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Network based statistical models accounting for putative causal relationships among

multiple phenotypes can be used to infer single-nucleotide polymorphism (SNP) effect

which transmitting through a given causal path in genome-wide association studies

(GWAS). In GWAS with multiple phenotypes, reconstructing underlying causal structures

among traits and SNPs using a single statistical framework is essential for understanding

the entirety of genotype-phenotype maps. A structural equation model (SEM) can be

used for such purposes. We applied SEM to GWAS (SEM-GWAS) in chickens, taking

into account putative causal relationships among breast meat (BM), body weight (BW),

hen-house production (HHP), and SNPs. We assessed the performance of SEM-GWAS

by comparing themodel results with those obtained from traditional multi-trait association

analyses (MTM-GWAS). Three different putative causal path diagrams were inferred from

highest posterior density (HPD) intervals of 0.75, 0.85, and 0.95 using the inductive

causation algorithm. A positive path coefficient was estimated for BM→ BW, and

negative values were obtained for BM→ HHP and BW→ HHP in all implemented

scenarios. Further, the application of SEM-GWAS enabled the decomposition of SNP

effects into direct, indirect, and total effects, identifying whether a SNP effect is acting

directly or indirectly on a given trait. In contrast, MTM-GWAS only captured overall genetic

effects on traits, which is equivalent to combining the direct and indirect SNP effects

from SEM-GWAS. Although MTM-GWAS and SEM-GWAS use the similar probabilistic

models, we provide evidence that SEM-GWAS captures complex relationships in terms

of causal meaning and mediation and delivers a more comprehensive understanding of

SNP effects compared to MTM-GWAS. Our results showed that SEM-GWAS provides

important insight regarding the mechanism by which identified SNPs control traits by

partitioning them into direct, indirect, and total SNP effects.
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INTRODUCTION

Genome-wide association studies (GWAS) have become a
standard approach for investigating relationships between
common genetic variants in the genome (e.g., single-nucleotide
polymorphisms, SNPs) and phenotypes of interest in human,
plant, and animal genetics (Hayes and Goddard, 2010; Brachi
et al., 2011; Wang et al., 2012). A typical GWAS is based
on univariate linear or logistic regression of phenotypes on
genotypes for each SNP individually while often adjusting
for the presence of nuisance covariates (Hayes and Goddard,
2010; Sikorska et al., 2013). A statistically significant association
indicates that SNPs may be in strong linkage disequilibrium (LD)
with quantitative trait loci (QTL) that contribute to the trait
etiology. Alternatively, multi-trait model GWAS (MTM-GWAS)
can be used to test for genetic associations among a set of traits
(Korte et al., 2012; O’Reilly et al., 2012; Zhou and Stephens, 2012).
It has been established that MTM-GWAS reduces false positives
and increases the statistical power of association tests, explaining
the recent popularity of this method. MTM-GWAS can be used
to study genetic associations among a set of traits. However,
it does not consider various cryptic biological signals that may
affect a trait of interest, either directly or indirectly through other
intermediate traits.

Complex traits are the product of various cryptic biological
signals that may affect a trait of interest either directly or
indirectly through other intermediate traits (Falconer and
Mackay, 1996). A standard regression cannot describe such
complex relationships between traits and QTLs properly. For
instance, some traits may simultaneously act as both dependent
and independent variables. Structural equation modeling (SEM)
is an extended version of Wright’s path analysis (Wright, 1921;
Gianola and Sorensen, 2004) that offers a powerful technique
for modeling causal networks. In a complex genotype-phenotype
setting involving many traits, a given trait can be influenced
not only by genetic and systematic factors but also by other
traits (as covariates). Here, QTLs may not affect the target trait
directly; instead, the effects may be mediated by upstream traits
in a causal network. Indirect effects may therefore constitute a
proportion of perceived pleiotropy, and these concepts apply to
sets of heritable traits, organized as networks, that are common
in biological systems. An example from dairy cattle production
systems, described by Gianola and Sorensen (2004), is that higher
milk yield increases the risk of a particular disease, such as
mastitis, while the prevalence of the disease may negatively affect
milk yield As another example, Varona et al. (2007) explored a
causal link from litter size to average piglet weight in two pig
breeds. In humans, obesity is a key factor influencing insulin
resistance, which subsequently causes type 2 diabetes. Lists of
causal networks across human diseases and candidate genes are
described in Kumar and Agrawal (2013) and Schadt (2016).

Although MTM-GWAS is a valuable approach, it only
captures correlations or associations among traits and does not
provide information about causal relationships. Knowledge of
the causal structures underlying complex traits is essential, as
correlation does not imply causation. For example, a correlation
between two traits, T1 and T2, could be attributed to a direct

effect of T1 on T2 or T2 on T1, or to additional variables that
jointly influence both traits (Rosa et al., 2011). Likewise, if we
know a “causal” SNP is linked to a QTL, we can imagine three
possible scenarios with respect to T11: (1) causal (SNP →

T1 → T2), (2) reactive (SNP → T2 → T1), or (3)
independent (T1 ← SNP → T2). Scenarios (1) and (2) do
not cause pleiotropy but produce association.

