodes, minimizing (6) would result in
a full graph with all non-null estimates of

{
β jk

}
and σ 2

jk
. Without

any constraint on the estimates, the graphmay potentially involve
many false positive edges. To accommodate the large number
of nodes, we propose to use a penalized likelihood to choose
an initial sparse graph skeleton and search for the optimum of
(6) within this reduced graph space. Based on model (2), the
marginal expectation and variance of Mij are

∑
k 6=j

(
βT
jkXi

)
Mik

and σ 2
εj

+
∑

k 6=j σ
2
jk
M2

ik
, respectively. Define Rij = Mij −

∑
k 6=j

(
βT
jkXi

)
Mik. By the method of moments, we obtain initial

estimates of the graph by minimizing the following objective

functions
∑n

i=1

(
Mij−

∑
k 6=j

(
βT
jkXi

)
Mik

)2
and

∑n
i=1

(
R2ij−σ 2

εj
−

∑
k 6=j σ

2
jk
M2

ik

)2
for each j with j = 1, · · · , p. In order to obtain an

initial sparse graph, ℓ1-norm penalty can be included tominimize
the objective function and obtain initial estimates

{
β̃ jk

}
,
{
σ̃ 2
jk

}
,

and
{
σ̃ 2

εj

}
:

p∑

j=1




n∑

i=1

(
Mij −

∑

k 6=j

(
βT
jkXi

)
Mik

)2
+ λ1

∑

k 6=j

‖β jk‖1


 ,

p∑

j=1




n∑

i=1

(
R̃2ij − σ 2

εj
−

∑

k 6=j

σ 2
jkM

2
ik

)2
+ λ2

∑

k 6=j

σ 2
jk


 ,

subject to σ 2
εj

> 0, σ 2
jk ≥ 0,

(7)

where R̃ij is Rij with βjk replaced by β̃ jk, the parameter estimated
from minimizing the first objective function of β at the current
iteration. Here we use the same tuning parameter across nodes
j = 1, · · · , p for illustration, although in practice node-
specific tuning parameter can be used at the price of increasing
computational burden. In cases where the topology of the graph
varies greatly across nodes, different tuning parameters can be
used. Given a regularization path with varying λ1 and λ2, we
select the optimal λ∗1 and λ∗2 using the BIC criteria and apply the
corresponding estimates as the initial skeleton. We set the edge
(j, k) of the initial graph as null if β̃ jk = 0 and σ̃ 2

jk
= 0.

2.2. Algorithms for Estimating DAG With
Mixed-Effects Model (DAG-MM) and
Justification
The initial graph, although asymptotically consistent
(Meinshausen and Bühlmann, 2006), may not satisfy the
DAG constraint due to that estimated β̂ jk 6= 0 and β̂kj 6= 0
or σ̂jk 6= 0 and σ̂kj 6= 0. Define graph A (set of nodes,
edges, and edge strength) as the set of non-null edges{
(j, k) :

√
‖β jk‖

2
2/q+ σ 2

jk
> 0

}
in the skeleton resulting from

(7). Let θA =
{
β jk, σ

2
jk

:(j, k) ∈ A; σ 2
εj

: j = 1, · · · , p
}
be the

parameters for graph A and nA be the number of non-zero edges
of A. To obtain a sparse DAG, a direct approach is to constrain
the number of edges in the graph by optimizing a regularized
likelihood:

min ln(θA), subject to A is a DAG and nA < C, (8)

where C is a tuning parameter controlling the number of edges in
A. The constraints in (8) guarantee the estimated graph is a DAG
and also perform edge selection. However, the optimization in (8)
is NP-hard, because one needs to evaluate all possible graphs that
satisfy the constraint nA < C. Furthermore, the computational
challenge is elevated due to the acyclic constraint.

Instead, we perform hard-thresholding to approximately
solve the ℓ0-norm constrained optimization problem in (8).
Specifically, after the estimates in θ̂A are obtained for a
given graph skeleton A, we perform hard-threshold on the
estimated edge weights by removing the edge with the smallest√
‖β̂ jk‖

2
2/q+ σ̂ 2

jk
from A and then update the graph A. Given an

updated graphA, we then start from the estimates obtained in the
previous iteration and update the estimate θ̂A. This procedure
continues until some criterion of optimality is met. In our
implementation, we use BIC as the criterion to select the optimal
graph.

The above procedure can be summarized into a DAG-
MM algorithm (described in Algorithm 1). The tasks include
identifying graph structure (set of nodes and edges), direction of
edges, and edge strength. DAG-MM consists of three main steps:
estimation of sparse skeleton and edge strength, edge orientation,
and iterative DAG building. In the first step, each node’s Markov
blanket is identified by penalized likelihood and edge strength
is obtained. In the second step, edge orientation is performed
by removing directionalities with weak dependence (computed
from fixed-effects parameters and variances of random effects).
In the third step, an iterative procedure performs edge pruning
using the norm of the edge connection strength and searches for
the DAG that satisfies the acyclic constraint using a general and
fast routine described in a DAG-Checking algorithm (described
in Algorithm 2 in Supplementary Material).

Algorithm 1 is computationally efficient for several reasons:
the sparse skeleton reduces the search space of DAGs; ranking
by the magnitude of edge effects provides search paths in the
DAG space; selection criteria BIC is only calculated when the
log-likelihood (6) is the correct model (i.e., the acyclic constraint
is satisfied); and the optimal graph is selected from candidate
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Algorithm 1: DAGWith Mixed Model (DAG-MM)

1. Sparse skeleton: Estimate an initial sparse graph AI by
solving the objective
function (7). Obtain the estimates θ̂AI by minimizing (6)
for AI .

