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The Site Frequency Spectrum (SFS) and the heterozygosity of allelic variants are

among the most important summary statistics for population genetic analysis of

diploid organisms. We discuss the generalization of these statistics to populations

of autopolyploid organisms in terms of the joint Site Frequency/Dosage Spectrum

and its expected value for autopolyploid populations that follow the standard neutral

model. Based on these results, we present estimators of nucleotide variability from

High-Throughput Sequencing (HTS) data of autopolyploids and discuss potential issues

related to sequencing errors and variant calling. We use these estimators to generalize

Tajima’s D and other SFS-based neutrality tests to HTS data from autopolyploid

organisms. Finally, we discuss how these approaches fail when the number of individuals

is small. In fact, in autopolyploids there are many possible deviations from the

Hardy–Weinberg equilibrium, each reflected in a different shape of the individual dosage

distribution. The SFS from small samples is often dominated by the shape of these

deviations of the dosage distribution from its Hardy–Weinberg expectations.

Keywords: autopolyploidy, dosage distribution, Hardy-Weinberg equilibrium, high-throughput sequencing, site

frequency spectrum, heterozygosity, neutrality tests, allelic dosage

1. INTRODUCTION

The study of nucleotide variability in polyploid species is a convoluted task that requires solving
a number of methodological and analytical difficulties related to the specific nature of the species
(detailed in the reviews of Dufresne et al., 2014; Meirmans et al., 2018). The impact of diploidy on
the evolutionary dynamics is well-known, but the complexity of the impact of higher ploidy on the
genetic variability of polyploid organisms is even higher. An example is provided by autopolyploid
species: as they contain copies originating from genome duplication of the same species, the
inheritance is expected to be polysomic (all the variants of the same chromosome can pair in the
meiosis process) but it is not rare to find preferential pairs (Stift et al., 2008; Chester et al., 2012),
resulting in partial polysomic or even disomic inheritance. The different inheritance types, which
may simultaneously occur in the same species, could generate differences in the effective population
size at different loci and consequently different patterns of genetic variability. Another distinctive
aspect of polyploid species that impacts their genetic variability patterns is the process of double
reduction, where the two copies of the same chromatidmigrate to the same gamete (Haldane, 1930).
As a consequence, this process will increase drastically the homozygosity of the gametes for the
involved segment.
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High-Throughput Sequencing (HTS) has facilitated the study
of genome data in general and that of polyploid species as well.
Still there are difficulties, mainly assigning the sequence reads to
homologous (rather than homeologous) loci and/or dealing with
relatively high rates of sequencing error (You et al., 2018). The
amount of software available in order to correctly assembly and
detect variants (e.g., GATK from Broad Institute) is increasing,
although the task remains challenging (Mielczarek and Szyda,
2016; You et al., 2018). These methodological problems are
expected to be (at least partially) solved in the next years with
the technological progress of the sector, including long reads and
linked reads to improve phasing and increased throughput of
sequencing runs (Dufresne et al., 2014; Shendure et al., 2017).

The study of polyploid variability from HTS data and the
development of statistical methods based on these sequencing
methodologies are driving current genetic studies of polyploids
(Dufresne et al., 2014; Hardy, 2016) and will continue to have a
fundamental impact on the field. Nevertheless, still much work
is needed, especially on the topic of allelic dosage, that is, the
number of copies of each allele in a heterozygous individual
(Blischak et al., 2016). Since the development of HTS, a number
of studies developing computational and statistical methods
that account for polyploidy have been published. Example are
statistics to estimate the levels of variability (Ferretti and Ramos-
Onsins, 2015) and heterozygosity (e.g., De Silva et al., 2005;
Hardy, 2016) with different approaches to take into account
the allelic dosage, or the detection of population structure (e.g.,
Falush et al., 2003; Gao et al., 2007) and comparative measures of
these differences between populations/species/individuals (e.g.,
Jost, 2008; Meirmans and Hedrick, 2011). Arnold et al. (2012)
showed that autotetrasomic inheritance can be modeled using a
Kingman’s standard coalescent (Kingman, 1982). Their results
can be generalized to autopolyploid species of different ploidy
and are especially useful as a null model to predict the neutral
patterns of genetic diversity in polyploid species. Also additional
phenomena specific to polyploids, such as double reduction, can
be modeled in a way resembling partial self-fertilization (Arnold
et al., 2012).

Nevertheless, a major gap in the population genetic analysis
of polyploid organisms is the application of methods based on
the Site Frequency Spectrum (SFS). Of special interest is the
generalization to polyploid organisms of Tajima’s D (Tajima,
1989), Fay and Wu’s H (Fay and Wu, 2000) and other neutrality
tests based on the SFS (Achaz, 2009; Ferretti et al., 2010,
2012). The SFS and the heterozygosity of allelic variants are
among the most important statistics for population genetic
analysis of diploid organisms and have been commonly used
for describing the genetic variability of genomic data and for
inferring the parameters of evolutionary models (e.g., Nielsen,
2000). Indeed, the combination of these two statistics (frequency
and heterozygosity) describes completely the genotype of a
diploid population for a given genomic position.

In this paper we consider a single population of autopolyploid
organisms. Compared to the diploid case, the genotypes of
variants in polyploid organisms present a more complex
structure resulting from a combination of internal spectra for
each individual. We discuss this genotype structure and its

decomposition into different statistics, including the SFS and a
generalization of the distribution of heterozygosity that we call
the Site Dosage Spectrum (SDS).

For samples of large size, we argue that the details of deviations
fromHardy–Weinberg equilibrium have a relatively small impact
on the SFS. The expected value of the SFS of autopolyploid
individuals is derived for a panmictic, neutral population of
constant size. We also derive the expected value the most general
spectrum for autopolyploids, i.e., the joint Site Frequency-Dosage
Spectrum (SFDS), which represents a combination of the SFS and
the SDS. We use these results as a null model to build estimators
of nucleotide diversity and neutrality tests for HTS data and we
discuss the robustness of estimators of genetic variability.

For small samples, violations of Hardy–Weinberg in the
dosage distribution have a strong impact on the SFS. We show
how autopolyploid populations have the potential to harbor a
wide range of deviations from Hardy–Weinberg equilibrium due
e.g., to inbreeding, population structure, selection, dominance,
modes of inheritance, or combinations of these causes. We
discuss the impact of some of these violations on dosage and on
SFS-based neutrality tests.