A SEM methodology has the ability to handle complex
genotype-phenotype maps in GWAS, placing an emphasis
on causal networks (Li et al., 2006). Therefore, SEM-based
GWAS (SEM-GWAS) may provide a better understanding of
biological mechanisms and of relationships among a set of traits
than MTM-GWAS. SEM can potentially decompose the total
SNP effect on a trait into direct and indirect (i.e., mediated)
contributions. However, SEM-derived GWAS has yet not been
discussed or applied fully in quantitative genetic studies yet. Our
objective was to illustrate the potential utility of SEM-GWAS by
using three production traits in broiler chickens genotyped for a
battery of SNPs as a case example.

MATERIALS AND METHODS

Data Set
The analysis included records for 1,351 broiler chickens provided
by Aviagen Ltd. (Newbridge, Scotland) for three phenotypic
traits: ultrasound of breast muscle (BM) at 35 days of age, body
weight (BW), and hen-house egg production (HHP), defined
as the total number of eggs laid between weeks 28 and 54 per
bird. The sample consisted of 274 full-sib families, 326 sires,
and 592 dams. More details regarding population and family
structure were provided byMomen et al. (2017). A pre-correction
procedure was performed on the phenotypes to account for
systematic effects such as sex, hatch week, pen, and contemporary
group for BM and BW. HHP was corrected for random hatch
effects, with a general mean as the sole fixed effect.

Each bird was genotyped for 580,954 SNPmarkers with a 600k
Affymetrix SNP (Kranis et al., 2013) chip (Affymetrix, Inc., Santa
Clara, CA, USA). The Beagle software program (Browning and
Browning, 2007) was used to impute missing SNP genotypes, and
quality control was performed using PLINK version 1.9 (Purcell
et al., 2007). Markers with minor allele frequencies (MAF) < 1%,
call rate < 95%, and Hardy–Weinberg equilibrium (Chi-square
test p-value threshold was 10−6) were removed. The main reason
for conducting the HWE test was to remove SNPs with potential
genotyping error. Finally, 354,364 autosomal SNP markers were
included in the analysis.

Multiple-Trait Model for GWAS
MTM-GWAS is a single-trait GWAS model extended to multi-
dimensional responses.When only considering additive effects of
SNPs, the phenotype of a quantitative trait using the single-trait
model can be described as:

yi = wijsj + ei (1)

where yi is the phenotypic trait of individual i, wj = (w1, . . . ,wp)
is the number of A alleles (i.e., wj ∈ {0, 1, 2}) in the genotype
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of SNP marker j, and sj is the allele substitution effect for SNP
marker j. Strong LD between markers and QTLs coupled with an
adequatemarker density increases the chance of detectingmarker
and phenotype associations. Hypothesis testing is typically used
to evaluate the strength of the evidence of a putative association.
Typically, a t-test is applied to obtain p-values, and the statistic

is Tij =
ŝj

se(ŝj)
, where ŝ is the point estimate of the j-th SNP effect

and se(ŝj) is its standard error.
The single locus model described above is naive for a complex

trait because the data typically contain hidden population
structure and individuals have varying degrees of genetic
similarity (Listgarten et al., 2012; Gianola et al., 2016). Therefore,
accounting for covariance structure induced by genetic similarity
is expected to produce better inferences (Kennedy et al.,
1992). Ignoring effects that reveal genetic relatedness inflates
the residual terms and compromises the ability to detect
association. A random effect gi, including a covariance matrix
reflecting pairwise similarities between additive genetic effects of
individuals, can be included to control population stratification.
The similarity metrics can be derived from pedigree information
or from whole-genome marker genotypes. This model, extended
for analysis of t traits, is given by:

Y =Ws+ g + ε (2)

where Y is the pre-adjusted phenotypic value measured on each
birds, W as previously defined, represent the incidence matrix
of genotype codes, s is the vector of additive marker effect, g is
the vector of random polygenic effect, g∼N(0,

∑

g ⊗K), and ε

represents the residual vector, ε∼N(0,
∑

ε ⊗I). Here ⊗ denotes
the Kronecker product. The covariance matrices were:

∑

g
=







σ 2
g(BM)

σg(BM,BW)
σg(BM,HHP)

σ 2
g(BW)

σg(BW,HHP)

Symmetric σ 2
g(HHP)






and

∑

ε
=







σ 2
ε(BM)

σε(BM,BW)
σε(BM,HHP)

σ 2
ε(BW)

σε(BW,HHP)

Symmetric σ 2
ε(HHP)






.

The positive definite matrix K may be a genomic relationship
matrix (G) computed from marker data, or a pedigree-based
matrix (A) computed from genealogical information. The
A matrix describes the expected additive similarity among
individuals, while G measures the realized fraction of alleles
shared. Genomic relationship matrices can be derived in several
ways (VanRaden, 2008; Yang et al., 2010; Forni et al., 2011). Here,
we used the form proposed by VanRaden (2008):

G =
MM

′

2
∑

pjqj
(3)

where M is an n × p matrix of centered SNP genotypes and pj
and qj = 1 − pj are the allele frequencies at marker locus j. We
evaluated both A and G in the present study.

