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Qinghai-Tibetan Plateau (QTP) is an important biodiversity hub, which is very sensitive
to climate change. Here in this study, we investigated genetic diversity and past
population dynamics of Lancea tibetica (Mazaceae), an endemic herb to QTP and
adjacent highlands. We sequenced chloroplast and nuclear ribosomal DNA fragments
for 429 individuals, collected from 29 localities, covering their major distribution range
at the QTP. A total of 19 chloroplast haplotypes and 13 nuclear genotypes in two
well-differentiated lineages, corresponding to populations into two groups isolated by
Tanggula and Bayangela Mountains. Meanwhile, significant phylogeographical structure
was detected among sampling range of L. tibetica, and 61.50% of genetic variations
was partitioned between groups. Gene flow across the whole region appears to be
restricted by high mountains, suggesting a significant role of geography in the genetic
differences between the two groups. Divergence time between the two lineages dated
to 8.63 million years ago, which corresponded to the uplifting of QTP during the late
Miocene and Pliocene. Ecological differences were found between both the lineages
represent species-specific characteristics, sufficient to keep the lineages separated to
a high degree. The simulated distribution from the last interglacial period to the current
period showed that the distribution of L. tibetica experienced shrinkage and expansion.
Climate changes during the Pleistocene glacial-interglacial cycles had a dramatic effect
on L. tibetica distribution ranges. Multiple refugia of L. tibetica might have remained
during the species history, to south of the Tanggula and north of Bayangela Mountains,
both appeared as topological barrier and contributed to restricting gene flow between
the two lineages. Together, geographic isolation and climatic factors have played a
fundamental role in promoting diversification and evolution of L. tibetica.

Keywords: divergence, Lancea tibetica, genetic structure, phylogeography, demography, Qinghai-Tibetan
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INTRODUCTION

The Qinghai-Tibetan Plateau (QTP) is one of the largest and
youngest plateaus in the world, formed by several uplift events
after the collision of the Indian tectonic plate with the Asian
plate, about 40 Ma (million years ago) (Guo et al., 2002; Spicer
et al., 2003). Further significant uplift of the QTP occurred
during the periods of the East Asian summer and winter
monsoons about 15 Ma (Wan et al., 2007), 10–8 Ma (Molnar
et al., 1993; Harrison et al., 1995) and 3.6–2.6 Ma (Zhisheng
et al., 2001). The monsoon system interacted with the glacial-
interglacial cycle and produced a more variable monsoon climate
during the Pleistocene (Zhisheng et al., 2001). In recent decades,
considerable disagreement has arisen on the relation between
the uplifting of the plateau and the East Asian monsoons. Some
scholars suggest that the uplift of the QTP modified the global
and East Asian climate dramatically (Bloemendal, 1989; Zhisheng
et al., 2001) and triggered and intensified the Asian monsoon,
which in turn strongly influenced biological processes in the
region (Li and Fang, 1999). In contrast, other scholars, such
as Renner (2016) and Spicer (2017), suggest that there was no
obvious impact on the East Asian monsoon from the uplifting
of the QTP, even they hold the opinion that uplift having reached
average heights of 4–5 km since the mid-Eocene. However, these
climatic oscillations did affect the demography of some species,
leading to their range shifting or extinction. Furthermore, the
harsh climate of this region may have improved the adaptability
of some local organisms (Davis and Shaw, 2001; Hewitt, 2004;
Wan et al., 2016).

Numerous endemic species occur in the QTP and adjacent
highlands, which represent centers of the preservation of ancient
species and the differentiation of young species (Wu, 1988;
Myers et al., 2000; Liu et al., 2012). A popular but rarely proved
hypothesis is that the uplift of mountains creates environmental
conditions (such as dispersed barriers or new habitats) that
increase the rate of speciation (Xing and Ree, 2017). However,
several phylogeographic studies have shown that certain species
may have retreated during the ice age to refugia located at edge
of the QTP, and recolonized the QTP and the adjacent highlands
after the ice age, e.g., Juniperus przewalskii (Zhang et al., 2005),
Metagentiana striata (Chen et al., 2008), and Pedicularis longiflora
(Yang et al., 2008). Recent studies on Aconitum gymnandrum
(Wang et al., 2009), Hippophae rhamnoides (Jia et al., 2012), and
Spiraea alpina (Gulzar et al., 2018) suggest that some species also
survived in the QTP at high altitude during the glacial period.
For those species, multiple refugia may have remained during
the glacial period, some on the QTP and others on its edge (Liu
et al., 2012). For every species that has been researched, there is
a species-specific feature in their evolutionary histories, even in
some closely related species, such as S. alpina and S. mongolica
(Gulzar et al., 2018). Therefore, further phylogeographic studies
of a wider range of species are necessary to improve and refine the
model for differentiation and formation of species in the region.