A synopsis of symbols and abbreviations used in both text and
formulas can be found in Table 1. It should be noted that to the
best of our knowledge most of the equations that follow (all but
2, 3, 7, 11, and 13) are original work presented in this paper for
the first time. More details about their derivations can be found
in the Appendix.

2. SFDS STRUCTURE IN
AUTOPOLYPLOIDS

2.1. SFS and Heterozygosity in Diploids
Individuals are often sampled from a wild population without
prior studies of the subpopulation structure or phenotypic
differences. In this case, it is usually assumed for population
genetic analysis that all individuals are equivalent and that
any summary statistic should treat all sequences equally. To

TABLE 1 | List of the main symbols and abbreviations used throughout the text.

Symbol Meaning

p Ploidy

n Sample size

θ Genetic variability, i.e., population-scaled mutation rate

ξj Site Frequency Spectrum (SFS) for frequency j/n

d Allelic dosage

Id Dosage Distribution (DD) for dosage d

p({Id}d=1...p−1|j) Site Dosage Spectrum (SDS) for mutations of frequency

j/n

ψj,{Id} Site Frequency/Dosage Spectrum (SFDS) for frequency

j/n and DD {Id}d=1...p−1

ri (x) Read depth of the ith individual at position x along the

genome

ci (x) Derived allele count of the ith individual at position x

along the genome
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our knowledge, all existing statistics for sequences sampled
from a single populations at the time of this writing—such
as estimators of variability, neutrality tests, estimators based
on linkage disequilibrium and haplotype-based statistics—rely
implicitly on this assumption.

These statistics can also be classified in terms of the number of
sites involved in each individual computation. The frequency of a
SNP requires information only on the alleles at a single genomic
site, while linkage disequilibrium requires a comparison of alleles
at two sites. On the other extreme, haplotype statistics require
information on all sites in the sequence.

In this manuscript we will focus on the simplest statistics,
i.e., those which can be computed independently for each site
(and eventually averaged over all sites in the sequence to obtain
summary statistics). We will also consider only biallelic variants
(one ancestral and one derived/mutated allele present at each
site) in our analysis. Biallelic SNPs represent by far the most
common type of variant in eukaryotic genomes, hence this
assumption is not particularly restrictive. This is true also for
autopolyploid organisms, since it relies on the lowmutation rates
per base and the corresponding low variability at the population
level.

A simple explaination for the prevalence of biallelic variants
is the following. Under the usual assumptions for the Kingman
coalescent, which describes autopolyploid populations as well
(Arnold et al., 2012), SNPs are generated by at least a mutation
in a given site along the tree. The tree length in coalescent units
is a number of order O(1), while the effective mutation rate
in coalescent units is represented by the parameter of genetic
variability θ = 2pNeµ where Ne is the effective population
size, p is the ploidy and µ is the mutation rate per base. For
most eukaryotic organisms, θ is around 10−3 (Lynch, 2005).
This estimate is based on diploids, but the order of magnitude
would be the same for most autopolyploids. The fraction of
sites containing a SNP in a finite sample is the product of θ
and tree length, and therefore proportional to θ . However, for
a triallelic SNP to occur, two mutations should appear on the
tree, hence only a fraction O(θ2) of sites contains a SNP with
three or more alleles, i.e., only a fraction O(θ) of the SNPs is
triallelic. This argument is valid for autopolyploids, but not for
allopolyploids, since it does not take into account the divergence
between homeologous chromosomes.

In haploid populations, the only statistic based on information
at a single position of nucleotide sequences is the frequency of
the mutated/derived allele f (x) at a given site x. In fact, once the
frequency in the sample is known, the genotypes of all individuals
are known up to permutations of the individual. The summary
statistic is the so-called SFS, which is the number of sites with a
mutation of (derived) frequency j/n in a sample of n individuals,
denoted by ξj. For the whole population, the equivalent spectrum
is the density of sites in the sequence with a mutation of (derived)
frequency between f and f + df , denoted by ξ (f ).

In diploid populations, however, the frequency of a mutation
at a given site x is not sufficient to fully determine the genotypes
of the n individuals in the sample. The reason is that each
individual can be homozygous for either the ancestral or the
mutated allele or it can be heterozygous, i.e., it is characterized

by an internal count of the mutated allele at that site (which can
be 0, 1, or 2) and a corresponding internal frequency (0, 1/2, or
1). Taken together, all individuals in the sample carry an “internal
spectrum” distributed as Id(x) with d = 0, 1, 2, defined as the
count of individuals with internal count d for the mutation at
position x, which is of course normalized as

∑2
d=0 Id(x) = n.

This individual spectrum is related to the global frequency of the
mutation through its mean count

∑2
d=0 dId(x) = 2nf (x).

The diploid genotype at position x is fully determined
by Id(x) up to permutations of the individuals. Given that
Id(x) has three components (number of ancestral homozygotes
I0, of heterozygotes I1 and of derived homozygotes I2) but
one is constrained by the number of individuals and another
combination corresponds to the frequency, there is only one
independent component left, for instance the number of
heterozygotes I1(x). The information contained in this spectrum
is therefore equivalent to the two statistics f (x) and h(x), where
h(x) is the heterozygosity (the fraction of heterozygous individuals
in the sample) defined as h(x) = I1(x)/n.

Heterozygosity is another very well-known statistic in the
population genetics of diploid organisms. If the alleles at site x
are in Hardy–Weinberg equilibrium (i.e., under random mating
and without selection), the expected fraction of heterozygotes is
given by the standard formula E[h(x)] = 2f (x)(1 − f (x)), i.e., it
corresponds to the pairwise nucleotide diversity in the population
at that site. Its distribution for a discrete sample is a binomial with
the same mean 2f (1− f ) in terms of the population frequency.

Deviations from the expectation h ≈ 2f (1 − f ) are signatures
of violations of some of the assumptions of the Hardy–Weinberg
equilibrium. For example, a deficit of heterozygotes h < 2f (1− f )
is expected if there is sub-population structure in the sample,
violating the “random mating” assumption.