Structural Equation Model Association
Analysis
A SEM consists of two essential parts: a measurement
model and a structural model. The measurement model
depicts the connections between observable variables and their
corresponding latent variables (Anderson and Gerbing, 1988).
The measurement model is also known as confirmatory factor
analysis. The critical part of a SEM is the structural model,
which can have three forms (Raykov and Marcoulides, 2012).
The first consists of observable exogenous and endogenous
variables. This model is a restricted version of a SEM known
as path analysis (Wright, 1921). The second form explains the
relationship between exogenous and endogenous variables that
are only latent. The third type is a model consisting of both
manifest and latent variables.

SEM can be applied to GWAS as an alternative to MTM-
GWAS to study how different causal paths mediate SNP effects
on each trait. The following SEMmodel was considered:

Y = 3Y +Ws+ g + ε (4)

where 3 is a t × t matrix of regression coefficients or structural
coefficients (typically lower-triangular) according to the learned
causal structure from the residuals and the diagonal matrix filled
with zeros:

3 =





0 0 0

λ(BM→BW) 0 0

λ(BM→HHP) λ(BW→HHP) 0





The vectors g and ε are assumed to have a joint distribution
[

g

ε

]

= N

{[

0

0

]

,

[ ∑

g⊗K 0

0 9

]}

, and the residual covariance

matrix is a diagonal as 9 =







σ 2
ε(BM)

0 0

0 σ 2
ε(BW)

0

0 0 σ 2
ε(HHP)






. The

remaining terms are as presented earlier with one important
difference: the SNP effects are not interpreted as overall effects
on trait t but instead represent direct effects on trait t. Additional
indirect effects from the same SNP may be mediated by
phenotypic traits in C. Each marker is entered into Equation (4)
separately, and its significance is tested. For a discussion of how
SEM represents genetic signals on each trait through multiple
causal paths, see Wu et al. (2010) and Jamrozik and Schaeffer
(2011). Despite the difference in interpretation, the distribution
of the vector of polygenic effects is assumed to be the same
as in the MTM-GWAS model. The same applies to residual
terms within a trait. We also consider trait-specific residuals
to be independent within an individual. This restriction is
required to render structural coefficients likelihood-identifiable.
In addition, the interpretation of inferences as having a causal
meaning requires imposing the restriction that the residuals’ joint
distribution be interpreted as the causal sufficiency assumption
(Pearl, 2009). In the present study, all exogenous and endogenous
variables were observable, and there was no latent variable.
Hence, causal structure was assumed between the endogenous
variables BM, BW, and HHP.
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We considered the following GWAS models with their
causal structures were recovered by the inductive causation (IC)
algorithm (Pearl, 2009): (1) MTM-GWAS with pedigree-based
kinship A (MTM-A) or marker-based kinship G (MTM-G),
and (2) SEM-GWAS with A (SEM-A) or G (SEM-G). Although
nuisance covariates such as environmental factors can be omitted
in the graph, they may be incorporated into the models as
exogenous variables. The SEM representation allowed us to
decompose SNP effects into direct, indirect, and total effects.

A direct SNP effect is the path coefficient between a SNP
as an exogenous variable and a dependent variable without
any causal mediation by any other variable. The indirect
effects of a SNP are those mediated by at least one other
intervening endogenous variable. Indirect effects are calculated
by multiplying path coefficients for each path linking the SNP
to an associated variable, and then summing over all such
paths (Mi et al., 2010a; Jiang et al., 2013). The overall effect
is the sum of all direct and indirect effects. By explicitly
accounting for complex relationship structure among traits in
such a way, SEM provides a better understanding of a genome-
wide SNP analysis by allowing us to decompose effects into
direct, indirect, and overall effects within a predefined casual
framework (Nock and Zhang, 2011). MTM-GWAS and SEM-
GWAS were compared with the logarithm of the likelihood
function (log L), Akaike’s Information Criterion (AIC), and the
Bayesian Information Criterion (BIC). The model providing the
lowest values for these information criteria is considered to
fit the data better. MTM-GWAS and SEM-GWAS were fitted
using the SNP Snappy strategy (Meyer and Tier, 2012), which is
implemented in the Wombat software program (Meyer, 2007).
The outputs were a vector of multiple SNP effect estimates,
ŝ =

[

ŝBM , ŝBW , ŝHHP
]

, with corresponding standard errors and
respective t-values.

Searching for a Phenotypic Causal
Network in a Mixed Model
In the SEM-GWAS formulation described earlier, the structure
of the underlying causal phenotypic network needs to be known.
Because this is not so in practice, we used a causal inference
algorithm to infer the structure. Residuals are assumed to
be independent in all SEM analyses, so associations between
observed traits are viewed as due to causal links between traits
and by correlations among genetic values (i.e., g1, g2, and
g3). Thus, to eliminate confounding problems when inferring
the underlying network among traits, we used the approach
of Valente et al. (2010) to search for acyclic causal structures
through conditional independencies on the distribution of the
phenotypes, given the genetic effects. A causal phenotypic
network was inferred in two stages: (1) an MTM model
(Henderson and Quaas, 1976) was employed to estimate
covariance matrices of additive genetic effects and of residuals,
and (2) the causal structure among phenotypes from the
covariance matrix between traits, conditionally on additive
genetic effects, was inferred by the IC algorithm. The residual
(co)variance matrix was inferred using Bayesian Markov-chain
Monte Carlo (Valente et al., 2010; Wu et al., 2010), with