According to the present taxonomical treatment, Lancea
Hook. f. et Thoms. is a small genus of the Mazaceae with only
two species, L. tibetica and L. hirsuta (Hong et al., 1998). As a
traditional Tibetan medicinal plant, L. tibetica has been used in

the treatment of leukemia, intestinal angina, heart disease, and
cough (Song et al., 2011b). Phytochemical studies on L. tibetica
suggest that it contains more than 71 compounds that have
pharmacodynamic effects, including anti-tumor, antioxidant,
and hypoglycemic-inhibiting activities (Song et al., 2011a; Liu
et al., 2014, 2015). L. tibetica is a perennial species endemic
to the QTP, widely distributed in alpine meadows at altitudes
of 2,000–4,500 m (Hong et al., 1998). The generation time
for L. tibetica is 2 years according to our preliminary field
observations. Under the inferior living condition, local human
harvest the wild populations puts extra pressure on L. tibetica
threatened with extinction (Tian et al., 2016). In this study, by
combining ecological niche modeling and molecular data, we
investigated the historical, genealogical and promoted diversity
of L. tibetica, to gain insights into its intraspecific divergence
and spatiotemporal population dynamics. Our study provides an
important advance in knowledge of the population dynamics of
endemic species on the QTP.

MATERIALS AND METHODS

Population Sampling and Experimental
Protocols
According to the Flora of China (Hong et al., 1998) and
herbarium records from the Chinese Virtual Herbarium (CVH1),
L. tibetica mainly occurs in Gansu, Qinghai, Sichuan, Xizang,
and Yunnan in China. It should be noted that few CVH
herbarium records of L. tibetica are mainly before the 1960s.
Some locations with just one or two records are difficult to
sample again in our field investigation. In this study, a total of
429 individuals were collected from 29 populations covering the
major distribution range of L. tibetica (Table 1 and Figure 1).
Fresh leaves were sampled, dried in silica gel and kept at −20◦C
until DNA extraction. Pedicularis rhinanthoides and P. chinensis
were also sampled as outgroups (sample information may be
found under the GenBank accession numbers MH628332–
MH628339). All the sampling locations were geo-referenced, and
voucher specimens deposited into the Herbarium of Northwest
Plateau Institute of Biology (HNWP), Chinese Academy of
Sciences.

Genomic DNA was extracted from approximately 20 mg
of dried leaves using a modified cetyltrimethylammonium
bromide (CTAB) method (Doyle, 1987). Four intergenic
spacers of chloroplast DNA (cpDNA) (genes trnH-psbA,
matK, trnL-F and rbcL) and two nuclear ribosomal internal
transcribed spacer regions (ITS1 and ITS2) were amplified
for all samples (White et al., 1990; Baldwin, 1992; Olmstead
and Michaels, 1992; Sang et al., 1997). PCR amplification
was performed using the following protocol: 25-µL reaction
mixtures containing 30–50-ng genomic DNA, 2.5 µL of 10×
PCR buffer (containing Mg2+), 1 µL of dNTPs (each 10 mM),
0.5 µL of each primer (50 µM), and 1 U of Taq DNA
polymerase (Takara, China). The amplification temperature
followed a profile of 95◦C for 1 min; 30 cycles of 95◦C for

1www.cvh.ac.cn
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30 s, 55◦C for 30 s and 72◦C for 1 min 30 s; extension
at 72◦C for 10 min. PCR products were sequenced with
an ABI 377XL DNA sequencer (Applied Biosystems). The
program CLUSTAL X (Thompson et al., 1997) was used to
perform alignment of all the sequences and the alignment
was checked manually in BioEdit v7.0.5 (Hall, 1999). All
sequences have been deposited in GenBank under accession
numbers MG818228–MG818245, MH605185–MH605197, and
MH628332–MH628339.

