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Fragile X syndrome (FXS) is mostly caused by two distinct events that occur in the FMR1
gene (Xg27.3): an expansion above 200 repeats of a CGG triplet located in the 5’UTR
of the gene, and methylation of the cytosines located in the CpG islands upstream of
the CGG repeats. Here, we describe two unrelated families with one FXS child and
another sibling presenting mild intellectual disability and behavioral features evocative
of FXS. Genetic characterization of the undiagnosed sibling revealed mosaicism in both
the CGG expansion size and the methylation levels in the different tissues analyzed. This
report shows that in the same family, two siblings carrying different CGG repeats, one
in the full-mutation range and the other in the premutation range, present methylation
mosaicism and consequent decreased FMRP production leading to FXS and FXS-like
features, respectively. Decreased FMRP levels, more than the number of repeats seem
to correlate with the severity of FXS clinical phenotypes.

Keywords: FMRP, FMR1 mRNA, CGG expansion, fragile X syndrome, mosaicism

INTRODUCTION

Fragile X syndrome (FXS) (MIM# 300624) is the most common form of inherited
intellectual disability and the most common monogenic form of autism spectrum disorders
(ASDs). The typical features of FXS include anxiety, hyperactivity, attention deficit disorder, speech
perseveration, stereotypical movements and impulsive behavior (Martin and Bell, 1943; Dykens
et al., 1989; Hodapp et al., 1990; Sullivan et al., 2006; Cordeiro et al., 2011). FXS is caused by a
dynamic expansion of the polymorphic CGG triplet in the 5'UTR of the fragile X mental retardation
(FMR1) (MIM# 309550) gene, located on the X chromosome (Fu et al., 1991; Verkerk et al.,
1991). Alleles containing >200 CGG triplets generally lead to DNA methylation and abnormal
heterochromatinization due to altered methylation and histone deacetylation (full mutation)
(Oberle et al., 1991; Coffee et al., 1999). This epigenetic mechanism results in the silencing of FMRI
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gene and the consequent loss of its product, the fragile X mental
retardation protein (FMRP). FMRP is an RNA-binding protein
ubiquitously expressed that functions as a translational repressor
in the brain and has a key role in the regulation of local protein
synthesis at synapses (Bagni et al., 2012; Richter et al., 2015).

Based on the number of CGG triplets and the methylation
status, several FMRI alleles are present in the human population:
the unmethylated alleles, containing 5-54 repeats; the
premutation alleles containing 55-200 repeats that are typically
not methylated; the full-mutation alleles containing > 200 repeats
that are typically methylated; and the more rare unmethylated
full-mutation alleles (Pirozzi et al., 2011; Bagni et al., 2012).
The unmethylated full-mutation alleles are transcriptionally
active with an FMRP production that negatively correlates
with the repeat number. Such a decrease is due to a deficit in
translation efficiency (Kenneson et al., 2001; Primerano et al.,
2002).

In individuals carrying premutation alleles the FMRI mRNA
levels are increased and progressively accumulates in inclusions
(Tassone et al., 2004; Arocena et al, 2005) that result in
the fragile X-associated Tremor Ataxia syndrome (FXTAS)
(MIM# 300623), a late onset autonomic disorder with cognitive
dysfunction (Jacquemont et al., 2004). FXTAS patients have
cognitive decline with some individuals carrying premutation
alleles with large expansion of the triplets who might have
a mild intellectual disability as a result of increased FMRI
mRNA and slightly reduced FMRP amount compared to normal
alleles. FXTAS affects at least 33% of premutation males,
with an age-dependent increased incidence, and 5-10% of
premutation females (Hagerman and Hagerman, 2004; Greco
etal., 2008), while 12-28% of female premutation carriers develop
fragile X-associated premature ovarian insufficiency (FXPOI)
(Allingham-Hawkins et al., 1999; Sherman, 2000).