samples drawn from the posterior distribution. The reason for
our use of the residual (co)covariances is that the residual
structure could bear information from the joint distribution
of all phenotypic traits conditional on their polygenic effects,
such that they correct the confounding issues caused by such
effects when the traits are genetically correlated (Pearl, 2009).
For each query testing statistical independence between traits
yt and yt′ , the posterior distribution of the residual partial
correlation ρyt ,yt′

|h was obtained, where h is a set of variables

(traits) that are independent. Three highest posterior density
(HPD) intervals of 0.75, 0.85, and 0.95 were used to make
statistical decisions for SEM-GWAS. We thus considered SEM-
A75 (HPD > 0.75), SEM-A85 (HPD > 0.85), SEM-A95 (HPD
> 0.95), and SEM-G75 (HPD > 0.75). An HPD interval that
does not contain zero declares yt and yt′ to be conditionally
dependent.

RESULTS

Figure 1 shows phenotypic relationship structures recovered by
the IC algorithm for the three different HPD intervals. Edges
connecting two traits represent non-null partial correlations as
indicated by HPD intervals. We compared the twoMTM-GWAS
and four SEM-GWAS by using the three chicken traits (BW, BM,
and HHP). Fully recursive (there is at least one incoming OR
outgoing edge for each node) SEM-A75 and SEM-G75 graphs
revealed direct effects of BM on BW and HHP, and those of
BW on HHP, as well as an indirect effect of BM on HHP.
In addition, SEM-A85 detected a direct effect of BM on BW,
the direct effect of BW on HHP, and the indirect effect of BM
on HHP mediated by BW. Finally, SEM-A95 only identified a
direct effect of BM on BW because of a statistically stringent
HPD cutoff imposed. SEM-G85 and SEM-G95 were not explored
further because they produced the same results as SEM-A85 and
SEM-A95.

Given the causal structures inferred from the IC algorithm, the
following SEM was fitted:







y1 =µ+Zig1+Wijsjl+εi
y2 =µ+λ21y1+Zig2+Wijsjl+εi
y3 = µ+λ31y1+λ32y2+Zig3+Wijsjl+εi

(5)

Note that only a small number of the entries in the structural
coefficient matrix (λ in Equation 5) are non-zero due to sparsity.
These non-zero entries specify the effect of one phenotype on
other phenotypes. The corresponding directed acyclic graph is
shown in Figure 2 assuming the causal relationships among the
three traits, where y1, y2, and y3 represent BM, BW, and HHP,
respectively; SNPj is the genotype of the j-th SNP; sjl is the
direct SNP effect on trait l; and the remaining variables are as
presented earlier. This diagram depicts a fully recursive structure
in which all recursive relationships among the three phenotypic
traits are shown. Arrows represent causal connections, whereas
double-headed arrows between polygenic effects are correlations.

We examined the fit of each model implemented to assess
how well it describes the data (Table 1). Varona et al. (2007)
and recently Valente et al. (2013) showed that re-parametrization
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and reduction of a SEM mixed model yield the same joint
probability distribution of observation as in MTM, suggesting
that the expected likelihood of SEM and MTM should be similar.
As expected, SEM-GWAS andMTM-GWAS showed very similar
results (e.g., SEM-A75 vs. MTM-A and SEM-G75 vs. MTM-
G). Among the models considered, those involving G exhibited
slightly better fits. SEM-A85 and SEM-A95, sharing a subset of
the SEM-A75 structure, presented almost identical AIC and BIC
values. Since these results imply that the recursive model and
standard mixed model for GWAS are statistically equivalent in
terms of the fitting criteria, the focus of the remainder of the
analysis will be on the modeling of SNP (or QTL) effects in the
SEM context (SEM-A75 or SEM-G75) as an extension of MTM,
which accounts for recursive links among the three measured
traits.

FIGURE 1 | Causal graphs inferred using the IC algorithm among three traits:

breast meat (BM), body weight (BW), and hen-house production (HHP) in the

chicken data. SEM-A75 and SEM-G75 were the inferred fully recursive causal

structures with HPD > 0.75 and corrected for genetic confounder using A

(pedigree-based) and G (marker-based) matrices. SEM-A85 and SEM-A95

were obtained with HPD > 0.85 and HPD > 0.95, respectively, corrected with

A. Arrows indicate direction of causal relationships. Dashed lines indicate

negative coefficients, and the continuous arrows indicate positive coefficients.

Structural Coefficients
Table 2 presents the causal structural path coefficients for
endogenous variables (BM, BW, and HHP). All models have
positive effects for BM→ BW, whereas the BM→ HHP and
BW→ HHP relationships have negative path coefficients. The
latter confirmed the fact that chicken breeding is divided into
broiler and layer sections due to the negative genetic correlation
between BW and HHP.

Also shown in Table 2 are the magnitudes of the SEM
structural coefficient reflecting the intensity of the causality. The
positive coefficient λ21 quantifies the (direct) causal effect of BM
on BW. This suggests that a 1-unit increase in BM results in a
λ21-unit increase in BW. Likewise, the negative causal effects λ31
and λ32 offer the same interpretation.

