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Age is the most important single factor associated with chronic diseases and ultimately,

death. The mortality rate in humans doubles approximately every eight years, as

described by the Gompertz law of mortality. The incidence of specific diseases, such

as cancer or stroke, also accelerates after the age of about 40 and doubles at a rate

that mirrors the mortality-rate doubling time. It is therefore, entirely plausible to think that

there is a single underlying process, the driving force behind the progressive reduction

of the organism’s health leading to the increased susceptibility to diseases and death;

aging. There is, however, no fundamental law of nature requiring exponential morbidity

and mortality risk trajectories. The acceleration of mortality is thus the most important

characteristics of the aging process. It varies dramatically even among closely related

mammalian species and hence appears to be a tunable phenotype. Here, we follow how

big data from large human medical studies, and analytical approaches borrowed from

physics of complex dynamic systems can help to reverse engineer the underlying biology

behind Gompertz mortality law. With such an approach we hope to generate predictive

models of aging for systematic discovery of biomarkers of aging followed by identification

of novel therapeutic targets for future anti-aging interventions.
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1. INTRODUCTION

Aging inmost species, including humans, manifests itself as a progressive functional decline leading
to the exponential increase in death risk from all causes. The mortality rate doubling time is
approximately 8 years (Gompertz, 1825). Age-independentmortalitymostly associated with violent
death and infectious diseases has been progressively declining over the last century, mainly due to
universal access to modern medicine and sanitation. The risks of death associated with the most
prevalent age-related diseases remain very low at first, increase exponentially and dominate after
the age of about 40 (Gavrilov and Gavrilova, 2005; Partridge et al., 2018). The incidence rates of
the specific diseases, such as cancer or stroke, also accelerate after this age and double at a rate
that closely tracks mortality acceleration (Barzilai and Rennert, 2012; Zenin et al., 2018). It is
therefore, entirely plausible to think there is a single underlying driving force behind the progressive
accumulation of health deficits, leading to the increased susceptibility to disease and death. This
force is aging.

Although we have come to expect that physical decline is a natural consequence of aging,
there is no natural law that dictates the exponential morbidity and mortality increase we observe
among human populations. It is possible for death risks to increase very slowly, stay constant for
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extended periods, or even decline with age (Vaupel et al., 2004;
Jones et al., 2014). Naked mole rats (Buffenstein, 2005; Ruby
et al., 2018) and the growing number of bat species are now
recognized as examples of mammals that exhibit the lack of
detectablemortality acceleration, or negligible senescence (Finch,
1994). Formally, this means that the mortality rate doubling
time could be arbitrarily large. In Kogan et al. (2015), we
suggested that the mortality acceleration may vanish depending
on the modifiable parameters, such as DNA repair or protein
homeostasis maintenance efficiency (López-Otín et al., 2013),
and should be, in principle, subject to manipulation. We
propose to combine big data from large prospective observational
studies with analytical tools borrowed from the physics of
complex dynamic systems to “reverse engineer” the underlying
biology behind the Gompertz law of mortality variables. This
approach may yield mechanistic predictive models of aging for
systematic discovery of biomarkers of aging, identification of
novel therapeutic targets for future anti-aging therapies.

2. HUMAN CLINICAL DATA REVEAL A
RICH PICTURE OF AGING TRAJECTORY

Large cross-sectional datasets, such as the UK Biobank (UKB)
or the National Health and Nutrition Examination Survey
(NHANES), provide an invaluable window on the dynamics
of human health as a function of age. Principal Component
Analysis, a basic unsupervised learning technique especially
useful for exploratory data analysis (Ringnér, 2008), reveals a
sophisticated pattern of human development and aging, see
Figure 1A. Each dot on the graph represents the averaged
position of a person’s organism state representations derived
from one-week long physical activity tracks of NHANES
participants, stratified into sex- and age-matched cohorts
(Pyrkov et al., 2017). The data distribution paints a complex
multidimensional picture beyond the obvious overall decline in
physical activity levels in the sick and elderly. On the coarse-
grained level, however, the life history appears as a well-defined
trajectory in the physiological parameters space. State dynamics
are distinctly different among age ranges corresponding to
childhood (below, approximately 15 years old), young adult
and adult stages (before and after the age of approximately 40
years old, respectively), followed by yet another distinct phase
in old age marking at the end of the “healthspan.” Healthspan
is defined (Fries, 2002) as the age at which the first debilitating
disease appears, followed by multiple linked morbidities, frailty,
and eventually death.