Since the discovery of the gene (Verkerk et al.,, 1991), few
cases have been reported carrying unmethylated expansion > 200
CGG with no intellectual disability or a mild FXS phenotype
and apparently normal levels of FMRP (Tassone et al., 2001;
Pretto et al., 2013; Pretto D.L et al., 2014). This phenomenon is
explained by somatic mosaicism (Genc et al., 2000; Pretto D.I.
et al., 2014), highlighting the FXS genetic heterogeneity. In this
context, three scenarios are possible: full-mutation alleles coexist
with premutation alleles in different cell types or in different cells
of the same cytotype (size mosaicism); cells where methylation
patterns are different on all the alleles (methylation mosaic); or
cells with a combination of the two previous possibilities (size
and methylation mosaicism). The pattern of mosaicisms does not
exhibit any familiar association but may show a high frequency,
reaching up to 41% of the FXS patients (Nolin et al., 1994).
Mosaicism can impact the penetrance of the disorder, in fact the
CGG size plus the methylation status of full-mutation mosaics
seem to negatively correlate with cognitive functions (McConkie-
Rosell et al., 1993; Hagerman et al., 1994; Schmucker et al., 1996;
Wohrle et al.,, 1998; Helderman-van den Enden et al., 1999).
It has been reported that FXS males show greater development
of adaptive skills in mosaic cases than in full-mutation cases,
suggesting that phenotypic severity can be influenced by the
presence of mosaicism (Cohen et al., 1996).

Premutation alleles found in somatic cells have been
considered very stable in contrast to germline cells where
they show more instability with significant variations in repeat
size (Nolin et al., 1999; Tassone et al, 1999a). However,
somatic repeat expansions have recently been reported to occur
in the premutation mouse model, in a human premutation
lymphoblastoid cell line as well as in brain regions and blood
of a 91 CGG repeat premutation human carrier (Lokanga
et al., 2013). Furthermore, although premutation alleles are
generally unmethylated, a small percentage of cells might carry a
premutation allele with a percentage of methylation that affects
FMRP levels in the different cell types (Allingham-Hawkins
et al., 1996; Tassone et al., 1999b). Here we report two unrelated
Caucasian families, each with one individual with FXS and one
sibling presenting an FXS-like phenotype.

RESULTS

Clinical Evaluation

Case 1 is a 10-year-old male who showed normal speech and
motor development in the first year of life. During development,
he showed signs of hyperactivity, attention deficit, stereotypies
and “learning deficits” mainly in logical areas. At 8.5 years of
age, he underwent a thorough neuropsychological evaluation
through a Wechsler Intelligence Scale for Children (WISC-III)
test. WISC-III revealed a disharmonic profile with lower scores
in the language area (VIQ = 88; PIQ = 117; TIQ = 102).
Certain abilities such as understanding, verbal fluency and
auditory attention were categorized as not appropriate for his
age (Supplementary Table S1). No other health problems were
identified.

Case 2 is a 21l-year-old male who showed normal motor
development in the first year of life. He exhibited a significant
delay in speech development with first words at 18 months, and
almost exclusive sign language until 4 years of age. Attention
deficit and hyperactivity were noted at a very early age. As
a toddler, he showed mild genu valgum, and he developed
scoliosis during middle childhood. By the time he started
elementary school, he exhibited learning difficulties, prompting
a referral for a neuropsychological evaluation where specific
support was requested. At the age of 10 he exhibited inadequate
abilities compared to children of his age (Supplementary
Table S1). He showed particular difficulties in the spatio-
temporal abilities, reproduction of geometrical figures and
segmental control. Memorization and mental calculation were
also inadequate for age. Proofs in writing, reading and speech
showed dysorthography, inadequate metalinguistics, reading
speed and comprehension, difficulties in the pronunciation of
some phonemes and atypical swallowing. At 14 years of age,
attention and concentration deficits were persistent and he
showed a low self-esteem. Additionally, impairments in reading,
writing, and memorization were evident. At 16 years of age
the patient presented with main difficulties in attention and
short-term memory and was diagnosed with dysorthography and
dyscalculia. A WISC-R test showed an IQ at the lower limits of
the normal range.
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Molecular Analysis

On the basis of the neuropsychological evaluation of the two cases
(Case 1 and Case 2) and the presence of two siblings with FXS
(respectively, designated as FXS 1 and FXS 2), we performed a
molecular analysis of the FMRI gene. For Case 1, a Southern
blot performed on DNA extracted from peripheral blood showed
the presence of an unmethylated full-mutation (delta > 600 bp)
with a mosaic of premutation and methylated alleles (Figure 1A).
For Case 2, a Southern blot performed on DNA extracted from
buccal smear, peripheral blood (leucocytes), and skin (fibroblasts)
revealed the presence of a premutation (delta 200-300 bp) in the
three cytotypes analyzed (Figure 1A).

