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Alternative splicing (AS) not only ensures the diversity of gene expression products, but

also closely correlated with genetic diseases. Therefore, knowledge about regulatory

mechanisms of AS will provide useful clues for understanding its biological functions.

In the current study, a random forest based method was developed to classify included

and excluded exons in exon skipping event. In this method, the samples in the dataset

were encoded by using optimal histone modification features which were optimized by

using the Maximum Relevance Maximum Distance (MRMD) feature selection technique.

The proposed method obtained an accuracy of 72.91% in 10-fold cross validation

test and outperformed existing methods. Meanwhile, we also systematically analyzed

the distribution of histone modifications between included and excluded exons and

discovered their preference in both kinds of exons, which might provide insights into

researches on the regulatory mechanisms of alternative splicing.

Keywords: alternative splicing, exon skipping, histone methylation, histone acetylation, random forest

INTRODUCTION

RNA splicing is a process that eliminates introns from the precursor messenger RNA (pre-mRNA)
so that exons can be linked together, which is an essential step of gene expression (Tilgner et al.,
2012). In some cases, RNA splicing can create a range of unique proteins by orchestrating exons of
the same pre-mRNA in different modes (Black, 2003). This phenomenon is known as alternative
splicing. Among the numerous modes of alternative splicing, exon skipping is the most common
one, in which a particular exon may be included in mRNAs under some conditions and omitted
from the mRNA in others (Black, 2003).

It has been demonstrated that ∼95% of human genes undergo alternative splicing (Wang
et al., 2008a). The multiple transcript variants of alternative splicing from a single gene often
have different biological functions. However, our knowledge about the regulatory mechanism of
alternative splicing is far from satisfactory.

In the past decades, a series of researches have been carried out in order to reveal the
mechanisms of alternative splicing, and demonstrated that alternative splicing is regulated
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not only on the genome level but also on the epigenome
level (Fox-Walsh and Fu, 2010). On the genome level, there
are exonic and intronic splicing enhancers (ESEs and ISEs)
and silencers (ESSs and ISSs), which are sequence motifs that
can be recognized and bound by proteins (Wang and Burge,
2008; Barash et al., 2010). Although the information on genome
level can explain some of the splicing events, it is not sufficient
for cell type specific and stage type specific RNA splicing
(Wang et al., 2008a).

Recent researches have demonstrated that histone
modifications from the epigenome level also participate in
medicating RNA splicing. For example, Luco et al. have
demonstrated that the alternative splicing of the FGFR2
(Fibroblast growth factor receptor 2) gene is regulated by
H3K36me3 (Luco et al., 2010). Zhou et al. found that the exon
inclusion event of human Fibronectin (FN1) gene is medicated
by H3K9me2 and H3K27me3 (Zhou et al., 2014). Shindo et al.
found that combinatorial effect of histone modifications also
contribute to alternative splicing patterns among different cell
lines (Shindo et al., 2013). These results hint us that finding
the splicing code from histone modifications will provide new
insights into RNA splicing regulatory mechanisms.

Accordingly, several computational methods have been
proposed to classify included and excluded exons in exon
skipping event based on histone modifications. In 2012, Enroth
et al. developed a rule-based model and obtained an accuracy
of 72% (Enroth et al., 2012). Later on, Chen et al. proposed
a quadratic discriminant (QD) function based method and
obtained an accuracy of 68.5% (Chen et al., 2014). More
recently, by integrating features of genomic sequences and
histone modifications, Xu et al. proposed a deep learning
approach to predict splicing patterns (Xu et al., 2017). These
works promote the research progress on revealing RNA splicing
regulatory mechanisms. However, the performance of these
methods remains unsatisfactory.

In the current study, we proposed a new method to classify
included and excluded exons in exon skipping event. The
Maximum Relevance Maximum Distance (MRMD) feature
selection technique was used to winnow out the optimal
histone modification features. By using the histone modification
information, the Random Forest (RF) was performed to establish
the prediction model. Results of 10-fold cross validation test
demonstrate that the proposed method is reliable.