In the dynamics systems theory framework, the restriction of
the variation in physiological variables to the low-dimensional
aging trajectory has a deep physical significance. Biological
systems consist of strongly interacting components built from
an enormous number of individual parts and thus belong to
the realm of statistical physics or physical kinetics. Under most
common conditions, the state and the dynamics of such complex
systems can be described by a very few “macroscopic” variables
(Lifshitz and Pitaevskii, 1981; Pitaevskii and Lifshitz, 2012).
The necessity for the correlation between the vital physiological

variables over spatial and time scales, representing the organism’s
size and lifespan, as well as evolutionary pressure, drives the
underlying regulatory networks to criticality (Hidalgo et al.,
2014; Krotov et al., 2014). The order parameter, associated
with the unstable phase, is the emergent organism level
property characterized by extensive relaxation time, amplified
response to perturbations, and coinciding, approximately, with
the first principal component score. This is, therefore, a natural
biomarker of age, or the biological age, that can be approximately
identified in any sufficiently large dataset by means of PCA.
It is closely related to Strehler-Mildvan vitality (Strehler and
Mildvan, 1960) deficit, a qualitative measure of deviations from
the youthful state. The time scales involvedwith the biological age
dynamics are long (compared to mortality rate doubling time)
and naturally correspond to the life stages spanning development
(Krotov et al., 2014) and aging (Podolskiy et al., 2015).

3. AGING TRAJECTORIES AND THE
BIOMARKERS OF AGE AND FRAILTY

The profound linear association of most physiologically relevant
variables with age is a hallmark of aging studies in human
subjects and, therefore, can be used to construct useful
“biological clocks.” Typical biological age models involve linear
regressions of physiologically relevant variables to chronological
age. Examples of this include IgG glycosylation (Krištić et al.,
2013), blood biochemical parameters (Levine, 2012; Putin et al.,
2016), gut microbiota composition (Odamaki et al., 2016), and
cerebrospinal fluid proteome (Baird et al., 2012). To date, the
“epigenetic clock” based on DNA methylation (DNAm) levels
(Hannum et al., 2013; Horvath, 2013) appears to be the most
accurate measure of aging, showing remarkably high correlation
with chronological age. The DNAm clock predicts all-cause
mortality in later life better than chronological age (Marioni
et al., 2015). The biological age acceleration (BAA) is defined
as the difference between the biological age estimation of an
individual and the average biological age prediction in the sex-
and the age-matched cohort. This indicator is elevated in patients
with chronic diseases, such as HIV (Zhang et al., 2016), Down
syndrome (El Hajj et al., 2016), or obesity (Horvath et al., 2014).

The BAA predicts healthspan (Pyrkov et al., 2017) and
therefore healthspan can be used as a simple BAA proxy. We
produced a GWAS of healthspan and observed (Zenin et al.,
2018) strong (|ρg | > 0.3) genetic correlations between the
healthspan and the risks of specific age-related disease (with
the notable exception of dementia). Other examples of strong
genetic correlations included traits such as all-cause mortality
(as derived from parental survival, with ρg = −0.76), life-
history traits (metrics of obesity, age at first birth), levels of
different metabolites (lipids, amino acids, glycemic traits), and
psychological traits (smoking behavior, cognitive performance,
depressive symptoms, insomnia). It is therefore, plausible to
think that chronic age-associated diseases share components of
their genetic architecture, which further supports the hypothesis
of shared underlying mechanisms. Future understanding of
genetic factors of predispositions to chronic diseases and
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FIGURE 1 | (A) Principal Component Analysis of human physical activity time series representations from an NHANES study. (B) The trajectory of aging is shown

superimposed on the potential energy landscape (vertical axis), which provides a schematic visualization of the constraints provided by the underlying regulatory

network. Each dot represents the physical activity state vectors of an age-and sex-matched cohort of NHANES participants (men, diamonds; women, circles).