The CGG expansion analysis was further evaluated in
leucocytes, lymphoblastoid cell lines (LCLs), fibroblasts, and
buccal smear samples from both individuals using methylation
PCR (mPCR, Table 1). Both cases showed size and methylation
mosaicism within the premutation range. Case 1 had a CGG
triplet region that spanned from 134 to >200 repeats with
a percent of methylation that varied from 3 to 100% in
the different alleles (Table 1 and Figure 1B). Leucocytes and
LCLs contained the rare unmethylated full-mutation allele,
one unmethylated premutation allele on the high repetition
range (193 repeats in leucocytes and 198 repeats in LCLs)
and one fully methylated premutation allele of 170 repeats
(5.4 Kb). The latter allele was also conserved in the buccal
smear. LCLs also contained two other unmethylated premutation
alleles. Fibroblasts exhibited the widest variety of CGG length
and methylation status when compared to the other tissues.
Fibroblasts contained a fully methylated premutation allele of 136
repeats and four unmethylated premutation alleles, with only one
of them conserved in leucocytes and LCLs (Table 1; Figure 1B).
Thus, molecular analysis of Case 1 revealed a clear inter- and
intra-mosaicism, with alleles conserved among different tissues
that coexisted with others that were tissue-specific. The sibling of
this proband, FXS 1, presented with a clear FXS phenotype and
exhibited a full-mutation allele in all the tissues tested (Table 1;
Figure 1B).

Case 2 exhibited another case of inter- and intra-mosaicism
but with more conserved alleles among the tissues compared
to Case 1. Analysis of Case 2 uncovered one unmethylated
premutation allele that spanned from 108 to 143 CGG repeats
in leucocytes, LCLs, buccal smear and fibroblasts (Table 1
and Figure 1B). Case 2 presented with another unmethylated
premutation allele that expanded 139, 137, and 143 repeats
(~3 Kb) in leucocytes, LCLs, and buccal smear, respectively. The
buccal smear also displayed a fully methylated premutation allele,
with this being the only tissue tested that showed a methylation
mosaicism (Table 1 and Figure 1B). In contrast to Case 1,
this proband did not show any full-mutation alleles in the cells
tested, showing an intra- and inter-mosaicism due to FMRI
premutation alleles. This is a rare case of an individual carrying
FMRI methylated premutation alleles with FXS-like phenotypes
which has rarely been seen before (Tassone et al., 2000; Farzin
et al., 2006; Chonchaiya et al., 2009, 2012). The sibling of this
proband, FXS 2, was diagnosed with a clear FXS phenotype
and exhibited a full-mutation allele in leucocytes and LCLs but

also showed mosaicism in the buccal smear with one partially
methylated full-mutation allele coexisting with a fully methylated
premutation allele (Table 1 and Figure 1B).

In both cases, the percentage of methylation and CGG
triplet size varied among all the cell types tested, as observed
by Southern blot and mPCR assay (Table 1 and Figure 1).
Importantly, the alleles clearly showed an absence of linearity
between the methylation status and the triplet expansion that has
not been reported before in the classification of FXS alleles (Bagni
et al,, 2012). The FXS-like phenotype of both probands could be
explained by the presence of a methylated premutation allele in
different cell types.

In order to investigate whether the CGG size and methylation
mosaicism affect FMRP production, we tested the expression
levels of FMRI mRNA and FMRP protein in different cell types
and tissues (leucocytes, LCLs, and fibroblasts) and compared
them with the FXS siblings and unaffected controls. As an average
of the tissues tested, the probands (Case 1 and Case 2) showed
higher levels of FMRI mRNA (Figures 2A-C) with decreased
protein production compared to controls (Figures 2D-F). Levels
of mRNA and protein expression are directly and indirectly
related to the allele size and the percentage of FMRI gene
methylation. In leucocytes, for Case 1, FMRI mRNA expression
levels were found to be around 4-fold higher than controls
(Figure 2A) with a reduction of around 60% in protein levels
(Figure 2D); while Case 2 had a 3-fold increase in mRNA
levels and a corresponding 50% reduction of the protein levels
(Figures 2A-D), consistent with the presence of premutation
alleles. In LCLs and fibroblasts, for both cases FMRI mRNA
levels were higher or within the normal range, respectively
(Figures 2B,C), although FMRP levels were still at least 50%
reduced compared to controls (Figures 2E,F), consistent with
previous findings in premutation allele carriers. Of note, while the
presence of several alleles reflects the genetic heterogeneity of cell
type or tissue, mRNA and protein levels of cultured cells might
reflect a selective growth of cells carrying specific alleles (Khajavi
et al., 2001).