Note that the most general summary single-site statistic for
diploids is neither the SFS nor the heterozygosity, but rather
the joint site frequency-heterozygosity spectrum ψ(f , h) or its
corresponding version ψj,I1 for a finite sample. This joint
spectrum is defined as the number of sites with a derived variant
at frequency f = j/2n and where a fraction h = I1/n of the
individuals are heterozygous.

The neutral expectation for this frequency-heterozygosity
spectrum in finite samples can be found from the known theory
from the frequency spectrum in haploids (Fu, 1995; Ewens, 2004)
combined with simple combinatorial arguments applied to the
Hardy–Weinberg equilibrium (Weir, 1996). This combination
gives

E[ψj,I1 ] =
θ 2I1 n!

I1!
j−I1
2 !

(

n− j+I1
2

)

!

j
(2n
j

)
(1)

Note the constraint that j− I1 should be a multiple of 2.
In Figure 1, we illustrate how this spectrum appears under

neutrality for a single population of constant size, both in the
standard model and under two demographic models: recent
admixture and population structure. The latter shows a clear
violation of Hardy–Weinberg equilibrium due to a lack of
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FIGURE 1 | The expected frequency-heterozygosity spectrum for a locus with θ = 1 in a sample of size n = 100 from a single population of constant size (A) and

under two demographic models: recent admixture (B) and population structure (C). In both cases, we assume two well-separated populations with divergence equal

to θ , the effective population size of the first population being twice the size of the other. In the former case, we assume instantaneous admixture of the two

populations and random mating thereafter. In the latter case, the consequence of the absence of mating between different populations is a reduction of heterozygotes

in the pooled population, known as the Wahlund effect.

heterozygotes—the so-called Wahlund effect (Rosenberg and
Calabrese, 2004).

In diploids, not much attention has been devoted to this
joint spectrum, and the two quantities f and h are usually
studied separately. One of the possible reasons is that the
Hardy–Weinberg equilibrium is reached in a single generation
for diploids, hence heterozygosity and deviations from Hardy–
Weinberg equilibrium are affected by phenomena acting on short
time scales, while the SFS contains information on evolution at
larger scales. However, the difference between these quantities
becomes more blurred in autopolyploids, as we will discuss in the
rest of this paper.

2.2. SFDS in Autopolyploids
In autopolyploids, the framework for single-site statistics is
reminiscent of the diploid case. The main difference is that at
each position of each individual genome the mutated allele can
be present in a number of copies from 0 to the ploidy p. In
polyploids, the frequency of an allele within an individual is often
called its allelic dosage.

The internal spectrum Id(x), defined as the count of
individuals with allelic dosage d for the mutation at position x,
now covers a broader range of dosages d = 0, 1, 2 . . . p. For this
reason, we will call it the Dosage Distribution (DD). As before,
this spectrum is normalized as

∑p

d=0
Id(x) = n and it is related

to the global frequency of the mutation by
∑p

d=0
dId(x) =

pnf (x).
Specification of these two conditions can be avoided if we

discard the homozygote counts from the DD, since such counts
are completely determined by sample size and frequency together
with the rest of the DD. The heterozygous part of the SDS plays

the same role as heterozygosity in diploids; however, it has the
form of a frequency spectrum, hence an additional complexity
with respect to the one-dimensional heterozygosity statistic.

An illustration of the DD and its complexity can be found in
Figure 2. In this hypothetical example, we consider a panmictic
population with mixed mating (partly selfing, partly outcrossing)
and distributed according to a spatial density gradient away from
a central region. If the selfing rate depends on the density, being
low in dense regions and high in sparse ones, then individuals
in dense regions will show a pattern consistent with Hardy–
Weinberg equilibrium in the DD, while those in sparse regions
will show an excess of homozygotes due to selfing.

For large populations, we can define a normalized DD as id =
Id/n. The most general single-site statistic for autopolyploids
is therefore the joint Site Frequency-Dosage Spectrum (SFDS)
ψ(f , {id}d=1...p−1) or its discrete version ψj,{Id}d=1...p−1

for a finite
sample. Similar to the diploid case, this joint SFDS is defined as

the number of sites with a derived variant at frequency f = j
pn

where the dosage distribution across individuals is id = Id/n.
If we condition on a given frequency, we obtain the Site Dosage
Spectrum (SDS) p({id}d=1...p−1|f ).

An important and subtle point that should be clear from
Figure 3 is that the SDS is the distribution of the DD, and
hence it cannot be reliably summarized as a single average
DD. Reducing the SFDS for a given frequency to the average
DD over all variants of that frequency is the equivalent of
summarizing the distribution of heterozygosity in diploids by
providing the average heterozygosity only. In fact the SFDS
is a full p-dimensional spectrum whose components are the
frequency (one component) and the heterozygous part of the DD
(p− 1 components), the latter representing the SDS.
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FIGURE 2 | Illustration of the Dosage Distribution (including homozygotes) in a panmictic autotetraploid population with density-dependent selfing rates. In this

example, we assume for simplicity that segregating alleles are at intermediate frequency in the population; their dosage in each individual is represented by the color

lightness. Since the average frequency is the same everywhere, the average dosage also is. However, by contrast, the DD depends strongly on the sampling location

because of variations in the local spatial density. Sampling individuals at random across different locations would result in an average DD like the one in the top-right

inset. On the other hand, sampling around a given location would result in different DDs, as illustrated. Locations in the central region tend to have DDs similar to the

Hardy–Weinberg ones, while peripheral locations show a large excess of homozygotes because of sampling.