Genetic Variation and Population Genetic
Structure
During all analyses, insertion–deletion polymorphisms (indels)
were coded as presence/absence characters. After alignment,
cpDNA haplotypes and ITS genotypes were identified and
distinguished using DnaSP v5.0 (Librado and Rozas, 2009).
The level of genetic variation, total haplotype diversity
(Hd) and nucleotide diversity (Pi) were also calculated in
DnaSP. The program PERMUT (Pons and Petit, 1996)
was used to estimate within-population diversity (HS),

total gene diversity (HT), genetic differentiation (GST) and
population subdivision of phylogenetically ordered alleles
(NST) (Nei, 1987; Grivet and Petit, 2002). The GST value
represents the degree of genetic differentiation among the
population and was calculated as GST = (HT − HS)/HT
(Raymond and Rousset, 1995). The U-statistical method
was used to compare GST and NST (using 1,000 repeat
replacement tests) and to check the geographical distribution
pattern.

Population subdivision analysis was performed in the
program SAMOVA v1.0 (Dupanloup et al., 2010), to define
groups that are geographically homogeneous and genetically
differentiated. The analysis used the data from cpDNA, run
for K = 2–10, starting from 1,000 random initial conditions
for each run, to obtain the maximal value of FCT for the
most appropriate K-value and grouping method. Genetic
differentiation based on cpDNA was estimated through
analysis of molecular variance (AMOVA) as implemented
in the program ARLEQUIN v3.5 (Excoffier and Lischer,
2010). To calculate the average effective gene flow, we
used the formula Nm = ([1/FST]−1)/2. Genetic distances

TABLE 1 | Sample locations, sample size and haplotype frequencies for 29 populations of L. tibetica.