MATERIALS AND METHODS
Subjects

Patients and their relatives were recruited through the Galliera
Hospital in Genova, Italy and their biological samples were stored
in the “Galliera Genetic Bank.” Sex and age-matched controls
were obtained from the “Galliera Genetic Bank” (Galliera
Hospital, Genoa, Italy); and from the “Cell line and DNA Biobank
from patients affected by Genetic Diseases” (IRCCS Giannini
Gaslini, Genoa, Italy) (Filocamo et al., 2014; Baldo et al., 2016).
Participants provided written informed consent for clinical and
molecular analyses and for the publication of the results on
scientific journals; the protocols of the study were approved by
the relevant ethics committee. In this study we included five male
participants with FXS mutations belonging to the full mutation
(n = 3; namely FXS 1, FXS 2, and FXS 3) and methylation and size
mosaicism (n = 2; namely Case 1 and Case 2), and eight control
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FIGURE 1 | Southern blot and mPCR analysis. (A) Southern blots of Case 1 and Case 2 (lane numbers for these samples are shown in red). Left panel (control in
lane 1 and Case 1 in lane 2), analysis upon EcoRI-Eagl DNA digestion from leucocytes. Right panels (controls in lanes 3, 5, 7, 9, 10 and Case 2 in lanes 4, 6, 8, 11)
analysis upon EcoRlI or EcoRI-Eagl DNA digestion. Relative number of triplets is noted next to the bands; red text refers to number of triplets belonging to Case 1
and Case 2. * is used to indicate a methylated premutation (lane 2), while two stars indicate the >200 CGG unmethylated allele. It is notable that, in Case 1 (lane 2),
the 170 premutation allele is methylated while the expansion over 200 CGG (full mutation) is unmethylated; in Case 2, the methylated premutation allele of 123
repeats it is not detectable by Southern blot (lane 6 buccal smear). (B) Electropherograms representing CGG repetition alleles (top panel) and methylation
percentages (bottom panel) relative to different tissues for Case 1, Case 2, FXS 1, and FXS 2 samples.
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FIGURE 2 | Analysis of FMR1 mRNA and FMRP expression in different tissues. (A-C) Quantitative RT-gPCR detecting FMRT mRNA relative expression in the
tissues tested, normalized with the housekeeping HPRT1 mRNA [n = 3-5, technical replicates, independent experiments for (B,C)]. (D-F) Quantification of FMRP
levels compared to GAPDH levels [n = 2-6 technical replicates, independent experiments for (E,F)]. The error bars indicate the standard error. Lower panels,
representative Western blots from the different cell types analyzed. * indicates a non-specific signal which has been subtracted in the quantification.

subjects (CTRL 1-8). It was not possible to obtain skin biopsies
from the individuals FXS 1 and FXS 2, therefore an unrelated
FXS case (FXS 3), was analyzed for western blot and RT-qPCR.
FXS 3 fibroblasts (84E0275) were kindly provided by Dr. Robert
Willemsen and described in (Jacquemont et al., 2018). Individual
ages ranged from 6 to 47 years (median £ SD = 20.5 & 0.5 years).
Control samples (CTRL 7 and 8) were purchased by Coriell
Institute’.

Establishment of Lymphoblastoid Cell
Lines

Ten milliliters of blood were drawn from a peripheral
vein, and lymphoblasts were isolated on a Ficoll-diatrizoate
density gradient (Ficoll-Paque; Pharmacia). B-lymphoblasts
were immortalized by incubation with supernatant containing
Epstein-Barr virus. After immortalization, B-lymphoblasts were
grown for 10-14 days in RPMI 1640 medium (Gibco),
supplemented with 2 mM L-glutamine, 100 U/mL penicillin,
100 mg/mL streptomycin (Gibco), and 10% FBS.