Cohorts were categorized by one year increments. The axes in the horizontal plane are (i) biological age (in years), and (ii) biological age-independent mortality. The

stability basin A is separated from the unstable region C by the potential energy barrier B; The figures are adopted from Pyrkov et al. (2017).

accelerated aging can help to improve the accuracy of Health
Risk Assessment (HRA) in life insurance, personal wealth
management, and retirement planning applications.

Popular biological age models are trained to predict
chronological age, however, often fail to fully capture signatures
of mortality and incidence of diseases. This deficiency can be
addressed with log-linear risk models using, if available, the
clinical or death registry to produce a biological age estimation
in the form of log-hazard ratio (Liu et al., 2018; Pyrkov
et al., 2018). In Pyrkov et al. (2017), we observed, however,
that mortality prediction has a significant age-independent
component associated with chronic diseases burden or clinical
frailty index. The nature of the variation of physiological
parameters associated with age (the “aging drift”) and its
relation to chronic diseases and death is thus compatible with
the following semi-quantitative picture, see Figure 1B (Pyrkov
et al., 2017). The organism state dynamics in the highly
multidimensional space of all possible biological measurements
is constrained by an unstable effective potential defined by the
underlying regulatory interactions. The organism state slowly
drifts along the “soft” direction along the free energy basin
associated with the least curvature. The systematic shifts and
fluctuations on top of the aging drift represent the organism’s
responses to perturbations, such as diseases or lifestyles, such as
smoking.

Survival depends on the shape of the potential barriers
separating the healthy aging individuals from the dynamically
unstable regions, see Figure 1B. As the organism state changes,
the nature of the regulatory interactions also vary: it is natural
to assume that there is at least one potential barrier, with
the activation energy decreasing as a function of (biological)
age. Accordingly, the Gompertz mortality law arises from the
exponentially increasing chances of a stochastic activation over
the lowest of the barriers and transiting into a relatively short-
lived state characterized by the complete loss of dynamic stability,
multiple morbidity, and death. In this picture, the increase

in biological age is not an indicator of any specific disease.
Instead, it drives the build-up of functional deficits, loss of
resilience, and exponentially rising risks of incidence of chronic
diseases.

4. AN EFFECTIVE STRATEGY TO EXTEND
HUMAN LIFESPAN

The form of the effective potential constraining the evolution of
physiological state variables on the time scales relevant to aging
and diseases broadly suggests that there could be two possible
strategies for human life extension. One option would be to
target resilience with interventions that increase the height of the
barrier with the least activation energy at any given age without
counter-acting the aging drift (see Figure 1B). To our knowledge,
there are few examples pointing to such a possibility. It appears
from the analysis that smoking does not affect the aging drift
but instead, reduces the resilience, thus increasing the chances
of disease and death (Pyrkov et al., 2017). The effect of smoking
is reversible, with individuals who quit smoking before a certain
age experiencing a similar life expectancy to their peers who
have never smoked (Taylor et al., 2002). There is experimental
evidence that caloric restriction in flies produces another example
of reversible short-term death risk without appreciable changes in
the rate of aging (Mair et al., 2003).

The other possibility would be to introduce a therapy aimed at
the reduction of biological age itself. This option is considerably
more attractive, since it would imply an action against the slowest
mode causally involved in the loss of resilience and hence would
produce a long-lasting effect on healthspan and survival. The
intervention would mitigate health deficits, delay the onset of
chronic diseases and henceforth bring substantial improvements
in quality of life. A transient rapamycin treatment inmice leads to
a significant life extension, changes the disease incidence statistics
long after the cessation of the treatment (Bitto et al., 2016),
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and may, therefore, serve as an example to inspire such a true
rejuvenation attempt.