MATERIALS AND METHODS

Dataset
The dataset used to train and test the predictive model was
constructed by Enroth et al. (Enroth et al., 2012). According
to the gene expression data of CD4+ T cell, Enroth et al.
obtained 13,374 “included” and 11,587 “excluded” exons from
the exon skipping event of the human genome (Enroth et al.,
2012). These exons are all 50 bp long with flanking introns
longer than 360 bp, and none of them overlap to each other.
Enroth et al. further mapped the 20 kinds of histone acetylation
(Barski et al., 2007) and 18 kinds of histone methylation (Wang
et al., 2008b) to those exons and their closest 180 bp of

flanking intronic regions. By doing so, they obtained the histone
modification signals and represented them by binary attributes,
namely present (noted by “1”) and absent (noted by “0”) over
the three regions (preceding, on and succeeding the exons).
After removing exons with no histone acetylation or methylation
modification present, a benchmark dataset containing 12,692
“included” exons and 11,165 “excluded” exons with histone
acetylation and methylation information was obtained.

Sample Formulation
By using the binary attributes of 20 kinds of histone acetylation
and 18 kinds of histone methylation (Supplementary Table S1),
the samples in the dataset can be represented by a 114-
dimensional vector given by

R = [Φ1, Φ2, Φ3, · · · Φi, · · · , Φ114]
T (1)

where T is the transpose operator. The values for the
vector component 8i can be “1” (indicating the presence of
histone modification) or “0” (indicating the absence of histone
modification). 81, 82, and 83 indicate the presence or absence
of H3K27me3 on, preceding and succeeding exons, respectively;
84, 85, and 86 indicate the presence or absence information
for H3K4me2, and so forth. More details can be found in
Supplementary Table S1. The encoded samples by using histone
modification information are available at https://github.com/
chenweiimu/splicing.

Feature Selection
If the exons are represented by a vector of 114 dimensions, it may
bring out the following three unfavorable problems (Feng et al.,
2013): (1) including redundant or irrelevant information; (2)
leading to over-fitting problems and reducing the generalization
capacity of the model; (3) increasing the computational time.
In order to alleviate irrelevant features, a series of effective
feature selection techniques have been proposed, such as analysis

FIGURE 1 | The IFS curve for classifying “included” and “excluded” exons in

the exon skipping event. An IFS peak of 79.79% was obtained when using the

optimal 96 features to perform predictions.
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TABLE 1 | Performance metrics of different classifiers for classifying included and

excluded exons.

Method Sn (%) Sp (%) Acc (%) MCC

BayseNet 66.84 55.02 61.33 0.22

Naïve Bayes 68.00 53.58 61.25 0.22

J48 Tree 61.06 53.20 57.38 0.14

SVM 67.82 59.72 64.05 0.27

Random Forest 67.03 79.65 72.91 0.46

TABLE 2 | A comparison of the current method with existing method for

classifying included and excluded exons.

Method Sn (%) Sp (%) Acc (%) MCC

Chen et al’s methoda 68.90 66.70 68.50 –

Current method 67.03 79.65 72.91 0.46

a(Chen et al., 2014).

of variance (Lin and Ding, 2011; Lin et al., 2015), Minimal
Redundancy Maximal Relevance (Peng et al., 2005; Chen et al.,
2014), and Diffusion Maps (Coifman et al., 2005).

In this study, the Maximum Relevance Maximum Distance
(MRMD) approach was employed to select the optimal features,
which has been widely used in the realm of bioinformatics since
proposed in 2016 (Zou et al., 2016). As indicated by Zou et al.
(2016), the major concern of MRMD is searching a kind of
features ranking metric which contains two aspects: one is the
relevance between sub feature set and target class, and the other
is redundancy of sub feature set. The more details about MRMD
can be found in Zou et al.’s work 2016.

Random Forest
Random forest (RF) is an ensemble of a large number of decision
trees (Breiman, 2001). Each tree in the ensemble is trained
on a subset of training instances that are randomly selected
from the given training set. Instead of using all the features, a
random subset of features is selected, further randomizing the
tree. The prediction results of RF are based on the ensemble of
those decision trees and each tree gives a classification result.
Finally, the RF classifier selects the prediction result that has the
largest number of votes from the classification results. Owing
to its advantages in dealing with high-dimensional data, RF has
been used in various areas of bioinformatics (Ferrat et al., 2018;
Manavalan et al., 2018; Wang et al., 2018).

Cross Validation
In statistical prediction, three cross-validation methods, namely
independent dataset test, sub-sampling (or n-fold cross-
validation) test and jackknife test, are often used to evaluate
the anticipated success rate of a predictor. Among the three
cross-validation methods, the jackknife test is deemed the least
arbitrary and most objective one (Chen et al., 2015, 2018; Feng
et al., 2018). However, to reduce the computational time, the 10-
fold cross validation test was used to evaluate the performance of

the proposed method. For 10-fold cross-validation, the training
dataset is randomly partitioned into ten training subsets, and
nine subsets were used for training and the remaining one was
used for testing. This process was repeated ten times in such a
way to ensure that each set is utilized once for testing the model
that was trained on the other nine.