Establishment of Primary Fibroblast Cell
Lines

Written consent was obtained both from patients and control
subjects before acquiring skin biopsies according to the
procedure of the “Galliera Genetic Bank” (Ethics Committee
Reference No. 8/2015). Fibroblasts were isolated from 3 mm
biopsies using standard procedures. Cells were manually

Uhttps://www.coriell.org

dissociated and grown in RPMI1640 supplemented with 10%
fetal calf serum (Thermo Fisher Scientific) in 100-mm dishes.
Cell lines were cultured at 37°C with 5% CO2 and media was
replaced every 3—4 days. Fibroblast cultures were passaged three-
five times prior to the collection of DNA, RNA, protein isolation,
or cryopreservation.

Southern Blot Analysis

DNA from whole blood was isolated using QIAsymphony robot
(QIAGEN, Heilden, Germany). DNA from LCLs, fibroblast cell
lines and buccal smears was isolated using the QIAamp DNA
Blood mini Kit (QIAGEN, Heilden, Germany) and extracted
using phenol-chloroform. In order to assess the CGG repeat
length, DNA was analyzed by Southern blot as previously
described (Gatta et al., 2013).

PCR Assay for the Detection of
Methylation Status in the FMR1 Gene
(mPCR)

DNA samples were analyzed for methylation status and CGG
repeat length using the AmplideX FMRI mPCR reagents
(Asuragen, Austin, TX, United States) as described previously
(Grasso et al., 2014). Briefly, 8 L of 10-30 ng/pL DNA samples
were premixed with two plasmids: a digestion control and PCR
reference control. This premixture was separately aliquoted to a
control or methylation-sensitive digestion reaction. Restriction
digestion, PCR, and capillary electrophoresis were performed
as previously described by (Chen et al., 2011). All alleles were
detected using FAM-labeled primers, but only the proportion of
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the protected methylated allele was available for PCR using HEX-
labeled primers. Lack of methylation at Hpall sites resulted in
digestion and thus no amplification.

FMR1 mRNA and FMRP Protein

Expression Levels

Total RNA from leucocytes, lymphoblastoid and fibroblasts
cell lines was isolated using Trizol (Qiagen, Valencia, CA,
United States). Total RNA was reverse transcribed into cDNA
using the MMLV reverse transcriptase (Life Technologies).
FMR1 cDNA was amplified by real time PCR (RT-qPCR; Applied
Biosystems). Technical replicates were performed for each cell
line (n = 3 for leucocytes, n = 5 for LCLs, n = 3 for fibroblasts).
FMRI expression levels were determined relative to the reference
gene HPRT1I, using the 2*(-ddct) method and comparing each
sample to the average value of the controls. The following primers
were used: HPRT1 (Forward TGCTGAGGATTTGGAAAGGGT;
Reverse TCGAGCAAGACGTTCAGTCC), FMRI (Forward
TGTCAGATTAGATTCCCACCTCCTG; Reverse TAACCACC
AACAGCAAGGCT).

Protein expression levels were detected by Western blotting.
Antibodies against FMRP (rAMII) were previously described
(Ferrari et al, 2007), and antibodies against GAPDH were
purchased from two different sources (Developmental Studies
Hybridoma Bank and Thermo Fisher Scientific). Quantification
of the FMRP levels was obtained calculating the FMRP/GAPDH
ratio and comparing each sample to the average value of the
controls. Standard error of the mean (SEM) is shown.

DISCUSSION

These two FXS-like cases show variability of alleles with different
methylation patterns, thus illustrating somatic instability. In
Case 1, the range of alleles crossed the premutation range
(200 CGG repeats) in two of the tissues tested, with most of
the alleles predominantly clustered in the premutation range.
This individual exhibited allele methylation, but in contrast to
previous mosaicism cases (Pretto D.I. et al., 2014), the percentage
of allele methylation did not increase with the CGG repeat
number, but varied between alleles of similar size (Table 1). This
suggests that CGG repeat expansion and stability are not the only
causative elements for the methylation status of the FMRI gene.
Instead, other epigenetic mechanisms that are cell type-specific
are likely to be involved, as previously suggested (Burman et al.,
1999; Wohrle et al., 2001). Case 1 and Case 2, in fact are two
examples of complex genetic patterns with an effect on FMRI
mRNA and FMRP production that underlie the penetrance of
complex FXS phenotypes. Because epigenetic mechanisms might
affect FMRP expression independently from the CGG expansion,
this factor should also be considered while estimating the patient’s
prognosis, see also (Stoger et al., 2011). Of note, the size of the
CGG repeats was recently shown to significantly associate with
the degree of clinical features (Pretto D. et al., 2014).