FIGURE 3 | Illustration of the relation between the Dosage Distribution and the Site Dosage Spectrum. On the left, homologous sequences from 4 tetraploid

individuals are shown (n = 4,p = 4), containing 3 SNPs of frequency 50%. On the right, the three DDs (one for each SNP) are shown at the top. The SDS at the

bottom is the distribution of these DDs (which in this example is given by the three DDs with probability 1/3 each). Note that the SDS bears no relation with the

average DD, which is shown in the middle. In this example, the Site Frequency/Dosage Spectrum would be ψ8,{1/4,0,1/4} = 1/3, ψ8,{1/4,1/2,1/4} = 1/3,

ψ8,{0,1,0} = 1/3 and ψ8,{I} = 0 for other choices of I.
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2.3. The SFDS of the Standard Neutral
Model
The expected value of the SFDS under the standard neutral model
is a simple generalization of the diploid frequency-heterozygosity
spectrum presented before. In an infinite population and in
the absence of double reduction, the Dosage Distribution for a
mutation of frequency f under Hardy–Weinberg equilibrium is
well-known (Haldane, 1930):

id =
(

p

d

)

f d(1− f )p−d for d = 0 . . . p (2)

and the expected value of the neutral SFS has the standard shape

E[ξ (f )] = θ

f
; (3)

hence the expected population SFDS is simply

E[ψ(f , {id})] =
θ

f

p−1
∏

d=1

δ

(

id −
(

p

d

)

f d(1− f )p−d

)

(4)

where δ(z) is the Dirac delta function, which represents a
distribution concentrated at z = 0.

For finite samples the expected values are slightly more
complex. A combinatorial argument similar to the diploid
case — based on the ways to assign the j mutated alleles
across the pn homologous chromosomes—provides the
following formula for the SDS, i.e., the distribution of the
Dosage Distribution {Id}d=1...p−1 in finite samples of size n:

E[p({Id}|j)] =

n!

I1!I2! . . . Ip−1!

(

j−
∑p−1

d=1
dId

p

)

!
(

n− j
p −

(

1− 1
p

) (

∑p−1

d=1
dId

))

!

p−1
∏

d=1

(

p

d

)Id

(

pn

j

) (5)

where the above expression should be interpreted as 0 if it
contains factorials of non-integer numbers. More details can be
found in the Appendix.

The SFDS in finite samples can be found combining (5) with
the known neutral expected SFS θ/j:

E[ψj,{Id}] =
θ

j
E[p({Id}|j)] (6)

Note that in finite samples frequency and DD are under the

constraint that j−
∑p−1

d=1
dId should be a multiple of p.

3. SFS ESTIMATORS AND NEUTRALITY
TESTS FOR LARGE SAMPLES

For large samples n≫ 1, the exact shape of the DD and the SDS
do often have a negligible impact on tests based on the shape
of the SFS and their normalization. In fact, most of these tests
place weights on ξ (f ) that change gradually with the frequency.
There are a few exceptions—for instance tests that assign very

different weights on singletons, such as Fu and Li’s F and D tests
for background selection (Fu and Li, 1993), and the expansion
test R2 (Ramos-Onsins and Rozas, 2002). The shape of Hardy–
Weinberg violations affects the SFS on a scale 1f .

p
pn = 1/n.

Since most tests weight frequencies in a smooth way over scales
of 1f ∼ 1/n for n large enough, the DD can usually be ignored
in large samples.

However, unbiased sequence data from a large number
of individuals is typically obtained by High-Throughtput
Sequencing (HTS) at low to moderate coverage. HTS data
at low coverage is usually unbalanced and more prone to
be significantly impacted by sequencing errors, thus requiring
tailored approaches. Hence in this section we focus on SFS-based
estimators of genetic variability and neutrality tests adapted to
HTS data.

SNP calling is usually required prior to population genetic
analysis. It is even more relevant for HTS data, due to the typical
amount of sequencing errors for these technologies. It is key that
only methods developed specifically for polyploids (e.g., GATK
from Broad Institute) or for pooled data (e.g., Raineri et al., 2012)
are used, since the accuracy of SNP calling algorithms depends
on the ploidy. Algorithms for diploids are usually unsuitable to
analyse data from organisms with higher ploidy.

Allelic dosage estimation could also be performed (e.g.,
Blischak et al., 2016), but it is unreliable at low coverage and can
be challenging even at high coverage. In fact, dosage uncertainties
represent one of the biggest hurdles when dealing with polyploid
population genetics (Blischak et al., 2016). However, an accurate
estimate of allelic dosage for each individual is not needed
to estimate genetic diversity at population level. In fact, none

of the methods we discuss in this section requires an explicit
estimation of dosage. All these methods work directly on short-
read data after SNP calling and filtering of unreliable low-
frequency variants.

The estimators of variability proposed in this section take
read depth explicitly into account and are unbiased at low
coverage as well. Hence there is no need to filter regions of low
coverage, although excluding regions with read depth lower than
the ploidy could increase the accuracy of the results. However,
since our estimators do not take sequencing errors into account,
we strongly suggest to perform SNP calling prior to analysing
variability with them. For such analyses SNPs can be filtered with
moderately conservative parameters, e.g., excluding only SNPs
with posterior probability >0.95 or equivalently p-value >0.05
or PHRED quality score<15.

In this section we consider an experimental setup where every

polyploid individual of ploidy p in a sample of n individuals is

sequenced separately with a read depth of ri(x) at position x,
where i = 1 . . . n. The count of the alternative (derived) alleles
within reads from the ith individual at position x is ci(x). If the
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position x has been filtered out during SNP calling, we discard
the SNP and consider ci(x) = 0 for all individuals.

3.1. Estimators of Variability
3.1.1. Watterson’s Estimator

The classical estimator of variability based on the SFS is the
Watterson estimator (Watterson, 1975), which is based on the
number of segregating sites S in a sample of size n. Under
an infinite sites model and a panmictic stationary and neutral
scenario with population size N, where mutations are randomly
and independently occurring given a mutation rate µ per non-
overlapped generation (i.e., aWright-Fisher model), the expected
variability level θ = 2pNeµ can be estimated by:

θW = S

an
, (7)

where an =
∑n−1

j=1
1
j . This estimator is based on the expected

neutral spectrum of mutations and is sensitive to the presence
of an excessive number of singletons (which can be observed,
for example, under demographic expansion scenarios (Ramos-
Onsins and Rozas, 2002) or in the presence of high rates of
artifactual sequencing errors (Achaz, 2008).

A generalization of the Watterson estimator for
autopolyploids, in the form of aMaximumComposite Likelihood
estimator, has been derived in Equation (34) of Ferretti and
Ramos-Onsins (2015). However, this estimator suffers from a
strong bias due to sequencing errors. In fact, sequencing errors
appear as low frequency variants which increase the estimate of
S. Two strategies could be applied to reduce this dependence:
either S should be estimated using only filtered SNPs obtained
from SNP calling algorithms, or low frequency variants should
be removed with an approach similar to that used in Achaz
(2008).