Performance Evaluation
The performance of the proposed method was evaluated by using
the following four metrics, namely sensitivity (Sn), specificity
(Sp), Accuracy (Acc), and the Mathew’s correlation coefficient
(MCC), which are expressed as (Chen et al., 2017; Lin et al., 2017;
Jia et al., 2018; Zeng et al., 2018)































Sn = TP
TP+FN × 100%

Sp = TN
TN+FP × 100%

Acc = TP+TN
TP+FN+TN+FP × 100%

MCC = (TP×TN)−(FP×FN)√
(TP+FN)×(TP+FP)×(TN+FN)×(TN+FP)

(2)

where TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively.

RESULTS AND DISCUSSION

Performance Evaluation
By encoding the included and excluded exons in the dataset using
the histone modification, each of the sample was represented
by a 114-dimensional vector (Equation 1) used as the input
vector of RF to build a computational model. By examining the
performance of the model via the 10-fold cross-validation test,
we obtained an accuracy of 63.49%, which is still far from our
satisfaction. In order to improve the performance of the proposed
model, it is necessary to choose the optimal number of features to
build a robust and efficient predictive model.

We therefore used the MRMD together with the Incremental
Feature Selection (IFS) strategy to build the optimal feature
subsets. We ranked the 114 features using the MRMD algorithm.
The 114 ranked features were then added one by one from
lower to higher rank. This procedure was repeated 114 times,
and for each time a RF model was built. Their performances
were investigated by using the 5-fold cross-validation test. The
most optimal features can be obtained when the accuracy reaches
its maximum. The IFS was used to determine the optimal
number of features. The corresponding IFS curve was plotted in
Figure 1. Accuracy reaches its maximum of 79.79% when the top
ranked 96 features were used to encode the samples. Therefore,
a computational model was built based on these 96 optimal
features. In this case, the proposed model obtained an accuracy
of 72.91% with the sensitivity of 67.03% and specificity of 79.65%
in 10-fold cross-validation test.

Comparative Analysis Among Different
Classifiers
To further demonstrate the power of the proposed method for
classifying the ‘included’ and “excluded” exons, we compared
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TABLE 3 | The 96 optimal features and their bias to exon inclusion or exclusion casea.

Feature Bias Feature Bias Feature Bias

H3R2me1.succ I H3K36me1.succ E H4K5ac E

H3R2me1.prec I H3K18ac.prec I H4K20me1.prec –

H4K8ac.succ I H4K91ac.prec I H4K20me1.succ E

H4K12ac.prec E H3K23ac.succ I H2AK5ac E

H4K8ac.prec E H3K36me1.prec E H3K23ac I

H4K12ac.succ – H3K23ac.prec E H3K79me1.succ –

H3K36me3.succ E H4R3me2.succ I H3K36me1 –

H3K9ac.succ E H2BK120ac.prec I H3K79me1.prec E

H3K14ac.prec E H4R3me2.prec I H2BK20ac E

H3K27me3.succ E H3K9me1.prec E H2BK12ac E

H3K27me3.prec I H2BK120ac.succ E H4K16ac –

H3K9ac.prec – H3K9me1.succ I H3K4ac E

H3K14ac.succ – H3R2me2.prec I H2BK5me1 E

H2AK5ac.prec E H2AK9ac.succ I H3K18ac I

H2AK5ac.succ E H3R2me2.succ E H3K9me2 I

H4K5ac.succ E H2AK9ac.prec E H4R3me2 I

H4K5ac.prec I H3K27ac.prec E H3K4me1.prec E

H2BK20ac.succ – H3K27ac.succ E H3K4me1.succ E

H2BK20ac.prec – H3K36me3 E H2AK9ac E

H4K16ac.prec E H3K9me2.succ I H3K4me2.prec E

H4K16ac.succ E H3R2me1 I H3K4me2.succ I

H3K36me3.prec E H4K8ac I H4K91ac –

H3K4ac.succ I H2BK5ac.prec I H3K9me1 –

H3K4ac.prec E H3K14ac – H3R2me2 –

H2BK12ac.prec E H3K9me2.prec – H2BK120ac E

H2BK12ac.succ I H4K12ac I H3K79me3.succ E

H2BK5me1.succ E H2BK5ac.succ E H3K9me3.succ E

H2BK5me1.prec E H3K27me3 E H3K9me3.prec E

H3K27me2.succ I H3K27me1.succ I H3K79me3.prec E

H3K27me2.prec E H3K9ac E H3K36ac.succ I

H4K91ac.succ E H3K27me2 E H3K27me1 E

H3K18ac.succ E H3K27me1.prec E H3K27ac E

aThe bias of the 96 optimal features to exon inclusion or exclusion case were analyzed using hypothesis test of sample frequency. “I” indicates that he features that significantly (p < 0.01)

bias to exon inclusion case, while “E” indicates bias significantly (p < 0.01) bias to exon exclusion case.