2. Edge orientation: Initialize AR = AI . For (j, k) belongs
to {(j, k) :(j, k) ∈ AR and (k, j) ∈ AR}, prune the initial
graph:

(a) Calculate cjk =
√
‖β̂ jk‖

2
2/q+ σ̂ 2

jk
and rjk = cjk/ckj for all

(j, k) ∈ {(j, k) :(j, k) ∈ AR and (k, j) ∈ AR}.
(b) Remove the edge (j, k), where (j, k) = argminj,k rjk;

update AR = AR \ (j, k).
(c) Update the estimate θ̂AR by minimizing (6) for AR.

3. Iterative DAG building: Initialize A1 = AR. For i =

1, · · · , p ∗ (p− 1)/2 or until
Ai = ∅, search DAG with hard-thresholding:

(a) Update the estimate θ̂Ai by minimizing (6) for Ai.
(b) Calculate BIC if Ai is a DAG.
(c) Perform edge pruning by removing the edge (j, k)

with the smallest
√
‖β̂ jk‖

2
2/q+ σ̂ 2

jk
. Obtain the updated

graph Ai+1 = Ai \ (j, k), and check
whetherAi+1 satisfies acyclic constraint byAlgorithm 2

if Ai is not a DAG.

DAGs. We observe empirically that the full graph shrinks to a
DAG very fast in only a few iterations of the third step. For
implementation, we have developed main routines in C++ codes
with an R interface (R program available upon request).

2.3. Rationale of DAG-MM Algorithm and
Theoretical Result
Essentially DAG-MM uses the likelihood function as the
objective function in the optimization and thus belongs to the
class of score-based approaches for estimating DAG. Similar
to other score-based methods in this class (Heckerman et al.,
1995), the search is performed locally at each iteration. The first
step provides a sparse skeleton and consistent initial estimators
of DAG edge strength through moment estimation, with the
magnitude of estimated effects close to the truth parameter
values. In the second step, the direction that maximizes the
network edge strength is selected. The rationale is that the
overall edge strength under the correct direction is greater than
the strength under the incorrect one (which is close to null
effect). In the third step, the DAG with the lowest BIC objective
function is selected. Under the identifiability result in Theorem 1
shown below, the optima is uniquely identified, and the DAG-
MM algorithm may converge in a local neighborhood of true
parameters.

Next, we prove the identifiability of the DAG-MM procedure.
Here we omit the subscript i corresponding to subjects. For any
matrix B = {β jk}j,k and 6 = {σ 2

jk
}j,k, we call (B,6) to be

compatible with DAG, denoted by (B,6) ∼ DAG, if the edge
pair (j, k) such that β jk 6= 0 or σjk 6= 0 forms a DAG network.
Furthermore, we use L(B,6, θ) to denote the likelihood function
associated with (B,6) using the SEM, where θ = (σ 2

ε1
, ..., σ 2

εp
)T .

Note that if (B,6) ∼ DAG, then |I − B(X)− Ŵ| = 1, so

L(B,6, θ) = exp



−

p∑

j=1

[
(Mj −

∑
k 6=j(β

T
jkX)Mk)

2

∑
k 6=j σ

2
jk
M2

k
+ σ 2

εj

+ log(
∑

k 6=j

σ 2
jkM

2
k + σ 2

εj
)






 . (9)

In Theorem 1, we prove the identifiability by assuming σ 2
εj

> 0

for any j = 1, ..., p.

Theorem 1. Assume that P(βTX = 0) < 1 for any β 6= 0,
i.e., X is full rank with positive probability. Let (B0,60, θ0) be the
true values in the underlying true DAG, and let ch0(k) denote
the set of child nodes of the node k. Assume that for all nodes
k,

∑
j∈ch0(k)

(βT
0jk
X)2 is not a constant (heterogeneity assumption)

across nodes. Suppose (B,6, θ) ∼ DAG and L(B,6, θ) =

L(B0,60, θ0). Then, B0 = B, 60 = 6, and σ 2
0εj

= σ 2
εj

for

j = 1, ..., p.

The proof of the theorem is in the Supplementary Material
Section S3. The heterogeneity assumption implies that when
there are multiple child nodes, their squared edge strengths from
fixed effects are different across parental nodes. When there
is a single child node, the edge strengths are different across
subpopulations defined by covariates X.

3. SIMULATION STUDIES

We performed comprehensive simulations to evaluate DAG-MM
with varying sample sizes, n = 200, 500, 1, 000, and varying
number of nodes, p = 20, 50, 100. We let σ 2

ε2∗j−1
= 1.0 and

σ 2
ε2∗j

= 0.5, and the dimension of exogenous covariates X is 3:

two of them are continuous variables that follow the standard
normal distribution N(0, 1), and the other is a binary variable
that follows the Bernoulli distribution, Bernoulli(0.5). Note that
there are at most p ∗ (p − 1) ∗ (q + 1) + p parameters to be
estimated. For example, the total number of parameters is 1540
when p = 100 and q = 3. We fixed 12 non-zero edges as
shown in Figure 1 (black edges), and the other features were
independent noise variables. For the non-null edges, we let β jk =

(−0.5, 1.0,−1.5) and σ 2
jk
= 0.5. Several settings were considered

in our simulations:

1. Fixed effects only: β jk = (−0.5, 1.0,−1.5) and σ 2
jk

= 0 for

(j, k) ∈ A
0.