3.1.2. Tajima’s Estimator of Nucleotide Diversity

Tajima’s estimator (Tajima, 1983) or the pairwise nucleotide
difference statistic (5) is also a relevant estimator of nucleotide
diversity and is defined as the average number of differences
between sequences. In fact, for each position i it estimates the
level of heterozygosity in the population [2fi(1 − fi), where fi is
the absolute frequency of a given variant allele at position i]. In
the infinite-site and stationary neutral model, the expected value
of Tajima’s estimator (θ5) is equal to that ofWatterson’s estimator
(that is, under the ideal Wright-Fisher scenario E[θ5] =
E[θW] = θ). Tajima’s estimator for a region of size L is given by:

θ5 = n

(n− 1)

L
∑

i=1

2fi(1− fi). (8)

Results from Ferretti et al. (2013) can be combined to build an
unbiased estimator of pairwise nucleotide diversity for multiple
polyploid individuals:

θ̂5 = 2

n(n− 1)





p

p− 1

n
∑

j=1

πj + 2

n−1
∑

j=1

n
∑

k=j+1

πj,k



 (9)

where πj is the average pairwise difference between reads from
the jth individual, and πj,k is the average pairwise difference
between pairs of reads from the jth and kth individual (Ferretti
et al., 2013). Both these quantities account naturally for dosage.
The factor p/(p − 1) is the same factor that appears between the
estimates of sample and population heterozygosity in the above
formula (8) (Nei and Roychoudhury, 1973).

The above estimator weights the information from all
individuals equally, irrespectively of their coverage and dosage. It
is possible to build less noisy unbiased estimators by considering
further assumptions on the variance of the pairwise differences.
Given the average coverage per base r̄j of the jth individual, the
variances can be often approximated by inverse powers of this
coverage Var(πj) ∝ 4/r̄j + 4/p, Var(πj,k) ∝ 1/r̄j + 1/r̄k +
2/p (see Appendix). Hence, an approximate Minimum Variance
Unbiased Estimator for the pairwise diversity can be obtained by
weighting the terms in the above estimator by their variance:

θ̂5 =
∑n

j=1 πj
r̄j(p−1)

2(r̄j+p)
+ 2

∑n−1
j=1

∑n
k=j+1 πj,k

(

1
r̄j
+ 1

r̄k
+ 2

p

)−1

∑n
j=1

r̄j(p−1)2

2p(r̄j+p)
+ 2

∑n−1
j=1

∑n
k=j+1

(

1
r̄j
+ 1

r̄k
+ 2

p

)−1

(10)
As both versions of this estimator assign a negligible weight to
low frequency alleles, they are much more robust with respect to
sequencing errors and uncertainties in SNP calling. Hence in the
presence of significant rates of sequencing errors, or other related
causes of incorrect base calling, any of these estimators should be
preferred to the Watterson estimator discussed above.

3.2. Neutrality Tests
3.2.1. Tajima’s D

Tajima’s D test (Tajima, 1989) was the first neutrality test based
on the frequency spectrum and it is still the most popular one.
It is based on the difference between the Tajima’s estimator
θ5 and the Watterson estimator θW . As explained above,
under the stationary neutral model it is expected that this
difference would be zero. However, empirical data violating the
theoretical assumptions can result in significant differences. This
test can discriminate among some selective and/or demographic
processes. The Tajima’s D statistic is given by:

D = θ̂5 − θ̂W
√

Var(θ̂5 − θ̂W)

(11)

where the denominator is computed under the standard neutral
model and is a function of θ and np.

For HTS data, the numerator of the test can be simply
obtained from the difference of the Tajima’s and Watterson’s
estimators presented above.

Obtaining the exact denominator is computationally tricky.
A practical approximation is to use the standard denominator
for the test, but replacing the “haploid” sample size np by
an effective sample size neff defined as the average number of
homologous chromosomes that have been actually sequenced at
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every position, i.e.,

neff = 1

L

L
∑

x=1

n
∑

j=1

p

[

1−
(

1− 1

p

)rj(x)
]

(12)

3.2.2. Fay and Wu’s H

Fay and Wu’s H test (Fay and Wu, 2000) was designed to
detect derived allele frequencies much higher than expected
under a neutral scenario. A large number of variants at
high frequencies can be a consequence of positive selection,
although it could also occur in the presence of signals of
population structure (e.g., introgression). The test compares
the levels of variability of Tajima’s estimator (θ5) vs. another
variability estimator—here named θH—that weights the number
of segregating sites quadratically with the frequency of derived
alleles. The normalized version of this test (Zeng et al., 2006) is:

H = θ̂5 − θ̂H
√

Var(θ̂5 − θ̂H)
(13)

For HTS data, we apply the same approach as for Tajima’s D.
The only difference is that we use the alternative definition of the
numerator 2(θ5 − θL) where θL is the Zeng’s estimator, which is
linear in the derived frequency (Zeng et al., 2006). An unbiased
version of θL for HTS data is

θ̂L =
L

∑

x=1

∑n
j=1 cj(x)

NL(x)
∑n

j=1 rj(x)
(14)

where the normalization factor

NL =
pn−1
∑

k=1

1

k

p
∑

k1=0

. . .

p
∑

kn=0

δk,k1+...+kn

∏n
i=1

(p
ki

)

(pn
k

)

[

1−
n

∏

i=1

(

ki

p

)ri(x)
]

(15)
is the probability that a segregating site is not interpreted as a
fixed derived variant based on the reads. Note that δi,j is the
Kronecker delta which is 1 if i = j and 0 otherwise.

An approximate version of the denominator of the test can be
derived inserting neff in the standard denominator, as described
above for Tajima’s D.

4. SMALL SAMPLES AND
HARDY–WEINBERG VIOLATIONS IN THE
SDS

For small autopolyploid samples, deviations from the neutral
SFS cannot be clearly discriminated from violations of Hardy–
Weinberg. In fact, in the smallest possible sample of a single
individual, the Dosage Distribution coincides with the SFS! More
precisely, the SFS for a single individual corresponds to the
heterozygous components of the Dosage Distribution averaged
across sites. Hence, the features of the DD have a huge impact on
the SFS.