its performance with that of other classifiers, such as BayseNet,
Naïve Bayes, J48 Tree and Support Vector Machine (SVM).
All these classifiers were tested on the benchmark dataset and
implemented in WEKA (Frank et al., 2004) with the default
settings. Their 10-fold cross-validation test results based on the
96 optimal features were reported in Table 1. As indicated in
Table 1, the four metrics as defined in Equation. 2 for the current
method are all higher than those of BayseNet and SVM. Although
Naïve Bayes and SVM yielded higher sensitivity, their specificity,
accuracy, and MCC are significantly lower than that of the
current method.

In addition, a comparison was also made between the current
method and the method in our previous work (Chen et al., 2014),
where a QD function based method was proposed to classify the
“included” and “excluded” exons. Since both methods are trained

and tested based on the same dataset, we directly compared the
10 fold cross-validation test results of the current method with
that listed in previous work (Chen et al., 2014). As indicated in
Table 2, the accuracy achieved by the current method is over 4%
higher than existing method, indicating that the current method
is superior to our previous method for classifying the “included”
and “excluded” exons.

Features Analysis
To provide an overall view of the optimal features for classifying
the “included” and “excluded” exons, we compared their
frequency distributions in both kinds of exons using the z-test
(Table 3). As we can see from Table 3, among the 96 optimal
features, 29 features significantly prefer to the included exons,
while 52 features significantly prefer to the exclude exons. More
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FIGURE 2 | Correlation matrix of histone modifications for the exon inclusion case of exon skipping event.

interestingly, 61 of the 81 features that differently distributed
in “included” and “excluded” exons are from the proceeding
or succeeding regions of the exons. This result indicates that
the major regulatory epigenetic factors of exon skipping event
located in the surrounding regions of the exons.

Rather than medicated by a single type of histone
modification, recent researches have demonstrated that
RNA splicing can be regulated by a combination of different
types of histone modifications (Shindo et al., 2013). To
detect whether the cooperation or competition of histone
modifications exists in the exon skipping event process,
we calculated the Pearson correlation coefficient of the 81
optimal features. The correlation matrix for “included” and
“excluded” exons were plotted in Figures 2, 3, respectively.
As indicated in these figures, significant positive and negative
correlations could be observed among different kinds of
histone modifications. For example, in the “included”
exon case, H3K18ac is positively correlated with H3K23ac,
H4K8ac and H4K12ac, while H4K91ac is negatively correlated
with H3K91me2. In the “excluded” exon case, H2AK5ac is
positively correlated with H2BK5me1, H2BK12ac, H2BK20ac,
H4K5ac, and H3K4ac; the negative correlations are observed
between H3K79me1 with H3K27me2, H3K27me3, and
H3K6me1. These results prove that the histone modification
cooperation and competition indeed exist in the process of RNA
splicing.

CONCLUSION

As one of the key processes of gene expression, besides regulated
by ESEs, ISEs, ESSs, ISSs, and other trans-elements, RNA splicing
is also regulated by epigenetic factors. In this paper, we presented
a new computational method to classify the “included” and
“excluded” exons in exon skipping events based on histone
modifications. The samples in the dataset were encoded using
optimal histone modification information obtained by feature
selection technique and then used as the input of RF. The
predictive results derived by the 10-fold cross validation test
demonstrated that the proposed approach can achieve better
performance than existing approaches.

To provide an intuitive view of the histone modifications
that contribute to the predictions, we systematically analyzed
their distributions in “included” and “excluded” exons. The non-
random distribution of histone modifications (Table 3) and their
positive or negative correlation profiles (Figures 2, 3) suggest that
exon skipping is regulated by the combination of different types
of histone modifications. Further experimental investigations are
required to reveal how these histone modifications are associated
with splicing.

In the future work, we will do our best to develop a much
more smart method to classify “included” and “excluded” exons
by integrating information from both the genome and epigenome
levels.
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FIGURE 3 | Correlation matrix of histone modifications for the exon exclusion case of exon skipping event.
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