Decomposition of SNP Effect Paths Using
a Fully Recursive Model
We can decompose SNP effects into direct and indirect effects
using Figure 2. The direct effect of the SNP j on y3 (HHP)
is given by dSNPj→y3 : Ŝj(y3), where d denotes the direct effect.
Note there are only one direct and many indirect paths. We
find three indirect paths from SNPj to y3 mediated by y1 and y2
(i.e., the nodes formed by other traits). The first indirect effect
is ind(1)SNPj→y3 : λ32(λ21Ŝj(y1)) in the path mediated by y1 and

y2, where ind denotes the indirect effect. The second indirect
effect ind(2)SNPj→y3 : λ32Ŝj(y2), is mediated by y2. The last indirect

effect, is ind(3)SNPj→y3 : λ31Ŝj(y1), mediated by y1. Therefore, the

overall effect is given by summing all four paths, TSNPj→y3 :

λ32(λ21Ŝj(y1)) + λ32Ŝj(y2) + λ31Ŝj(y1) + Ŝj(y3). The fully recursive

model of the overall SNP effect is then:















TŜj→y1
: Ŝj(y1)

T
Ŝj→y2

: λ21

(

Ŝj(y1)

)

+Ŝj(y2)

T
Ŝj→y3

: λ32

[

λ21

(

Ŝj(y1)

)

+Ŝj(y2)

]

+λ31

(

Ŝj(y1)

)

+Ŝj(y3)

(6)

For y1 (BM), there is only one effect, so the overall effect is
equal to the direct effect. For y2 (BW) and y3 (HHP), direct
and indirect SNP effects are involved. There are two paths for

FIGURE 2 | A diagram for causal path analysis of SNP effects in a fully recursive structural equation model for three traits, p exogenous independent SNP variables,

and three correlated polygenic effects. Arrows indicate the direction of causal effects and dashed lines represent associations among the three phenotypes. Genetic

correlation between traits (rg), polygenic effects (gt ), environmental effect on trait t (et ), effects of j th SNP on t th trait (Sj(yt )), and recursive effect of phenotype t′ on

phenotype l (λ
t,t
′ ). Dashed lines indicate negative coefficients and the continuous arrows indicate positive coefficients.
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TABLE 1 | Model comparison criteria: logarithm of the restricted maximum

likelihood function (log L), Akaike’s information criteria (AIC), Schwarz Bayesian

information criteria (BIC) were used evaluate model fit for two multiple trait models

(MTM) and four structural equation models (SEM).

Model Maximum

log L

−1/2 AIC −1/2 BIC

MTM-A −7093.480 −7105.48 −7142.436

SEM-A75 −7098.370 −7110.415 −7147.321

SEM-A85 −7095.188 −7107.188 −7144.143

SEM-A95 −7097.517 −7109.517 −7146.470

MTM-G −6529.270 −6541.276 −6578.232

SEM-G75 −6537.391 −6549.391 −6586.34

A, pedigree-based relationship matrix, G, VanRaden’s marker-based relationship matrix.

MTM-A and MTM-G denote MTM-GWAS models coupled with the A and G matrices,

respectively. SEM-A75, SEM-A85 and SEM-A95 represent SEM-GWASmodels with HPD

> 75, 85, and 95% values with the Amatrix, respectivly. SEM-G75 is a SEM-GWASmodel

with HPD > 75 coupled with the G matrix.

TABLE 2 | Estimates of three causal structural coefficients (λ) derived from four

different structural models.

Path Structural models

SEM-A75 SEM-G75 SEM-A85 SEM-A95

λBM→BW (λ21) 2.13 2.19 2.14 2.14

λBM→HHP (λ31) −0.17 −0.280 *** ***

λBW→HHP (λ32) −0.27 −0.096 −0.31 ***

BM, breast meat; BW, body weight; HHP, hen-house production. SEM-75: HPD > 0.75.

SEM-G75: HPD > 0.75. SEM-A85: HPD > 0.85. SEM-A95: HPD > 0.95. ***Represents

path coefficient was not estimated because there was no corresponding path in the

inferred structure.

y2: one indirect, indSj→y2 : Ŝj(y1) → y1 → y2, and one direct,

dSj→y2 : Ŝj(y2) → y2. Here, the SNP effect is direct and mediated
thorough other phenotypes according to causal networks in
SEM-GWAS (Figures 1, 2). For instance, the overall SNP effect
for y3 into four direct and indirect paths is TŜj→y3

: λ32λ21Ŝj(y1)+

λ32Ŝj(y1) + λ31Ŝj(y1) + Ŝj(y3).
The scatter plots in Figure 3 compare the estimated total

effects for HHP (TŜj→y3
) obtained from SEM-GWAS and those

fromMTM-GWAS.We observed good agreement between SEM-
GWAS and MTM-GWAS. The total SNP signals derived from
SEM and MTM are the same but SEM provides biologically
relevant additional information.