This impact is two-fold. On a practical side, if it is not
possible to estimate allelic dosage with sufficient accuracy, then

uncertainties in individual dosage result in large uncertainties
in the determination of allele frequencies, and therefore of the
SFS. However in principle, even if dosage could be accurately
inferred, the shape of the SFS for a few individuals would still be
largely determined by the effect on the DD of the deviations from
Hardy–Weinberg equilibrium.We will discuss such deviations in
this section.

For diploid organisms there is only one possible direction for
Hardy–Weinberg violation, i.e., excess or deficit of heterozygotes.
However, in autopolyploids, many different deviations from
Hardy–Weinberg equilibria are possible, resulting in different
deviations from the neutral SFS. In fact, in this section we
present four examples of possible mechanisms of violation of
Hardy–Weinberg equilibriumwhich correspond to four different
directions in the space of expected DDs. These examples are
(i) inbreeding; (ii) inbreeding with mixed disomic/polysomic
inheritance; (iii) heterozygote advantage; (iv) selection against
recessive mutations. In tetraploids, combinations of these
mechanisms span the whole space of all possible deviations from
Hardy–Weinberg.

The shapes of the deviations of the expected DD
from a Hardy–Weinberg equilibrium are shown for these
mechanisms in Figure 4, both in tetraploids and hexaploids. The
corresponding directions of the deviations of SFS-based tests
from their null values are shown in the same figure for Tajima’s
D and Fay and Wu’s H for a range of ploidy from 4 (tetraploids)
to 10 (decaploids).

4.1. Inbreeding
Inbreeding is a well-known cause of violation of Hardy–
Weinberg. Both in diploids and in polyploids, selfing and other
mechanisms such as subpopulation structure cause a lack of
heterozygotes, as discussed in relation to the Wahlund effect
(Rosenberg and Calabrese, 2004).

As an example of its consequences on the DD, we can model
a small rate of selfing in a population with polysomic inheritance
by assuming an equilibrium in the DD given the frequency of the
variant, with an approach similar to the one used in De Silva et al.
(2005):

I
eq
k

=
p

∑

k′=0

p
∑

k′′=0

I
eq
k′ I

eq
k′′

p
∑

a=0

Hyp(a|k′, p/2, p)Hyp(k− a|k′′, p/2, p)

(16)
whereHyp(·) is the hypergeometric distribution that corresponds
to the sampling of chromosomes in gametes. Note that all the
Hardy–Weinberg equilibrium distributions I

eq
k

=
(p
k

)

f k(1−f )p−k

discussed before are solutions of the equation above (Here and
in the rest of this section, we ignore the possibility of double
reduction, since it requires a separate modeling of its impact on
allele frequencies; Butruille and Boiteux, 2000).

Then we can perturb the equilibrium by occasional selfing
events with a small probability ps, obtaining:

1Ik = −psI
eq
k

+ ps

p
∑

k′=0

I
eq
k′

p
∑

a=0

Hyp(a|k′, p/2, p)Hyp(k− a|k′, p/2, p)

(17)
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FIGURE 4 | Deviations from the Hardy–Weinberg equilibrium and their impact on the DD. (A) Shape of the small deviations 1Ik of the DD from the Hardy–Weinberg

equilibrium for both tetraploid and hexaploid individuals in four different scenarios: polysomic selfing (p); disomic selfing (d); heterozygote advantage (h); recessive

deleterious mutations (r). We show the deviations for mutations of given frequency (0.1, 0.3, and 0.5) together with the expected violations for random neutral

mutations of arbitrary frequency (i.e., distributed as θ/f ). The absolute amplitude of the deviations is arbitrarily chosen for each plot; its actual value will depend on

parameters such as selfing rates and selection coefficients. (B) Impact of the deviations on SFS-based neutrality tests for a single individual. The overall impact is

proportional to the amplitude of the deviations; here we show only the directions of apparent violation of neutrality along the space of two SFS-based tests (Tajima’s D

and Fay and Wu’s H). The expected deviations from neutrality are shown for the same four scenarios as in A (p, d, h, and r) and for tetraploid, hexaploid, octoploid and

decaploid organisms. The black dot corresponds to the neutral values D = 0 and H = 0.

The shape of this violation of Hardy–Weinberg is shown in
Figure 4. As expected, it results in an excess of homozygotes in
the population. For a single individual, it has a positive impact
on both Fay and Wu’s H and Tajima’s D. For tetraploids, the
deviations from the null value are more apparent in H, while in
organisms with ploidy higher than 6, violations tend to be larger
in D.

4.2. Intermediate Disomic/Polysomic
Inheritance
Not only the rates of selfing/outcrossing, but also the mode of
inheritance could impact on the violation of Hardy–Weinberg.
Mixed disomic/polysomic inheritance is an example of an
alternative inheritance mode that appears to be less rare than
expected (Meirmans and Van Tienderen, 2013).

Without inbreeding, partial disomic inheritance alone does
not lead to violations of the Hardy–Weinberg equilibrium. Hence
to study deviations from Hardy–Weinberg we model mixed
disomic/polysomic inheritance but with a small selfing rate ps,
similar to the case above. We denote the probability of disomic
and polysomic inheritance by p2 and 1 − p2 respectively. For
small selfing rate, it is easy to argue that the violations would be
a combination of purely disomic and purely polysomic violations
with weights p2 and 1− p2 respectively, i.e.,

1Ik = (1− p2)1I
polysomic

k
+ p21I

disomic
k (18)

assuming that ps ≪ 1.
Purely disomic violations would satisfy similar equations as

the purely polysomic ones in the previous section, although

with slightly different inheritance terms. Similar to what happens
in diploid organisms, sampling of the new generation occurs
separately for each heterozygous pair of disomically homologous
chromosomes:

1Ik = −psI
eq
k

+ ps

p
∑

k′=0

I
eq
k′

p/2
∑

h=0

2h
( p/2

h; k′−h
2 ; p−k′−h

2

)

(p
k′
)

(

h
k−k′+h

2

)

2−h

(19)
The corresponding shape of Hardy–Weinberg violations shown
in Figure 4 is similar to the one of selfing in polysomic
organisms, but with an excess of homozygous pairs of disomically
homologous chromosomes that translates into an excess in the
components of even dosage in the spectrum. The impact on Fay
and Wu’s H and Tajima’s D is similar to that of purely polysomic
inheritance.