2. Random effects only: β jk = 0 and σ 2
jk
= 0.5 for (j, k) ∈ A

0.

3. Mixed effects 1: β jk = (−0.5, 1.0,−1.5) and σ 2
jk

= 0.5 for

(j, k) ∈ A
0.
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4. Mixed effects 2: β jk = (−0.5, 1.0,−1.5) for (j, k) ∈
{
(1, 2),

(1, 4), (4, 5), (7, 8), (8, 10), (11, 12), (12, 13), (14, 15)
}
and σ 2

jk
=

0.5 for (j, k) ∈
{
(1, 2), (1, 3), (1, 4), (2, 3), (6, 7), (8, 9), (8, 10),

(12, 13)
}
.

5. Homogeneous, constant effects without covariates or
random effects: we include a column of ones into Xi.
(βjk,2, ...,βjk,q+1)

′ = 0, σ 2
jk

= 0, βjk,1 = 1 for (j, k) ∈
{
(1, 2),

(1, 4), (4, 5), (7, 8), (8, 10), (12, 13
}
, and βjk,1 = −1 for (j, k) ∈{

(1, 3), (2, 3), (6, 7), (8, 9), (11, 12), (14, 15)
}
.

In each simulation, we compared DAG-MM with the commonly
used PC algorithm (Kalisch et al., 2012) and a two-step penalized
version of the PC algorithm, penPC (Ha et al., 2016). We used
the default settings in R-packages “pcalg" and “penPC" for these
alternative methods (e.g., with α = 0.1). The edge selection
performance was assessed by the number of true positive (TP)
edges and false positive (FP) edges, taking into consideration the
direction (i.e., an edge with a wrong direction will be counted as
false). To evaluate the estimation of causal effects, we calculated
the root sum squared (RSS) error of

{
β̂ jk

}
,
{
σ̂ 2
jk

}
, and

{
σ̂ 2

εj

}
,

which is defined as RSS(β̂) =
√∑

j 6=k ‖β̂ jk − β jk‖
2
2, RSS(̂σ

2) =
√∑

j 6=k

(
σ̂ 2
jk
− σ 2

jk

)2
, and RSS(̂σ 2

ε ) =

√∑p
j=1

(
σ̂ 2

εj
− σ 2

εj

)2
,

respectively.
The simulations were repeated 100 times for each setting.
Table 1 summarizes the number of TP and FP edge selections.

The initial graph selection (i.e., performing steps 1 and 2 in
Algorithm 1) correctly identified the true edges for all settings
with TP edges very close to 12, but also selected many FP
edges. Starting from the initial graph, the DAG-MM procedure
can retain almost all the TP edges and also remove most FP
edges, with a FP rate close to 0. Note that there are 9,900
edges in total when p = 100, and DAG-MM can still select
the 12 true edges from a total of 9,900 edges (0.05%). With
a small sample size of n = 200, the performance of DAG-
MM remains to be satisfactory, except in Setting 2. Setting 2
is more difficult because all edges involve latent effects. DAG-
MM selects about 40% of TP edges when n = 200 and selects
almost all true edges when the sample size increases to n =

1, 000, without including FP edges. PC and penPC algorithms are
designed for Setting 5 - constant effect without any covariates.
As expected, they perform the best for Setting 5 but not other
settings, and penPC selects fewer FP edges than PC algorithm
due to an initial penalized regression step. However, for Setting
5, DAG-MM significantly outperforms the two PC algorithms
in terms of fewer FP. Figure 1 visualizes the number of times
(greater than one) that an edge is selected in the simulations. The
visualization shows that DAG-MM performs satisfactorily and
correctly identifies the true network structure in all settings. In
contrast, penPC identifies many edges with incorrect direction
and includes many more FP edges.

Next, we examined the estimation performance of the strength
of the connection. Table 2 shows the RSS for parameters β , σ 2,
and σ 2

ε . Overall, RSS decreases to small values as sample size
n increases. The increase in the number of features p affects
the estimation of variance components σ 2 and σ 2

ε more than

FIGURE 1 | Frequency of edges selected in 100 simulations. Edge width is

proportional to the number of times an edge is identified in simulations. Black:

true positive edges; Blue: false positive edges; Red: false negative edges (true

edges that were never selected).

β . The results may suggest that for large p, including more
samples improves the estimation performance of the individual-
level heterogeneity associated with γijk. The sample size required
to obtain stable estimates depends on the true underlying graph
(e.g., number of nodes, number of true edges, edge strength and
its variability across subjects). In our simulation examples, for a
network with 20 nodes and 12 true edges, a small sample size of
n = 500 gives adequate performance under all five settings. With
a larger graph with 100 nodes and 12 true edges, n = 1, 000 gives
adequate performance.
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TABLE 1 | Simulation results of graph edge selection performance (TP: average number of true positive edges; FP: average number of false positive edges; FN: average

number of false negative edges) using the initial DAG selection, DAG-MM procedure, PC algorithm, and penPC algorithm for various sample sizes n and numbers of

features p.