Figures S1–S4 present scatter plots of MTM-GWAS and
SEM-GWAS signals (SEM-A75, SEM-G75, SEM-A85, and SEM-
A95) for the BM → BW path, which was a common path
across all SEM-GWAS considered. These two traits have a genetic
correlation of 0.5 (results not shown). We partitioned the SEM
causal link into direct, indirect, and overall effects based on
directed links inferred from the IC algorithm with HPD > 0.85,
whereas MTM-GWAS captures an overall SNP effect on BW.
Scatter plots of the overall effects from SEM-GWAS and those
of the total effects from MTM-GWAS indicated almost perfect
agreement (top left plots, Figures S1–S4). We also observed

concomitance between estimated overall and direct effects (top
right plots, Figures S1–S4). In contrast, there was less agreement
in the magnitude of the SNP effects when comparing overall vs.
indirect effects (bottom left plots, Figures S1–S4). There was no
linear relationship between the indirect and direct SNP effects
(bottom right plots, Figures S1–S4). In short, genetic signals
detected in SEM-GWAS were close to those of MTM-GWAS for
overall effects because both models are based on a multivariate
approach with the same covariance matrix. In all SEM-GWAS,
results showed that direct effects contributed to overall effects
more than the indirect effects.

Manhattan Plot of Direct, Indirect, and
Overall SNP Effects
Figure 4 depicts aManhattan plot summarizing themagnitude of
direct (SEM-75A), indirect (SEM-75A), and overall SNP effects
(MTM-75A). We plotted the decomposed SNP effects on BW
along chromosomes to visualize estimated marker effects from
SEM-GWAS and MTM-GWAS. The indirect and direct effects
provide a view of SNP effects from a perspective that is not
available for the total effect of MTM-GWAS. For instance, there
were two estimated SNP effects on chromosomes 1 and 2 that
deserve particular attention. These two SNPs are highlighted
with black circles and red ovals. The overall effect of the
first SNP consisted of large indirect and small direct effects
on BM, whereas the opposite pattern was observed for the
second SNP, which showed large direct and small indirect effects.
Although the overall effects of these SNPs were similar (top
Manhattan plot, Figure 4), use of decomposition allowed us
to determine that the trait of interest is affected in different
manners: the second SNP effect acted directly on BWwithout any
mediation by BM, whereas the first SNP reflected a large effect
mediated by BM on BW. Collectively, new insight regarding the
direction of SNP effects can be obtained using the SEM-GWAS
methodology.

The correspondingManhattan plot based on –log10 (p-values)
is shown in Figure S5. As with the magnitude of effect sizes,
the results showed that –log10 (p-values) of estimated overall
effects from SEM-A75 and those from MTM-A75 yielded the
same significant peaks. We found that some significant indirect
SNP effects reached genome-wide significance after correction
for multiple-testing using a 5% FDR threshold level (2.752). The
most significant SNPs were on chromosomes 1 and 4 (GGA1 and
GGA4).

As an illustration, the six most significant SNPs with
the highest –log10 (p-values) for each type of decomposed
SNP effect are presented in Table 3. Seven candidate genes
were identified near the significant SNPs derived from the
SNP effects decomposition, with two on GGA7 (OLA1 and
ZNF385B), one onGGA3 (EPHA7), three onGGA4 (LOC422264,
LOC422265, and MAEA), and one on GGA14 (GRIN2A). We
found that only genes on GGA4 and GGA1 are linked to
significant indirect SNP effects that impact HHP. Some studies
reported QTLs for BM on GGA1 and for BW on GGA4,
stating that these genomic regions contain QTLs related to
abdominal fat and growth traits that were detected across
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FIGURE 3 | Comparison of multiple trait (MTM) and fully recursive overall SNP effects obtained with A (pedigree-based) and G (marker-based) from structural

equation modeling (SEM)-based GWAS. Overall effects in SEM are the sum of all direct and indirect effects. HHP, hen-house egg production.

FIGURE 4 | Manhattan plot showing overall, direct and indirect SNP effects using a full recursive model based on A matrix for body weight (BW).

diverse chicken populations (Sun et al., 2013; Van Goor
et al., 2015). One of the two detected genes on GGA14,
i.e., GRIN2A, which was linked to the SNP Gga_rs313620413,
showed significant direct and overall SNPs effects using SEM as
well as MTM. Collectively, Gga_rs15390496, Gga_rs16591372,
and Gga_rs313620413 SNPs on GGA3, GGA7, and GGA14,
which were linked to EPHA7, OLA1, and GRIN2A, respectively,
represent candidate genes identified from overall effects of both
SEM and MTM (Table 3).

We noted that the six SNPs selected according to the –log10
(p-values) from the direct effect on HHP (i.e., dSNPj→y(HHP) )

had small indirect effects ranging from −0.9018 to 0.2983.
These indirect effects were negligible compared with their
corresponding direct and total effects. Also, exploring the
indirect effect sizes of the six most significant SNPs showed
that indirect effects that are transmitted through inferred causal
networks have the ability to change the magnitude of overall SNP
effects, even changing them to the opposite direction (i.e., from
positive to negative or vice versa).

It should also be noted that the estimated additive SNP effects
obtained from the four SEM-GWAS can be used for inferring
pleiotropy. For instance, a pleiotropic QTL may have a large
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TABLE 3 | Six most significant SNPs selected according –log10 (p-values) and their effects, using the full recursive SEM (SEM-A75) and MTM (MTM-A75).