5. PRACTICAL CONSIDERATIONS

Using an example from manufacturing, a complicated machine
in hand can be studied and reproduced, or “reverse engineered”
with insights about its function gleaned through the study of
its form. Reverse engineering is easier than invention from
scratch, which is why advanced electronic devices or military
machines are guarded secrets. Any proposal involving biological
reverse engineering and subsequent targeting of the regulatory
subsystem responsible for the control of the aging process
necessarily implies data acquisition. Aging models are then
inferred from the data to identify aging regulators or potential
anti-aging therapies. The physical kinetics equations are signal-
agnostic, and hence the choice of the specific biological variables
for the analysis should be driven by additional requirements such
as data quality, availability, and actionability. Other important
factors include the ease of preclinical validation and the expected
regulatory burden. Biological studies involving a large number
of samples are costly and logistically involved. The criticality of
the underlying regulatory network dynamics greatly facilitates
the analysis, since it implies a separation of scales between aging
dynamics and considerably faster reversible responses of the
organism to specific stress factors. Therefore, it should be possible
to obtain a sufficiently complete quantitative picture of the aging
process, including the system of regulators of aging, in a cost-
efficient way from a minimum number of samples representing
aging organisms.

For example, the increasing number of available genomes of
exceptionally old and hence successfully aging individuals can
provide an insight on the genetic architecture of exceptional
life- and health- spans by use of Genome-Wide Association
Studies (GWAS). The genetic variants associated with extreme
lifespan, including parental longevity (Joshi et al., 2016),
or healthspan (Zenin et al., 2018) may serve to predict
transcriptomic signatures of longevity or BAA. If combined
with large drug perturbation databases, such as the Broad
Institute CMAP, the results of genetic studies could be used
for transcriptomic GWAS-imputation followed by ranking small
molecular compounds as potential life-extending interventions,
or drug repositioning (So et al., 2016). Mining transcriptomic
signatures of drug perturbations to counter aging drift in
gene expression levels has a long history of success in model
organisms (see e.g., Tarkhov et al., 2018 for our recent example
of identification of experimental drugs extending lifespan
in nematodes). Redirecting existing drug therapies for new
applications is particularly attractive since it potentially sidesteps
the target ID, and validation steps (althoughmany drugs are well-
characterized, permitting a robust target hypothesis). Once the
efficacy of the predicted drugs is confirmed in animal studies,
FDA approval could be safely expedited for human clinical
trials.

Some specific genetic variants from the GWAS could hint
at attractive targets for future genetic therapies against aging.
Alternatively, a sufficiently large dataset of gene expression in a

cohort of aging human subjects may yield an entirely new set
of targets for a genetic intervention, including RNA interference
(Wittrup and Lieberman, 2015), gene editing (Cox et al., 2015),
or over-expression of predicted genes using a viral vector for
delivery (Naldini, 2015). All the technologies are in their first
steps in clinical trials and medical applications and yet they could
be selected for state-of-art anti-aging therapeutics. Compared
with the development of small molecules against target proteins,
the products of the selected genes, the approach could provide
a valuable alternative to the small molecule drug discovery, by
mitigating the uncertainty related to the difference in action
on the gene transcript and gene product in complex cellular
environments.

Another window of opportunities arises from the recent
progress in the fields of targeted metabolomics and high-
throughput proteomics combined with increasing availability
of stored tissue samples from richly characterized patients.
Investigations of aging dynamics and control of the circulating
blood plasma metabolites and proteins is an especially exciting
opportunity, since it is supported by experiments with young
blood transfusion (Villeda et al., 2014) and parabiosis (Conboy
and Rando, 2012). Early results from clinical trials suggest that
human blood contains a plethora of biological signals responsible
for intracellular communication and synchronization, including
those associated with development and aging. It is, therefore,
promising to use aging dynamics models to identify putative
regulators of aging among circulating molecules. The novel
metabolites could be patented in some jurisdictions to support
development costs and could be used directly or as templates for
novel therapeutics (Martens et al., 2018). The harmful proteins
could be selectively removed from circulation by amedical device
performing extracorporeal adsorption via therapeutic apheresis.
Targeting both kinds of circulating targets offers a substantial
reduction in the number and volume of necessary regulatory
studies and the associated risks and costs of a successful proof of
concept study in humans. The GWAS of longevity or healthspan
can be very useful in conjunction with the longitudinal targeted
proteomics or metabolomics analysis to provide extra-evidence
for life-extending potential of the suggested targets.