Initial graph DAG-MM PC penPC

p = 20 p = 50 p = 100 p = 20 p = 50 p = 100 p = 20 p = 50 p = 100 p = 20 p = 50 p = 100

SETTING 1-FIXED EFFECTS ONLY

TP n = 200 12.0 12.0 12.0 12.0 12.0 12.0 1.8 1.4 1.2 2.7 2.5 2.4

n = 500 12.0 12.0 12.0 12.0 12.0 12.0 2.0 1.7 1.4 3.0 3.0 3.0

n = 1, 000 12.0 12.0 12.0 12.0 12.0 12.0 2.1 1.6 1.4 3.2 2.9 3.0

FP n = 200 33.1 77.9 162.8 0.2 0.0 0.1 9.3 18.7 48.6 18.1 26.5 46.0

n = 500 32.9 69.7 69.2 0.0 0.0 0.0 9.8 19.9 51.2 19.6 28.1 42.8

n = 1, 000 25.2 44.1 74.1 0.0 0.0 0.0 9.9 20.7 53.2 19.7 28.8 40.7

FN n = 200 0.0 0.0 0.0 0.0 0.0 0.0 10.2 10.6 10.8 9.3 9.5 9.6

n = 500 0.0 0.0 0.0 0.0 0.0 0.0 10.1 10.4 10.6 9.0 9.0 9.0

n = 1, 000 0.0 0.0 0.0 0.0 0.0 0.0 9.9 10.4 10.6 8.8 9.1 9.0

SETTING 2-RANDOM EFFECTS ONLY

TP n = 200 11.5 11.3 10.7 6.9 5.3 3.7 0.6 0.4 0.2 0.6 0.4 0.3

n = 500 12.0 11.9 11.9 10.4 10.3 10.0 0.5 0.3 0.2 0.6 0.3 0.2

n = 1, 000 12.0 12.0 12.0 11.3 11.3 11.3 0.3 0.2 0.1 0.4 0.3 0.2

FP n = 200 57.2 130.5 215.7 1.1 2.2 3.1 3.4 15.4 46.1 4.0 14.5 31.5

n = 500 56.3 96.4 167.0 0.3 0.8 1.4 3.5 15.7 49.7 3.9 13.3 25.9

n = 1, 000 49.8 115.6 109.3 0.0 0.2 0.2 3.6 16.9 51.7 4.3 14.7 25.0

FN n = 200 0.5 0.8 1.3 5.1 6.8 8.3 11.5 11.7 11.8 11.4 11.6 11.7

n = 500 0.0 0.1 0.1 1.6 1.7 2.0 11.5 11.8 11.8 11.4 11.7 11.8

n = 1, 000 0.0 0.0 0.0 0.7 0.7 0.7 11.7 11.8 11.9 11.6 11.7 11.8

SETTING 3-MIXED EFFECTS 1

TP n = 200 12.0 12.0 12.0 12.0 12.0 11.9 1.7 1.4 1.1 2.6 2.5 2.4

n = 500 12.0 12.0 12.0 12.0 12.0 12.0 1.9 1.6 1.4 3.0 2.9 2.8

n = 1, 000 12.0 12.0 12.0 12.0 12.0 12.0 2.1 2.0 1.4 3.1 3.2 3.0

FP n = 200 114.8 228.7 362.5 0.0 0.2 0.7 8.9 18.4 47.5 17.1 26.8 44.1

n = 500 109.6 266.8 431.3 0.0 0.0 0.0 9.2 19.7 51.2 17.9 27.9 41.6

n = 1, 000 138.9 185.8 326.4 0.0 0.0 0.0 9.4 20.2 53.8 18.5 29.1 40.5

FN n = 200 0.0 0.0 0.0 0.0 0.0 0.1 10.3 10.6 10.9 9.4 9.5 9.6

n = 500 0.0 0.0 0.0 0.0 0.0 0.0 10.1 10.5 10.7 9.0 9.2 9.2

n = 1, 000 0.0 0.0 0.0 0.0 0.0 0.0 9.9 10.0 10.6 8.9 8.8 9.0

SETTING 4-MIXED EFFECTS 2

TP n = 200 11.7 11.4 11.2 10.7 10.3 9.8 0.6 0.6 0.4 1.1 1.1 0.9

n = 500 11.9 11.8 11.7 11.6 11.3 11.1 0.5 0.4 0.4 1.0 1.0 0.9

n = 1, 000 12.0 12.0 11.9 11.6 11.6 11.5 0.6 0.5 0.5 1.1 1.2 1.1

FP n = 200 81.7 121.4 237.9 0.6 2.3 5.5 8.0 18.3 47.8 12.2 22.2 41.3

n = 500 56.1 155.5 258.0 0.1 0.4 0.8 8.3 18.9 50.8 12.7 21.6 36.4

n = 1, 000 92.1 96.0 161.6 0.0 0.1 0.1 8.2 19.7 52.4 13.5 22.2 33.8

FN n = 200 0.3 0.6 0.8 1.3 1.7 2.2 11.4 11.4 11.7 10.9 10.9 11.1

n = 500 0.1 0.2 0.3 0.4 0.7 0.9 11.5 11.6 11.6 11.0 11.0 11.1

n = 1, 000 0.0 0.0 0.1 0.4 0.4 0.5 11.4 11.5 11.6 10.9 10.8 10.9

SETTING 5-HOMOGENEOUS (CONSTANT EFFECT)

TP n = 200 12.0 12.0 12.0 11.9 12.0 11.9 11.2 10.8 10.3 11.9 11.9 11.8

n = 500 12.0 12.0 12.0 12.0 12.0 12.0 11.8 11.5 11.0 12.0 12.0 12.0

n = 1, 000 12.0 12.0 12.0 12.0 12.0 12.0 11.9 11.6 11.3 12.0 12.0 12.0

FP n = 200 37.3 24.6 68.9 0.3 1.3 5.0 6.8 14.7 42.6 12.4 19.3 36.9

n = 500 23.2 49.6 22.2 0.2 0.3 0.8 5.7 14.5 43.7 12.6 19.3 33.9

n = 1, 000 36.3 22.6 31.8 0.0 0.7 3.6 5.3 14.5 45.3 12.5 19.2 30.4

FN n = 200 0.0 0.0 0.0 0.1 0.0 0.1 0.8 1.3 1.7 0.1 0.2 0.2

n = 500 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 1.0 0.0 0.0 0.0

n = 1, 000 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.8 0.0 0.0 0.0
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TABLE 2 | Simulation results of root sum-squared (RSS) error of parameters for the connection strength estimated by DAG-MM under various sample sizes n and

numbers of features p.