–log10 (p-values) Type of SNP effect

CHR SNP name Candidate

genes

dSj→y(HHP)
indSj→y(HHP)

TSj→y(HHP )
MTMSj→y(HHP )

dSj→y(HHP)
indSj→y(HHP)

TSj→y(HHP )
MTMSj→y(HHP )

Top SNPs for

direct effects

14 Gga_rs313620413 GRIN2A 7.4242 0.1499 9.6599 7.4525 −5.7827 −0.0498 −5.8326 −5.78511

7 Gga_rs16591372 OLA1 7.0868 0.2220 9.0119 6.9783 −22.5681 0.2983 −22.2698 −22.3520

3 Gga_rs15390496 EPHA7 7.0209 0.2214 8.6122 7.0297 −22.4233 −0.2149 −22.6382 −22.4098

1 Gga_rs314001234 – 7.0147 1.1067 9.0710 7.1653 −26.6538 −0.9018 −27.5556 −26.9360

7 Gga_rs315626061 – 6.8300 0.3360 8.9974 6.9529 5.1767 0.0910 5.26783 5.22295

7 Gga_rs316509306 – 6.8241 0.3442 8.9952 6.9485 5.1742 0.0928 5.267116 5.22105

Top SNPs for

indirect effects

4 Gga_rs316082590 LOC422264 0.7137 3.6868 0.4754 0.5696 −1.2913 0.4505 −0.84073 −1.07339

4 Gga_rs313358833 LOC422265 0.6449 3.2345 0.4310 0.5202 −1.2067 0.4235 −0.78322 −1.01618

4 Gga_rs314615897 MAEA 0.1170 2.9505 0.0474 0.0387 −0.2799 0.3853 0.105456 −0.09807

1 Gga_rs15301842 – 0.0393 2.9408 0.1436 0.0149 −0.1301 0.5053 0.375199 0.050463

1 Gga_rs314551852 – 0.0632 2.8858 0.1100 0.0065 −0.2038 0.4994 0.295514 −0.02218

1 Gga_rs317379325 – 0.1599 2.8473 0.0070 0.0931 −0.4789 0.5000 0.021148 −0.29321

Overall effects 14 Gga_rs313620413 GRIN2A 7.4242 0.1499 9.6599 7.4525 −5.7827 −0.0498 −5.83262 −5.7851

1 Gga_rs314001234 – 7.0147 1.1067 9.0710 7.1653 −26.653 −0.9018 −27.5556 −26.9360

7 Gga_rs315626061 – 7.0868 0.2220 9.0119 6.9783 −22.5681 0.2983 −22.2698 −22.3520

7 Gga_rs315626061 – 6.8300 0.3360 8.9974 6.9529 5.1767 0.0910 5.26783 5.2229

7 Gga_rs316509306 – 6.8241 0.3442 8.9952 6.9485 5.1742 0.0928 5.267116 5.2210

7 Gga_rs15850017 ZNF385B 6.6582 0.0499 8.6397 6.6176 −20.8591 −0.0718 −20.9310 −20.7681

MTM 14 Gga_rs313620413 GRIN2A 7.4242 0.1499 9.6599 7.4525 −5.7827 −0.0498 −5.8326 −5.7851

1 Gga_rs314001234 – 7.0147 1.1067 9.0710 7.1653 −26.6538 −0.9018 −27.5556 −26.936

3 Gga_rs15390496 EPHA7 7.0209 0.2214 8.6122 7.0297 −22.4233 −0.2149 −22.6382 −22.4098

7 Gga_rs16591372 OLA1 7.0868 0.2220 9.0119 6.9783 −22.5681 0.2983 −22.2698 −22.352

7 Gga_rs315626061 – 6.8300 0.3360 8.9974 6.9529 5.1767 0.0910 5.26780 5.2229

7 Gga_rs316509306 – 6.8241 0.3442 8.9952 6.9485 5.1742 0.0928 5.2671 5.2210

dSj→y(HHP) , indSj→y(HHp ), TSj→y(HHP )
and MTMSj→y(HHP)

, represents, direct, indirect and overall from SEM and MTM effects of j-th SNP on HHP. The bold values are –log10 (corrected p-value)

for each type of significant SNP effects categories.

positive direct effect on BW but may exhibit a negative indirect
effect coming from BM, which in turn reduces the total QTL
effect on BW. Arguably, the methodology employed here would
be most effective when the direct and indirect effects of a QTL are
in opposite directions. If the direct and indirect QTL effects are in
the same direction, the power of SEM-GWASmay be the same as
the overall power of MTM-GWAS. The overall effect (TŜj→y(HHP)

)

of a given SNP consisted of large indirect (indŜj→y(HHP)
) and small

direct (dŜj→y(HHP)
) effects on HHP, as observed for the top most

significant indirect SNPs localized on GGA4 and GAA1, whereas
the opposite pattern was observed for the most significant direct
SNPs on GAA3, GGA7, and GGA14, which showed large direct
and small indirect effects. Although the overall effects of these
SNPs from SEM-GWAS and MTM-GWAS were similar, the use
of decomposition allowed us to determine that the trait of interest
is affected in different manners. For instance, a given SNP effect
may largely act directly on HHP without any mediation by BM
and BW, whereas another SNP may be transmitting a large effect
through a causal pathmediated by BM and BW. Collectively, new
insight regarding the direction of SNP effects can be obtained
using the SEM-GWAS methodology.