Somatic mosaicism of repeat length is present in other repeat
expansion disorders such as Huntington’s disease, spinocerebellar
ataxia and myotonic dystrophy (MD) (Liquori et al., 2001;

Richards, 2001). In these disorders, the mosaicism is prominent
and tends to be age-dependent, expansion-biased, and highly
tissue-specific (Monckton and Caskey, 1995; Monckton et al.,
1999; Sato et al., 1999; Kennedy and Shelbourne, 2000). It is likely
that somatic mosaicism contributes, at least in part, to the late age
of onset in most of the disorders associated with unstable DNA
expansions. In MD, the degree of expansion increases throughout
life, representing a risk for clinical progression (Martorell et al.,
1995; Martorell et al., 1998; Fortune et al., 2000). It would be
of high interest to follow whether the two FXS-like mosaicism
cases studied here show the epigenetic variation during later
adulthood and whether there is a correlation with the progression
of clinical features. Indeed, the different degree of CGG size
and methylation status of the identified alleles suggests that
other cell types from complex organs such as the brain may
also exhibit size and methylation instability, and may account
for the phenotypes of the patients. Three patients carrying the
fragile X premutation and full mutation have been found to
show somatic instability in different brain regions (D’Gama
et al.,, 2015). Furthermore, as Case 1 and 2 carry premutation
and/or full-mutation unmethylated alleles, they might eventually
develop FXTAS. The onset of this disorder and the worsening of
the symptoms with age could be due to a prevalence of certain
alleles over others.

Genetic analysis of tissues and cells of premutation carriers
as well as mosaic patients at later stages of adulthood could
help understand the pathophysiology of this disorder as well as
correlate the genetic modifications with the clinical phenotypes.
We cannot exclude the possibility that the pattern of premutation
alleles could result from a contraction of the full-mutation
unstable allele and that both alleles coexist in the same tissue.
Although this is a genetic event rarely described, few cases
of contraction of a maternal high premutation/full mutation
FMRI allele during transmission have been reported (Yrigollen
et al, 2014; Miranda et al., 2015; Maia et al.,, 2017). More
unique it is the case of contraction of an expanded FMRI
unstable allele to a normal size, recently reported (Manor et al.,
2017).

The molecular mechanisms that give rise to somatic
mosaicism are not yet fully understood. Somatic mosaicism
seems to accumulate through multiple small mutations
(Monckton et al,, 1995) that require the mismatch repair
machinery (Manley et al,, 1999; van den Broek et al., 2002;
Savouret et al., 2003; Wheeler et al., 2003) and is independent of
cell division (Fortune et al., 2000; Kennedy and Shelbourne, 2000;
Gomes-Pereira et al., 2001). It has been suggested that variation
in the expansion rate observed in MD patients (Martorell et al.,
1998) as well as variation in disease severity (Hunter et al., 1992)
might naturally occur due to natural environmental modifiers.
In this regard, therapies that target the somatic repeat expansion
may have a general utility to treat these disorders. Notoriously,
chronic exposure to certain agents induced significant changes
in the expansion rate of the CAG-CTG repeat sequence
(Gomes-Pereira and Monckton, 2004) by increasing or reducing
the number of repeats. FXS mosaic cases result from a
combination of alleles with variable CGG repeats as well as an
independent methylation status. Exposure to modifiers that limit
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the somatic repeat expansion in combination with demethylating
agents is a very attractive chemical gene therapy, particularly
since small molecule drugs can be tested in several cells and
tissues derived from the patient.

CONCLUDING REMARKS

We report two atypical cases of genetic inter- and intra-
somatic mosaicism that carry several patterns of FMRI alleles.
In both cases, the alleles show a variable methylation status
and different CGG triplet expansion within the premutation
range and with a lack of conservation linearity within the tissues
tested. The unmethylated full-mutation allele also co-existed with
premutation alleles in two of the tissues of Case 1. The diversity
of premutation alleles had a direct impact in mRNA and protein
levels: both cases expressed higher levels of mRNA and lower
levels of protein than controls. The existence of these mosaic
cases reveals that genetic variations in FMRI gene, that affect
FMRP expression levels, may underlie cognitive impairment in
similar neurodevelopmental disorders. These cases highlight the
importance of performing FXS clinical tests in blood and in other
tissues. Furthermore, the test should be expanded to patients
presenting cognitive impairment without a clear diagnosis.
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