β σ2 σ2
ε

p = 20 p = 50 p = 100 p = 20 p = 50 p = 100 p = 20 p = 50 p = 100

SETTING 1-FIXED EFFECTS ONLY

n = 200 0.312 0.305 0.358 0.077 0.087 0.102 0.388 0.576 0.832

n = 500 0.184 0.188 0.189 0.045 0.045 0.049 0.232 0.360 0.505

n = 1, 000 0.130 0.131 0.130 0.037 0.034 0.032 0.162 0.253 0.357

SETTING 2-RANDOM EFFECTS ONLY

n = 200 0.527 0.501 0.479 1.347 1.708 1.977 1.065 1.307 1.601

n = 500 0.353 0.369 0.386 0.739 0.815 0.943 0.523 0.631 0.714

n = 1, 000 0.254 0.270 0.270 0.461 0.496 0.485 0.294 0.400 0.458

SETTING 3-MIXED EFFECTS 1

n = 200 0.606 0.667 1.063 0.635 0.857 4.058 0.523 0.693 0.962

n = 500 0.367 0.362 0.363 0.391 0.355 0.348 0.347 0.433 0.564

n = 1, 000 0.254 0.261 0.262 0.259 0.264 0.248 0.227 0.300 0.387

SETTING 4-MIXED EFFECTS 2

n = 200 0.559 0.624 0.797 0.963 1.336 2.359 0.649 0.888 1.243

n = 500 0.333 0.345 0.365 0.478 0.593 0.783 0.375 0.462 0.627

n = 1, 000 0.234 0.229 0.233 0.351 0.389 0.427 0.252 0.333 0.436

SETTING 5-HOMOGENEOUS (CONSTANT EFFECT)

n = 200 0.358 0.348 0.447 0.125 0.303 0.837 0.479 0.647 0.936

n = 500 0.157 0.166 0.157 0.073 0.112 0.205 0.251 0.389 0.530

n = 1, 000 0.098 0.143 0.226 0.048 0.054 0.093 0.172 0.269 0.363

The computing time for DAG-MM is highly manageable. For
example, in simulation Setting 5, the running time (averaged over
100 replicates) for simulated data with n = 1, 000 is 0.4 s for
p = 20, 1.2 s for p = 50, and 4.4 s for p = 100, compared to 3.2,
16.8, and 66.5 s, respectively, for the penPC algorithm.

4. APPLICATIONS TO PROTEIN
SIGNALING NETWORK AND BRAIN
DEPENDENCE NETWORK

4.1. Protein Signaling Network
Our first application involved a study that examined the
interaction between major mitogen-activated protein kinase
(MAPK) pathways in human CD4+ T cells. Using intracellular
multicolor flow cytometry, single-cell protein expression levels
were measured for 11 proteins in the MAPK pathways in Sachs
et al. (2005). Six experiments were performed using different
stimuli, each targeting a different protein in the selected pathway
(Sachs et al., 2005), and thus both interventional and unperturbed
observational data were available for our application. Various
data-driven methods were proposed to estimate the protein
signaling networks, including Bayesian network analyses (Sachs
et al., 2005; Mooij and Heskes, 2013) and ICP using combined
interventional and observational data (Meinshausen et al., 2016),
and results were compared with a consensus network in the
literature (Mooij and Heskes, 2013; Meinshausen et al., 2016).
The datasets are available from https://github.com/lawrennd/
rca/tree/master/matlab/PROTSIG_DATA. There were a total of
7392 available measurements in both perturbed and unperturbed

TABLE 3 | Comparison with previously identified causal relationships.

Reported† PC ICP DAG-MM1 DAG-MM2

Yes 8 10 8 9

No 4 5 10 2*

Total number of edges previously identified in the literature is 34 (see summary Table S1

in Meinshausen et al., 2016). ICP (Meinshausen et al., 2016) used both observational

and interventional data. Proposed DAG-MM1 (fixed effects only) and DAG-MM2 (mixed

effects) used only observational data.
†Whether an edge was previously reported in the literature.
∗Edges in reverse direction of those reported in the literature.

settings in the Experiments 1-9, which were used by Sachs et al.
(2005) and Meinshausen et al. (2016) in their main analyses.

In our analyses, we applied DAG-MM to learn the causal
signaling network using unperturbed, observational data only,
including anti-CD3 + anti-CD28, anti-CD3/CD28 + ICAM-
2, and anti-CD3/CD28 + LY294002. These experiments did
not directly intervene on the activity of 11 proteins. The
observational data consisted of 2,594 observations and were pre-
processed using a standard arcsinh transformation for biological
interpretability. DAG-MM with fixed effects only (DAG-MM1)
and with mixed effects (DAG-MM2) were applied. Meinshausen
et al. (2016) used a subset of 8 of the 9 environments and
one of the environment is considered as observational data
without external interventions. Each environment contains
between 700 and 1,000 samples. There are 11 nodes in the
signaling network. Sachs et al. (2005) identified 17 edges and
Meinshausen et al. (2016) identified 7 edges by ICP and 13