Animal preclinical studies are required to prove the efficacy of
any proposed therapeutic solution. Experiments with nematodes
and fruit flies offer short turnaround times andmay yield relevant
information since many genetic pathways controlling aging turn
out to be evolutionary conserved (Smith et al., 2008). Preclinical
studies require experiments with mammals, such as mice. The
lifespan of mice is relatively long (more than 100 weeks),
thus prompting the inclusion of surrogate endpoints associated
with lifespan and functional state of the organism, such as
Physiological Frailty Index (Antoch et al., 2017), Frailty Indices
(Rockwood et al., 2017), or DNA methylation age (Petkovich
et al., 2017; Stubbs et al., 2017) measurements in aging animals
in response to anti-aging interventions.

The biomarkers of age and frailty should, in principle, be
detectable consistently in a variety of vital signs typically available
from large datasets from human studies. It is therefore possible
to choose any convenient subset of physiological variables based
on costs, signal-to-noise ratio, or regulatory considerations. We
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proposed using human physical activity tracks (Pyrkov et al.,
2017) for two reasons: first, the overall level of activity is
positively associated with healthspan (see e.g., Demontis et al.,
2013); second, the relevant data is routinely collected and stored
online by ubiquitous wearable devices (including mobile phones)
for hundreds of millions of individuals all over the world. We
demonstrated that BAA estimations can be produced on a server
and reported back to users via a mobile phone application. The
accuracy of the biomarker can be further improved with the
help of modern machine learning tools, such as deep convolution
neural networks (Pyrkov et al., 2018).

It is not easy to introduce a novel biomarker of age into clinical
practice. It is therefore, necessary to develop novel clinical trial
designs and protocols involving measures of functional decline
and reliable surrogate endpoints with the goal to control health
deficits associated with “healthy aging” in otherwise healthy
individuals as early as in mid-life. The much anticipated 11th
Revision of the International Classification of Diseases (ICD-
11) introduces a number of aging-related conditions such as
age-associated cognitive decline (MB21.0). This is the first step
for medical professionals and healthcare systems worldwide to
identify novel pathways for the development of therapeutic
interventions from regulatory and market access standpoints.
This should facilitate new clinical trials and market authorization
of therapies aimed at functional declines associated with aging.

Finally, the interventions against aging should be applied early
in life and hence must be exceptionally safe to let the long-term
benefit (reductions in disease and mortality risk) outweigh the
risks of adverse events. Ideally, the therapies selected by their
effect on aging should produce a lasting effect after a single or a
short series of interventions. Such an ideal approach should lead
to an accumulation of the benefits of subsequent treatments and
minimize unwanted side-effects.

6. CONCLUSIONS

Big data from electronic medical records and research databases
offer a whole new way to understand aging. The exponential
increase of morbidity incidence and mortality rate, the hallmarks
of aging, can finally be traced to the variations in physiological

variables among individuals, jointly describing the organism state
in response to the multitude of external stresses and conditions
and endogenous factors controlling the development and aging.

The identification of biological age from the biomedical data
could be a way to translate the most recent findings from
fundamental aging research into life insurance first and then,
eventually, to clinical and medical settings. We envision the
joint use of personalized genomics and streamed wearable sensor
data for continuous monitoring of patient’s health and risks of
diseases and death. In the future, one may think of an advanced
AI system following life histories of millions of people and
feeding back real-time recommendations to reduce biological
age and improve resilience measures and prolong healthspan of
subscribed individuals.

Given a substantial progress in establishing biomarkers of age,
the research shifts to the inference of the relations between the
molecular level variables, such as expression levels of individual
targets, to long-term outcomes including the incidence of chronic
diseases and death. This should open a way to the rational design
of an entirely new class of therapeutics, aimed specifically at
mitigating health deficits, improving resilience, and increasing
healthspan.
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