P. Location Latitude (N) Longitude (E) Altitude (m) Plastid haplotype Genotype Hd Pi (100×)

1 Yadong, XZ 27◦47′ 89◦08′ 4350 A(6), F(1) G2(7) 0.28571 0.013

2 Luozha, XZ 28◦08′ 90◦41′ 4566 A(7), B(1) G1(1), G2(3), G3(3), G4(1) 0.25000 0.012

3 Milashan, XZ 29◦42′ 92◦03′ 4136 A(20) G2(20) 0 0

4 Linzhi, XZ 30◦04′ 91◦16′ 4232 A(7), R(4), S(1) G2(11), G3(1) 0.59091 0.030

5 Dangxiong, XZ 30◦32′ 91◦20′ 4381 A(8) G2(3), G4(4) 0 0

6 Basu, XZ 29◦31′ 96◦46′ 4140 A(3), D(1), E(22) G2(1), G4(4), G8(12), G9(2), G10(8) 0.28000 0.077

7 Jieduo, QH 32◦52′ 95◦00′ 4327 A(12), D(3), K(1) G5(3), G7(4), G8(12) 0.42500 0.071

8 Zaqing, QH 33◦5′ 95◦9′ 4289 D(17) G5(7), G7(2), G8(10) 0 0

9 Xialaxiu, QH 32◦23′ 96◦47′ 3770 A(7), D(2), K(6), M(1) G2(3), G7(5), G8(8) 0.69167 0.093

10 Batang, QH 32◦46′ 97◦18′ 4100 A(10), D(5), I(3) G7(4), G8(14) 0.62092 0.092

11 Yushu, QH 32◦55′ 97◦13′ 3667 D(14), I(2), J(1) G7(4), G8(13) 0.32353 0.055

12 Zhiduo, QH 33◦29′ 96◦05′ 4370 A(9), D(3), I(2), K(4), L(1) G5(4), G7(8), G8(7) 0.73099 0.098

13 Qumalai, QH 33◦58′ 96◦34′ 4570 D(3), F(1), I(7), K(7) G5(4), G7(9), G8(5) 0.70588 0.127

14 Seda, SC 32◦17′ 100◦16′ 3926 A(4), D(2), N(4), Q(1) G6(1), G7(5), G8(6) 0.76364 0.094

15 Dari, QH 33◦41′ 99◦26′ 4028 D(3), M(1), N(3) G7(2), G8(2), G9(2), G11(1) 0.71429 0.039

16 Dawu, QH 33◦28′ 99◦56′ 3872 D(28) G5(13), G6(5), G7(7), G8(2), G13(1) 0 0

17 Gande, QH 34◦07′ 100◦18′ 4020 D(13), N(1), P(2) G5(3), G7(7), G8(5), G13(1) 0.34167 0

18 Henan, QH 34◦27′ 101◦02′ 3657 D(10) G5(5), G7(1), G8(2), G9(2) 0 0

19 Xinghai, QH 35◦20′ 99◦54′ 3622 C(2), D(10) G5(7), G6(2), G7(3) 0.30303 0.014

20 Tongren, QH 35◦16′ 101◦54′ 3036 C(1), D(8) G5(1), G7(7), G8(1) 0.22222 0.010

21 Hezuo, GS 34◦50′ 103◦00′ 3220 A(1), C(1), D(8) G5(1), G7(1), G8(7), G9(2) 0.37778 0.044

22 Guide, QH 36◦21′ 101◦26′ 3782 A(1), D(12) G5(5), G7(6), G8(2) 0.15385 0.028

23 Xihai, QH 36◦52′ 100◦54′ 3137 A(3), D(9), H(1) G5(2), G6(1), G7(3), G8(4), G12(3) 0.50000 0.078

24 Gonghe, QH 36◦46′ 99◦40′ 3396 D(9), N(2), O(1) G5(7), G9(5) 0.43939 0.023

25 Dulan, QH 37◦01′ 98◦39′ 3445 D(6) G7(3), G8(2), G13(1) 0 0

26 Tinajun, QH 37◦11′ 99◦13′ 3340 D(13), G(1) G5(2), G6(1), G7(4), G8(4), G9(2), G11(1) 0.14286 0.007

27 Gangcha, QH 37◦42′ 100◦34′ 3442 D(14), H(2) G5(4), G7(11), G8(1) 0.23300 0.011

28 Menyuan, QH 37◦51′ 101◦04′ 3636 D(31) G5(10), G6(1), G7(17), G8(2), G11(1) 0 0

29 Qilian, QH 38◦26′ 99◦33′ 3296 D(18), H(1) G5(7), G6(5), G7(6), G8(1) 0.10526 0.005

Total 0.62470 0.108

P., population code; XZ, Xizang Autonomous Region; QH, Qinghai Province; GS, Gansu Province; SC, Sichuan Province; Hd, haplotype diversity; Pi, nucleotide diversity.
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FIGURE 1 | A photograph of L. tibetica plant (a) and a map of sampling coverage in this study (b). Black dots represent herbarium records in CVH, and blue
squares represent sampled populations in this study.

were estimated in ARLEQUIN with 1,000 permutation
tests.

Phylogeny and Demographic History
Based on cpDNA Sequences
Relationships among cpDNA haplotypes were constructed
via a maximum-parsimony median-joining network using

NETWORK 4.6 with default parameters (Bandelt et al., 1999).
Phylogeny of cpDNA haplotypes was estimated using MrBayes
3.1.2 (Drummond et al., 2012). P. rhinanthoides and P. chinensis
were selected as outgroups, as Pedicularis and Lancea were
formerly in the same family Scrophulariaceae (Hong et al.,
1998). The best-fitting GTR + G + I model was selected by
MrModeltest 2.3 (Nylander, 2004) using the Akaike Information

TABLE 2 | Variable nucleotide sites in four chloroplast DNA fragments, allowing 19 haplotypes to be identified in L. tibetica.

Plastid haplotype matK psbA-trnH trnL-F rbcL

129 416 617 42 98 258 261 264 271–276 277 120 432 581 46 205 243 322 601

A T C T G A T A – – A A T G G C T G C

B T C T G A T A – – A T T G G C T G C

C G C T G A T A – – A A C A G C T G C

D G C T G – T A – A A C A G C G G C

E G C T T A A T A A A C A G C G G C

F T C T G A T A – – A A T G G C G G C

G G C T G – T A – – A A C A G C T G C

H G C G G – T A – A A C A G C G G C

I T C G G A T A – – A A T G G C T G C

J T C T G A T A – – A A C A G C G G C

K T C T G A T A – – A A T G G T T G T

L T C T G A T A – – A A T G A C T G C

M G C T G A T A – – A A T G G C T G C

N G C T G – T A – – A A C A G C G G C

O G C T G – T A – A A C A G T T G T

P G C T G – T A – – – A C A G C G G C

Q G C T G A T A – – A A C A G C G G C

R T C T G A T A – – A A T G G C T A C

S T T T G A T A – – A A T G G C T G C

, TAAAAT.
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FIGURE 2 | Geographic distribution of haplotypes detected from the combined cpDNA sequences of L. tibetica (population codes as detailed in Table 1).

Criterion. For MrBayes, two independent Markov-chain Monte
Carlo analyses for 100,000,000 generations were performed
with a random starting tree. One cold and three heated
chains were run simultaneously, with trees sampled every
1,000 generations, and discarding the first 25% as burn-in.
FIGTREE 1.3.1 (Rambaut, 2009) was used to display the
tree.