Frontiers in Genetics | www.frontiersin.org 8 October 2018 | Volume 9 | Article 430

https://github.com/lawrennd/rca/tree/master/matlab/PROTSIG_DATA
https://github.com/lawrennd/rca/tree/master/matlab/PROTSIG_DATA
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Li et al. Learning DAGs From Observational Data

FIGURE 2 | Estimated protein signaling network. Black: edges identified by

DAG-MM2 and also reported previously (see summary Table S1 in

Meinshausen et al., 2016); Blue: edges are identified by DAG-MM2 but not

reported previously; Gray: edges previously reported edges but not identified

by DAG-MM2.

edges by hiddenICP. All these identified edges were summarized
in the Supplementary Table S1 in Meinshausen et al. (2016).
Our results were compared with those obtained using the PC
algorithm as reported in Kalisch et al. (2012) and with ICP as
reported inMeinshausen et al. (2016) for both interventional and
observational data.

Table 3 summarizes the number of selected edges by each
method and whether these edges were also previously reported
in the literature. Treating the edges previously identified and
reported in Supplementary Table S1 of Meinshausen et al. (2016)
as “gold standard,” DAG-MM2 reduces the number of FP edges
to a greater extent than DAG-MM1. PC and ICP identified a
similar number of true positive edges as DAG-MM2, but with a
higher number of FP edges. In Figure 2, we show edges identified
previously in Meinshausen et al. (2016) or by our methods (edges
identified elsewhere, e.g., between AKT and RAF are not shown).
We focus on comparing DAG-MM2 with ICP. The skeleton
of DAG-MM2 and ICP is almost identical, with DAG-MM2
identifying one more edge, Plcg → PIP3. Two edges were in
the reverse direction of those reported in literature, which might
due to feedback loops that are expected to be present in this
system (Meinshausen et al., 2016). The striking similarity of
DAG-MM2 identified from observational data alone and ICP
using interventional data suggests robustness and the ability of
the former to infer causal relationships from observational data
by including random effects.

4.2. Brain Gray Matter Atrophy
Dependence Network
Our second application involved a study on atrophy networks
in the brains of patients with HD. HD is a monogenic

neurodegenerative disorder caused by an expansion of the CAG
trinucleotide (≥36) in the huntingtin gene (O’Donovan, 1993).
The hallmark of HD neuropathology is brain atrophy, in terms
of gray matter loss within the striatum and white matter loss
around the striatum (Ross et al., 2014). While evidence shows
that selective brain regions undergo atrophy at different rates
(Paulsen et al., 2014), it is unknown how these regional atrophies
depend on one another and act together as disease progresses. In
this application, we aimed to construct brain atrophy dependence
networks using data collected from a large natural-history study
of HD progression, PREDICT-HD (Paulsen et al., 2014), and we
aimed to corroborate findings in an independent study, TRACK-
ON (Klöppel et al., 2015). Subcortical gray matter loss of volume
and gray matter cortical thinning were considered as measures
of brain atrophy and hallmarks of HD. Thus, we examined
dependencies between rates of volume loss and cortical thinning
in different brain regions.

For the PREDICT-HD study, we included individuals who
carried an expansion of the CAG trinucleotide in the hungtington
gene and thus were at risk of HD but had not been diagnosed at
baseline. Data consisted of 824 subjects with 68 cortical regions
of interest (ROI) and 22 subcortical ROIs measured by structural
magnetic resonance imaging (MRI). Longitudinal assessments
were obtained from these subjects with a median follow-up
period of 3.9 years. The details of MRI data segmentation,
preprocessing, and study design are in Paulsen et al. (2014).
A linear mixed-effects model with subject-specific random
intercepts and random slopes was used to estimate the rate of
volumetric change and the rate of cortical thickness change at
each ROI for each subject. Rates of change at ROIs form the
nodes in the brain atrophy dependence network. Because CAG
repeats and age are two variables with substantial contribution
to HD, a covariate based on the CAG-age product (CAPs score
in Zhang et al., 2011) was created to indicate a subject’s
risk of receiving a diagnosis of HD (low, medium, and high
risk). Baseline age was dichotomized into two groups (young
vs. old) based on the median split. A total of seven covariates
was included (high risk, medium risk, baseline age group,
sex, and baseline clinical measures: total functioning capacity
[TFC], total motor score [TMS], symbol digit modalities test
[SDMT]).

Potentially there are 462 edges (involving 4,180 parameters)
for the subcortical gray matter volumetric atrophy network
and 4,556 potential edges (involving 41,072 parameters) for the
cortical gray matter thickness network. The proposed DAG-MM
identified 5 connections (Supplementary Material Section S4,
Table S1) from the subcortical network (e.g., left thalamus to
right accumbens, and right pallidum to left putamen), which
suggests that most subcortical ROI atrophy rates do not depend
on other ROIs. In contrast, a denser network was identified for
the cortical thickness network, with 58 connections identified
(Supplementary Material Section S4, Table S2), suggesting that
cortical thinning acts in a more concerted fashion, consistent
with the neuroimaging literature on cortical networks in HD
(He et al., 2008). PenPC identified a very dense network for
both subcortical volumes (92 edges) and cortical thickness
networks (480 edges). Due to its non-sparseness and difficulty in
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interpretation, we omit results from PenPC and report DAG-MM
in the subsequent presentation.