4.3. Heterozygote Advantage
Heterozygote advantage, or overdominance, is a form of “hybrid
vigor” where individuals heterozygous for the locus considered
acquire a higher fitness than those provided by the two
homozygous genotypes. For simplicity, we can assume the two
differences in fitness to be the same. Unsurprisingly, this effect
tends to increase the amount of intermediate-frequency alleles
and heterozygotes (Kaplan et al., 1988).

Modeling selection dependent on the allelic dosage can be
done via an approach similar to the one employed above, but
is trickier. Selection is not a one-off or rare event but perturbs

permanently the equilibrium I
eq
k
, hence a self-consistent version

of the perturbative equations should be employed. Assigning
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a fitness φk = 1 + sk to each allelic dosage, we obtain the
equilibrium condition

I
eq
k

=
p

∑

k′=0

p
∑

k′′=0

I
eq
k′ φk′I

eq
k′′φk′′

(

∑p

l=0
I
eq
l
φl

)2

p
∑

a=0

Hyp(a|k′, p/2, p)Hyp(k−a|k′′, p/2, p)

(20)
We can then perturb at linear order in sk and compute 1Ik =
I
eq
k

− I0
k
, with I0

k
being a solution of Equation (16). After using

the fact that
∑p

k=0
I0
k
= 1, we obtain the linear system

1Ik = 2

p
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k′=0

p
∑

k′′=0

I
0
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I
0
k′′ sk′′ +1Ik′′

)

×

p
∑

a=0

Hyp(a|k′, p/2, p)Hyp(k− a|k′′, p/2, p)

− 2I0
k

p
∑

l=0

(

I
0
l sl +1Il

)

(21)

This equation describes how perturbations to the neutral
equilibrium driven by weak selection increase, which is a good
proxy for the shape of Hardy–Weinberg violations in the DD.

An example of a fitness assignment that leads to heterozygote
advantage is sk = s for k = 1 . . . p − 1 but s0 = 0, sp =
0. This gives a constant fitness advantage to all heterozygotes,
independently on their dosage.

We report the Hardy–Weinberg violations for this example
in Figure 4. As expected, heterozygote advantage increases the
number of alleles at all frequencies while reducing homozygotes.
Surprisingly enough, despite the intuition that the effect would be
to increase Tajima’sD due to the excess of intermediate-frequency
variants, the final spectrum impacts negatively on Fay and Wu’s
H and only weakly on Tajima’s D, as shown in Figure 4.

4.4. Recessive Deleterious Mutations
It is possible to use the same approach as in the previous
subsection to deal with selection against derived homozygotes.
If the mutation is deleterious but recessive, there will be a
fitness gap between the homozygotes for the derived allele, which
would show the phenotypic effects of the mutation, and all other
genotypes, that would not. This is another classical cause of
violation of Hardy–Weinberg equilibrium, although in practice
it is difficult to detect since the mutations involved tend to be
at low frequency and therefore the lack of derived homozygotes
could be attributed to the Hardy–Weinberg equilibrium itself.

The fitness assignment for a recessive deleterious allele is sp =
−s but sk = 0 for k = 0 . . . p − 1. This describes a selection
pressure against derived homozygotes only.

The shape of the Hardy–Weinberg violations in this case
shows the expected reduction in derived homozygotes and
an excess in intermediate-dosage heterozygotes. This causes a
reduction in Fay and Wu’s H, as shown in Figure 4. Ironically,
negative values of Fay and Wu’s H are also one of the typical
signatures of selection and genetic hitchhiking.

5. DISCUSSION

In order to advance our understanding of the evolutionary
processes affecting the genome of polyploid species, an important
step is to gain a deeper knowledge of the way these processes
modulate the fate of genetic variants, and consequently the
levels and patterns of genetic variability. Two of the main
descriptive statistics used in population genetics to summarize
genetic variability are the SFS and the heterozygosity (h), which
contain information on the global and internal allelic spectra,
respectively. The expected patterns of these statistics have not
been studied in detail for polyploids; that is especially true
for many conditions commonly found in empirical studies
of autopolyploid species, for instance small sample sizes
and violations of the Hardy–Weinberg equilibrium such as
inbreeding. In addition, understanding the expected patterns in
commonly used statistics such as Tajima’s D or Fay and Wu’s H
tests is of great relevance for the correct interpretation of the
evolutionary processes occurring in autopolyploid populations.
Typical patterns there could well be different from the expected
patterns in diploid populations, simply because genetic and
evolutionary processes have different peculiarities in the two
cases.

Studies focused on the analysis of nucleotide variability in
polyploid species present special difficulties in comparison to
diploid species, as is extensively reviewed in Dufresne et al.
(2014). These difficulties have been partially the reason for
a relatively scarce number of publications on HTS analysis
of genomic variability among wild autopolyploid populations.
Nevertheless polyploid plant species in particular are of great
interest, given their high economic and strategic impact. In
the last years there has been a proliferation of studies on
related model species such as Arabidopsis (e.g., Hollister et al.,
2012; Arnold et al., 2015), other relatively simple species (e.g.,
Cornille et al., 2016; Kasianov et al., 2017), but also economically
important species with more complex genetics (e.g., Raman et al.,
2014; Rocher et al., 2015; Kamneva et al., 2017; Krasileva et al.,
2017). Although the number of relevant datasets deposited in
sequence databases is constantly growing, their adequate analysis
will require the further development of specific statistical tools,
especially to infer sequence variability and population genomics.

In this manuscript we outlined the rich structure of frequency
spectra in autopolyploids. The combination of global and internal
spectra—i.e., mutation frequency in the population for the SFS,
and allelic dosage in individuals for the SDS—contributes to the
complexity of the polyploid SFDS.

The intricacy of the SFS structure and the challenges posed by
its correct inference are possibly the reasons why this summary
statistic has been given scant attention in polyploids so far
(Dufresne et al., 2014; Meirmans et al., 2018), despite the fact that
it represents one of the classical statistics in population genetics
(Nielsen, 2005; Casillas and Barbadilla, 2017).