Tajima’s D and Fu’s FS statistics were calculated to test for
evidence of range expansion (Tajima, 1989; Fu, 1997; Jaeger
et al., 2005). A significant value for D or a significantly large
negative value for FS may be the result of population expansion
(ArisBrosou and Excoffier, 1996). To analyze the dynamic
size of the populations, we performed mismatch distribution
as implemented in ARLEQUIN. The observed and expected
mismatch distribution of the sum of squared deviation (SSD) and
Harpending’s raggedness index (HRI) were used as test statistics.
A unimodal shape of the mismatch distribution provides
evidence of sudden population expansion during the history
of a species. All the tests were implemented in ARLEQUIN
v3.01 (Rogers and Harpending, 1992) with 1,000 significant
permutations. When the sudden expansion model was accepted,
the formula τ = 2ut was used to estimate the age of expansion (t),
where τ is the total number of mutations and u is the mutation
rate per generation for the whole analyzed sequence. The value
of u is calculated as u = µkg, where µ is the substitution rate
per nucleotide site in 1 year, k is mean sequence length of the
analyzed DNA region and g is the generation time of the plant.
We used the substitution rates (2 × 10−9 s s−1 year−1) of
cpDNA (Wolfe et al., 1987) to estimate the expansion time of both
clades.

Divergence Time Analysis Based on ITS
Sequences
There are few reports of fossil data of Lamiales, and only
a few fossil records [Fraxinus L. (Call and Dilcher, 1992;
Magallon, 2000); Catalpa Bur. (Meyer and Manchester, 1997)]
are reliable (Manchester, 1999). Based on these fossil records,
Nie et al. (2006) analyzed the divergence time of Lamiales,
showed the divergence between Mazus reptans and L. tibetica
was around 25 Ma. The sequence of M. reptans (LC027734)

TABLE 3 | Variable nucleotide sites in nuclear ribosomal internal transcribed
spacer (ITS) sequences in 13 genotypes identified in L. tibetica.

Genotype ITS

104 163 284 301 356 527 590 641

G1 G A A G G T C G

G2 G A A G G A C G

G3 A A A G G A C G

G4 G A A A G A C G

G5 G G G G G T C G

G6 G G G G A A C G

G7 G G G G G A C G

G8 G A G G G A C G

G9 G G G G G T A G

G10 G A G G G A C A

G11 G G G G G A A G

G12 G A G G G A A G

G13 G A G G G T C G
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FIGURE 3 | Geographic distribution of genotypes detected from the ITS sequences of L. tibetica (population codes as detailed in Table 1).

was used as the outgroup in analyzing ITS data (Nie et al.,
2006). The GTR + I base substitution model was selected
with a loose molecular clock model of the uncorrelated
index in BEAST 1.5.0 (Drummond and Rambaut, 2007). The
two independent models were analyzed and combined using
LogCombiner v1.5.3. Convergence was traced using TRACER
v1.7 (Rambaut et al., 2018). The program TreeAnnotator
v1.5.3 (Rambaut et al., 2018) was used to summarize the
maximum credible tree. Finally, a tree showing ages for
each branch was displayed in FigTree v1.3.1 (Rambaut,
2009).

Ecological Niche Modeling
During the field work, the locations of the sampling sites
were recorded using GPS (Table 1). To infer the potential
geographic range and the effects of past climatic oscillations
on L. tibetica through one complete glacial-interglacial cycle,
we performed species distribution models based on current,
mid-Holocene (6 ka), last glacial maximum (20 ka), and last
interglacial (135 ka) periods (Otto-Bliesner et al., 2006). We
simulated the species distribution models GBM: generalized
boosted models (Ridgeway, 2004); SRE: surface range envelop
(Busby, 1991); GLM: generalized linear model (Mccullagh
and Nelder, 1989), CTA: classification tree analysis (Breiman
et al., 1984); ANN: artificial neural network (Lecun and
Bengio, 1996); FDA: flexible discriminant analysis (Hastie,
1994); MARS (Friedman, 1991); RF: random forests (Breiman,
2001); and MAXENT (Phillips et al., 2004) using R package
biomod2 v3.1-64 (Thuiller et al., 2014), supported with

additional packages rworld map, rgdal, dismo, and SDMTools.
To evaluate the effectiveness of these algorithms we used
TSS and ROC values >0.7 to assemble the raster layers
using median values. A total of 13 bioclimatic variables
were chosen (annual mean temperature, mean diurnal
range, isothermality, temperature seasonality, maximum
temperature of warmest month, minimum temperature of
coldest month, temperature annual range, mean temperature of
wettest quarter, mean temperature of driest quarter, mean
temperature of warmest quarter, annual precipitation,
precipitation of wettest month, and precipitation of driest
month) with low correlation and high informativeness
after a jackknife procedure on the 19 bioclimatic variables
downloaded from the WorldClim database (Robert et al.,
2005).