ROIs were further organized into modules related to HD
pathology as in McColgan et al. (2017) for better interpretation.
We present these results in Figure 3, where the modular-wise
strength of the connection was computed as the total strength
of connections within a module [summation of βjk between all
pairs of connected nodes (j, k) in the same module] or between
two modules (summation of βjk between all pairs of connected
nodes (j, k) for j in one module and k in the other). Figure 3
shows that the two strongest connections in the average modular
graph (with covariates fixed at the sample averages) are the inter-
hemispheric links between the left and right temporal regions
and between the left and right motor-occipital-parietal regions.
For within-modular connection, the right side motor-occipital-
parietal module has the strongest strength.

Using the estimated parameters (e.g., β jk) from model (2)
and (3), we also examined differences between the networks
for high-risk group vs. low-risk group, and medium-risk vs.
low-risk (other covariates fixed at the sample average). The
differential edge strength of the graphs for subjects in two
groups was computed based on βT

jkX1 − βT
jkX2, where X1 and

X2 were covariates for subjects in each group. For the high-
vs. low-risk group comparison (Figure 3), the largest difference
is in the inter-hemispheric temporal regions. Most within-
module and between-module connections show a loss of strength
in the high-risk group. For example, a large loss of intra-
modular connections within the right motor-occipital-parietal,
right temporal, left fronto-cingulate is seen. A loss of between-
module connections is observed between the left and right
motor-occipital-parietal regions and between the left fronto-
cingulate and left and right temporal regions. A minor gain of
connection is seen within and between a few modules. A similar
trend with a milder effect is present for most connections when
contrasting medium-risk and low-risk groups. When comparing
older adults with younger adults, most connections show a loss
of strength in the older group (Figure 3). The largest loss in the
intra-modular connections is in the right temporal region. A loss
of between-module connections occurs between the left and right
fronto-cingulate regions, between the left fronto-cingulate and
left and right temporal regions, between the left fronto-cingulate
and left motor-occipital-parietal regions, and between the right
fronto-cingulate and right temporal regions.

In Supplementary Material Section S4, Figure S1, we show
the node-wise DAGs and the difference of the estimated network
between groups with different baseline risk of HD diagnosis.
At the nodal level, we see a loss of connection in the high-
risk group and older group in a large number of links. The
connection with the largest difference is L.caudalmiddlefrontal
⇒ L.rostralmiddlefrontal (based on L2-norm). When effects are
aggregated from nodes within modules, group differences are
more apparent (Figure 3). The strength of connections between
nodes is summarized in Supplementary Material Section S4,
Tables S1, S2. Among all covariates, the three covariates with
the largest effects aggregated across all connections (based
on L2-norm) are high-low risk group contrast, medium-low
risk contrast, and older-younger adult contrast. Substantial

heterogeneity of connections due to latent factors not captured
by covariates is observed for almost all links (represented
by σ 2 in Supplementary Material Section S4, Tables S1, S2).
We show the variation of the heterogeneous effects (standard
deviation: σjk) of connections in Supplementary Material
Section S4, Figure S2. The connection with the highest variation
is L.caudalmiddlefrontal ⇒ L.posteriorcingulate. This analysis
demonstrates substantial heterogeneity of the brain dependence
networks among individuals.

4.2.1. A Validation Study Using Independent Samples
We sought to corroborate our estimated cortical gray matter
network using white matter cortical connectivity network data
obtained from an independent study, TRACK-ON (Klöppel et al.,
2015; McColgan et al., 2017). TRACK-ON is a longitudinal study
of premanifest HD, with 84 subjects and a median follow-up
length of 1.89 years. White matter structural connection network
was constructed from diffusion tensor imaging (DTI) technology,
and connection strengths between pairs of nodes were computed
by probabilistic tractography. A similar algorithm as PREDICT-
HD was used to define regions of interest, and the same method
that was used to partition nodes intoHD pathology also informed
modules (McColgan et al., 2017). Detailed information on the
study design and data pre-processing can be found in McColgan
et al. (2017). With longitudinal DTI measurements available,
a linear mixed-effects model was used to compute the rate of
change in connections between nodes and their p-values. Baseline
connection, CAG, age, gender, motor score, SDMT, and TFC
were included as covariates. Nodes were classified into modules
by the same method as the structural MRI network. Inter-
modular connection was defined as present if at least c pairs
(c = 1, 2) of nodes (each node resides in the module being
considered) were connected after the false discovery rate (FDR)
correction (q < 0.1). Presence of intra-modular connection
was defined similarly based on the number of pairs of nodes
connected (with q < 0.1) within a module. In total, 30
white matter atrophy connections were identified after the FDR
correction.

Supplementary Material Section S4, Table S3 summarizes
the module-wise white matter structural connectivity network
estimated from the DTI technology. The average modular
gray matter atrophy network and the white matter connection
network both indicate a strong intra-modular connection in
the right-side motor-occipital-parietal region and a strong
interhemispheric connection in the left and right motor-
occipital-parietal regions, whereas a weak connection (or no
connection for the white matter network) was present in the
left side of the same module. For some of the other four
modules, the intra-modular connection strength for gray matter
and white matter appears to be complementary: a stronger
link in the former corresponds to a weaker link in the latter.
For example, connections between the right temporal and right
motor-occipital-parietal regions and between the left and right
temporal regions show a moderate to strong dependence in the
gray matter network, but are absent in the white matter network.
The link between the right-fronto-cingulate region is strong in
the white matter network, but weak in the gray matter network.
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FIGURE 3 | Estimated cortical thickness atrophy dependence network (organized into modules). The node size is proportional to the intra-modular connection

strength (edge effects) and scaled within each subfigure. Red nodes: positive effects. Blue nodes: negative effects.