In this paper we also discussed some of the challenges
related to the analysis of autopolyploid data generated by
HTS technologies. However, our discussion is restricted to the
simplified case of Hardy–Weinberg equilibrium, which is likely
to be violated in many real populations of autopolyploid plants
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e.g., because of selfing. Even for purely outcrossing autopolyploid
organisms, violations of Hardy–Weinberg could be caused by
widespread mechanisms such as a large number of recessive
deleterious alleles. Similarly, the interplay between the SFS
and the Dosage Distribution has been discussed here only in
the simplified case of small perturbations of Hardy–Weinberg
equilibrium in a single individual. These assumptions allow us
to present for the first time a systematic picture of the issues;
on the other hand, more work is required to build a theoretical
understanding of the SFDS and of SFS-based inference in
polyploids, especially for small samples.

One of the most important consequences of the present
work is the different interpretation of the neutrality test under
deviations from a neutral panmictic model in Hardy–Weinberg
equilibrium (Figure 4). For a low number of samples, the SFS
tends to be dominated by the SDS. Deviations from Hardy–
Weinberg equilibrium within each individual distort the full
SFS and result in values of neutrality tests that are different
from those expected in diploid populations undergoing the
same processes. For instance, heterozygote advantage in a small
sample of diploid individuals is expected to result in an increase
of heterozygotes and therefore a deviation of the Tajima’s D
test toward positive values. On the other hand, in a single
autopolyploid individual with the same number of homologous
chromosomes, this effect would be close to zero or negative. The
reason is two-fold: homozygote alleles would not be classified
as polymorphisms and therefore would not be included in the
spectrum, while the impact of heterozygote advantage on dosage
itself is complex. Generally speaking, the impact of Hardy–
Weinberg violations on allelic dosage tends to affect deeply
the SFS of the global sample when the sample size is small,
complicating the interpretation of the results of neutrality tests.
Note that the Hardy–Weinberg equilibrium is not reached in
a single generation for autopolyploid species, leaving a longer
signal in the genome patterns in relation to diploid species.

The role of allelic dosage uncertainties should be emphasized
once more. Despite being challenging, the inference of individual
genotypes (i.e., allelic dosage) by likelihood estimation can
be obtained from HTS datasets using several algorithms.
Recently, Maruki and Lynch (2017) developed a genotype
calling algorithm that has proven useful for population genetic
analysis. Nevertheless, accurate inference can only be obtained
with high read depths and high cost, which usually implies
the analysis of just a few individuals. Even in such a case,
as shown in this paper, the inference of genotype likelihoods
could be hindered by conservative assumptions on the Hardy–
Weinberg patterns of the DD, which can generate systematic
biases especially in relation to low frequency variants. Focusing
on the analysis of variability, the real genotype of each
individual is not as important as the pattern of the whole
SFS, considering the uncertainties produced by deviations from
Hardy–Weinberg equilibrium and other random processes.
That is the reason why the equations presented here make
performing genotype inference for each autopolyploid individual
unnecessary.

Another reason why allelic dosage uncertainty is not a
limitation for SFS inference can be illustrated by the following

general argument. By definition, the frequency of an allele is the
sum of its allelic dosages across individuals divided by the total
number of homologous chromosomes in the sample, i.e., np. This
implies a relation between frequencies and their uncertainties:
more precisely, by classical probability arguments, the standard
deviation of the frequency is the quadratic mean of the standard
deviation of the allelic dosage divided by p

√
n. Hence, no matter

how large is the allelic dosage uncertainty for each individual,
the accuracy in the reconstruction of the frequency is always
good for samples of large enough size. In fact, the maximum
standard deviation of allelic dosage is p/2, i.e., the uncertainty
in frequency is at most 1

2
√
n
. This means that 25 individuals

are sufficient to estimate allele frequencies with an uncertainty
of about 0.1, even in the worst-case estimate of allelic dosage
uncertainties.

How large the actual sample should be depends on
the actual uncertainties in dosage and the evolutionary
dynamics of the population. The typical uncertainties in
dosage inference from HTS are expected to be around p/

√
r̄

where r̄ is the average read depth per individual, hence
they decrease with the sequencing depth of the experiment.
However, if the dynamics is driven by rare variants, a
larger number of individuals is needed to obtain an accurate
estimate of their frequency, since the unavoidable variance in
frequency due to the sampling process of individuals from the

whole population is between
f (1−f )
pn (under Hardy–Weinberg

equilibrium) and
f (1−f )

n (if the Hardy–Weinberg conditions are
strongly violated).

At present, the complexity of most analyses implies that
good-quality population genetic data of samples of multiple
autopolyploid organisms from the same natural population are
hard to obtain. Most of the efforts so far were focused on the
relation between different populations (Meirmans and Hedrick,
2011) and the comparison between different levels of ploidy,
which require the sequencing of single samples from multiple
populations. On a broader evolutionary scale, polyploidization
during speciation and its evolutionary consequences were also
studied in several biological systems (Parisod et al., 2010;
Barker et al., 2016). However, there is a general lack of
good datasets, and theoretical approaches to understand the
microevolutionary picture are lagging behind (Dufresne et al.,
2014; Meirmans et al., 2018), with the possible exception of
linkage and QTL mapping. We hope that this paper will
raise some awareness of the issues involved and clarify the
relation between important quantities such as the frequency
spectrum, the heterozygosity and the distribution of allelic
dosage.

In conclusion, considering spectra of allelic dosage such as
the SDS is of fundamental importance for the study of the
evolutionary processes in autopolyploids. These internal spectra

have a large impact on the global SFS for small sample sizes
(for large sample size, the SFS can be reliably inferred and
should not be strongly affected by Hardy–Weinberg violations).

In this framework, we have proposed a set of estimators of
variability and neutrality tests for autopolyploid HTS samples,
based on well-known tests such as Tajima’s D and Fay and
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Wu’s H. Additionally, we have shown how different deviations
from Hardy–Weinberg equilibrium and other uncertainties
are reflected in the dosage distribution at the level of single
individuals. In general, we bring attention to the importance
of the study of the joint SFDS in polyploid species in order to
correctly interpret the patterns of population variability.
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