DISCUSSION

It is becoming increasingly common to analyze a set of traits
simultaneously in GWAS by leveraging genetic correlations
between traits (Gao et al., 2014; Wu and Pankow, 2017). In the
present study, we illustrated the potential utility of a SEM-based
GWAS approach for causal inference and mediation analysis of
SNP effects, which has the potential advantage of embedding a
pre-inferred causal structure across phenotypic traits (Valente
et al., 2010). SEM-GWAS, as an extension of standard MTM,
accounts for recursive linking of mediating variables that could
be either dependent or independent with restriction on a residual
covariance. This is a useful approach when multiple mediators
influence the final outcomes via either common or distinct
biological pathways (Barfield et al., 2017; Bellavia and Valeri,
2017). SEM-GWAS is achieved by first inferring the structure
of networks between phenotypic traits. For this purpose, we
used a modified version of the IC algorithm described by Pearl
(2009) and modified for implementing in quantitative genetics
by Valente et al. (2010). The IC algorithm was used to explore
putative causal links among phenotypes obtained from a residual
covariance matrix, in a model that accounted for systematic
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and genetic confounding factors such as polygenic additive
effects. It then produced a posterior distribution of partial
residual correlations between any possible pairs of variables.
Three different causal path diagrams were inferred from HPD
intervals of 0.75, 0.85, and 0.95. We observed that the number of
identified paths decreased with an increase in the HPD interval
value. Only a path connecting BM and BW was present in all
HPD intervals considered. Moreover, we found that the partial
residual correlation between BM and HHP was weaker than that
between BM and BW. This may explain why the path between
BM and HHP was not detected with HPD intervals larger than
0.75.

The primary purpose of estimating the goodness of fit
criterions was to determine whether full recursive SEM and
MTM models with different assumptions yield the same or
nearly the same BIC and AIC scores. Because our results showed
that SEM and MTM produced nearly the same goodness of fit
criterions, we conclude that the essential difference between these
models cannot be articulated in terms of an expressive power of
joint distributions or goodness of fit (Valente et al., 2013).

Estimated path coefficients reflect the strength of each causal
link, quantifying the proportion of direct and indirect effects
of a given SNP or genes on the outcome of interest via the
mediator phenotypic traits or the predefined causal pathway
between a set of mediators and the target outcome. For instance,
a positive path coefficient from BM to BW suggests that a unit
increase in BM directly results in an increase in BW. Our results
showed that MTM-GWAS and SEM-GWAS were similar in
terms of the goodness of fit as per the AIC and BIC criteria.
This finding is in agreement with theoretical work of Gianola and
Sorensen (2004) andVarona et al. (2007) showing the equivalence
betweenmodels. Thus, MTM-GWAS and SEM-GWAS produced
the same marginal phenotypic distributions and goodness of fit
values. A similar approach has been proposed by Li et al. (2006),
Mi et al. (2010b), and Wang and van Eeuwijk (2014). The main
difference between our approach and theirs is that they used
SEM in the context of standard QTL mapping, whereas our
SEM-GWAS is developed for GWAS based on a linear mixed
model.

The results obtained in this study using the three economic
traits in chickens suggest that causal inference and the SEM
framework can be used for a set of phenotypes by considering
both the raw and partial correlation relationships among traits in
breeding programs. For example, in model SEM-A85, BM and
HHP are unconditionally independent. However, conditioning
on BW results in a non-zero partial correlation. Conditioning
on BW breaks the causal chain from BM to HHP as observed
in the case of full recursive models (SEM-A75 and SEM-G75)
and their partial correlation becomes non-zero. This indicates
that when all three variables are causally connected, both raw and
partial correlations will all be non-zero, but they will change the
magnitude depending on the signs of the path coefficients.

The advantage of SEM-GWAS over MTM-GWAS is that
the former decomposes SNP effects by tracing inferred causal
networks. Our results showed that by partitioning SNP effects

into direct, indirect, and total components, an alternative
perspective of SNP effects can be obtained. As shown in Table 3

and Figure 4, direct and indirect effects may differ in magnitude
and sign, acting in the same direction or in an antagonistic
manner. Note that the total SNP effects inferred from SEM-
GWAS were the same as the estimated SNP effects from
MT-GWAS (Table 3). However, knowledge derived from the
decomposition of SNP effects may be critical for animal and
plant breeders in breaking unfavorable indirect QTL effects by
reducing the frequency of undesired alleles or obtaining better
SNP effect estimates than those fromMTM-GWAS (e.g., Mi et al.,
2010b).

CONCLUSION

SEM offers insights into how phenotypic traits relate to each
other.We illustrated potential advantages of SEM-GWAS relative
to the commonly used standard MTM-GWAS by using three
chicken traits as an example. SNP effects pertaining to SEM-
GWAS have a different meaning than those in MTM-GWAS.
Our results showed that SEM-GWAS enabled the identification
of whether a SNP effect is acting directly or indirectly, i.e.,
mediated, on given trait. In contrast, MTM-GWAS only captures
overall genetic effects on traits, which is equivalent to combining
direct and indirect SNP effects from SEM-GWAS together.
Thus, SEM-GWAS offers more information and provides an
alternative view of putative causal networks, enabling a better
understanding of the genetic quiddity of traits at the genomic
level.
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