TABLE 4 | Operating characteristics of cortical gray matter atrophy dependence

network evaluated against the white matter structural connectivity network treated

as the reference.

c AUC (95%CI) Sensitivity Specificity PPV

1 0.80 (0.61, 0.99) 0.57 1.00 1.00

2 0.75 (0.48, 1.00) 0.75 0.85 0.75

These observations might suggest a mechanism that constrains
the total modular connections in the gray matter and white
matter networks; thus, a strong connection in one correlates with
a weak connection in the other.

We evaluated the consistency of the gray matter cortical
network (obtained by DAG-MM2 statistical modeling) with
the white matter cortical structural connectivity network
(directly measured by DTI technology). The overall operational
characteristics of the gray matter network are reported in
Table 4, treating the white matter network as the reference
since white matter connections were directly measured by DTI.
Due to a potential complementary effect on the total number
of connections between and within modules, the number of
connections in the gray matter and white matter networks is
negatively correlated. Thus, we computed the sensitivity as P(L ≤

l|C ≥ c), where L denotes the number of links in the gray
matter network, and C denotes the number of links in the white
matter network. We fixed the connectivity threshold of the white
matter network at c = 1 or c = 2, and we evaluated the
overall consistency of the gray matter network across all levels
of threshold l by computing the AUC across l. The AUC is 0.80
(95%CI: 0.61, 0.99) at c = 1 and 0.75 (95%CI: 0.48, 1.00) at
c = 2. Using a higher threshold c increases sensitivity, but
with a slightly decreased specificity and a slightly lower AUC.
These results show that at the modular level, the gray matter
cortical atrophy network estimated by DAG-MM has adequate
consistency with the white matter structural connectivity
network.

McColgan et al. (2017) reported a modular white matter
network obtained by comparing connectivity in patients with
HD and healthy controls and applying FDR adjustment (Figure
2 in McColgan et al., 2017). When we compare our results to
theirs, we see similarity, in terms of connections between the
left and right temporal regions and between the left and right
motor-occipital-parietal regions.

5. DISCUSSION

In this article, we propose a statistical framework for estimating
DAGs with mixed effects in multi-dimensional settings, referred
to as DAG-MM. The framework captures covariate-dependent
causal effects, along with residual effect modification, by building
a series of mSEMs. Our framework is a two-stage approach,
which first obtains a sparse initial skeleton (undirected graph)
and then searches for DAG through a solution path within
the selected skeleton and an easily implemented DAG checking
procedure. The DAG-MM method is computationally efficient
and has shown satisfactory performance, especially for edge
selection and orientation, in both simulation studies and real-
data applications. The advantage arises when taking into account
the covariate-dependent structure and residual heterogeneous
effects through the use of random variables. Specifically, the joint
distribution of the nodes in model (2) are non-Gaussian due
to these random effects and their multiplicative form with the
other nodes. This asymmetry in the joint distribution permits
the identification of causal relationships from observational data,
which we formally prove in Theorem 1. We note that the edge
orientation is more accurate than PC and its derivatives, which
assume a symmetric joint distribution. For computation, the
regularized likelihood-based approach identifies a sparse skeleton
in an efficient fashion.

In the analyses of brain atrophy dependence network in
patients with HD, some modules of the gray matter network
estimated from the PREDICT-HD study share similarity with
the white matter connectivity network estimated from an
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independent study. For some other modules, the results suggest
a complementary mechanism that constrains the total modular-
wise connections in gray and white matter networks. In the
second application, the protein signaling network constructed
from DAG-MM with observational data and invariance causal
prediction (ICP) with interventional data (Meinshausen et al.,
2016) is highly similar. The latter approach assumes causal
relationships remain invariant under interventions that do
not directly target a cause. This similarity suggests that the
random effects in mSEM may serve a similar role as a random
perturbation of the node distribution. Under the invariance
assumption, the true causal effects are stable under such
perturbation, and thus, DAG-MM generates similar results as
ICP, but with only observational data.

The network structure among nodes can be further
parameterized to incorporate prior information about the
causal effects. For example, the knowledge on pathways in
the gene regulatory network available in public databases or
discoverable in published literature can be included by removing
or adding the edge between nodes j and k or by restricting the
edge direction from j to k. Model (3) can handle this structure
by specifying some values of β jk or/and σ 2

jk
as zero. In addition,

exploring other methods of edge orientation including Bayesian
model choice methods is worth future research. Another
extension is to analyze temporal data Mi with two time points
t0 and t1, where the desirable temporal ordering corresponds to
removing all edges fromMi(t1) toMi(t0) and modeling the effect
fromMi(t0) toMi(t1).

DAG-MM can be extended to handle multiple types of
data, including neuroimaging, protein, and other biomarker
measures of different scales, in a regression framework by
choosing the appropriate regression for each data type. When
the dimension of covariates X is high (e.g., large number of
genomic measures), feature selection can be imposed on β in
order to choose important covariates. Here, we use mSEMs
to estimate network connectivity, but we did not differentiate
the fixed effects from the random effects. Our main algorithm
is a backward selection method and does not allow edge

addition. To overcome this issue, one may start DAG-MM from

multiple skeletons, which is an approach that provides a more
stable edge selection. Other interesting extensions include direct
modeling of a dynamic network among M(t) to allow for time-
varying network structure and associate network connections
with clinical outcomes. Lastly, the inference of a subject-
specific graph (e.g., p-values and confidence intervals) can be
based on bootstrap (i.e., bootstrap data B times, and construct
bootstrap confidence interval for DAG edge strength). However,
a formal treatment of inference procedure is a topic worth future
research.
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