We selected the maximum entropy model and machine
learning algorithm as implemented in MAXENT v3.3.3k
(Phillips et al., 2006; Phillips and Dudík, 2008) to predict
suitable climate models for both lineages. MAXENT can
produce a useful model with a small sample size (Hernandez
et al., 2006; Pearson et al., 2007; Wisz et al., 2008; Anderson
and Gonzalez, 2011). We used all the 19 bioclimatic variables
from 1950 to 2000, downloaded from the WorldClim database
(Hijmans et al., 2005). In addition, we selected ten environmental
variables (annual mean temperature, mean diurnal range,
isothermality, maximum temperature of warmest month,
minimum temperature of coldest month, mean temperature
of driest quarter, mean temperature of warmest quarter, mean
temperature of the coldest quarter, precipitation seasonality,
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FIGURE 4 | Bayesian tree of L. tibetica with P. rhinanthoides and P. chinensis as an outgroup, based on analysis of cpDNA sequences. (A) Bayesian tree of 19
L. tibetica lineages and two Pedicularis species: the numbers at the branches are posterior probability values. (B) maximum-parsimony median-joining network of
the genealogical relationship among the 19 cpDNA haplotypes. Each circle denotes a single haplotype, shown with the area in proportion to its frequency. The
numbers near the slashes across network branches indicate the number of mutational steps. The remaining branches represent single mutational steps.

precipitation of coldest quarter) to perform the tests. The
restricted dataset was used to avoid including highly correlated
variables and prevent potential overfitting (Peterson and
Nakazawa, 2008). Model performance was evaluated by
the area under the receiver operating characteristic curve
(AUC) using the program MAXENT. We used a jackknife (or
‘leave-one-out’) procedure to train and test the model. Values
between 0.7 and 0.9 indicated good discrimination (Swets,
1988).

To measure the niche similarity between lineages, we
used ENMTools 1.3 (Warren et al., 2008, 2010) to calculate
Schoener’s D and Warren’s I indices (Warren et al., 2008)
and quantify niche overlap: a value of 0 means ecological
niches do not overlap at all, and 1 means the habitats
are estimated to be equally suitable for both lineages. The
overlap test was performed in layers using the program
MAXENT. A niche identity test was obtained based on
200 pseudo-replicates to generate a distribution of the
expected values of each index. The significance of observed

and expected indices were estimated using SPSS v20.0
(IBM Corp, 2013).

RESULTS

Sequencing, Genetic Variation, and
Population Genetic Structure
The total alignment length of four chloroplast gene regions
(trnH-psbA, matK, trnL-F, and rbcL) in all individuals was
2,179 bp, included 14 substitutions and four indels (also coded
as substitutions during analysis, Table 2). Based on those
polymorphisms, we identified a total of 19 haplotypes (A–S),
which were asymmetrically distributed across the 29 populations
(Figure 2). The total estimated haplotype diversity (Hd) was
0.6247 and nucleotide diversity (Pi) was 0.00108 (Table 1). At
the population level, the populations 9–15 showed a higher Hd
and Pi. Haplotypes A and D were widely distributed in the
south and north ranges, respectively (Figure 2). Populations

TABLE 4 | AMOVA for cpDNA data among two clades and all populations of L. tibetica.

Source of variation d.f. Sum of squares VC PV (%) Fixation

Total populations

Among populations 28 836.702 1.96575 66.76 FST = 0.66758∗

Within populations 400 391.54 0.97885 33.242

Total 1228.242

North clade vs. south clade

Among groups 1 549.127 2.62536 61.54 FST = 0.77057∗

Among populations within groups 27 287.576 0.66219 15.52 FSC = 0.40352∗

Within populations 400 391.540 0.97885 22.94 FCT = 0.61536∗

d.f., degrees of freedom; VC, variation component; PV, percentage of variation; FST, correlation within populations relative to total; FCT, correlation of haplotypes within
groups relative to total; FSC, correlation within populations relative to groups; ∗ represents P < 0.01, with 1,000 permutations.
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TABLE 5 | Mismatch distribution analysis and neutrality tests for pooled populations of lineages.

Group SSD (P-value) HRag (P-value) Tajima’s D (P-value) Fu’s Fs (P-value) Parameter (τ ) Expansion time (t)

All populations 0.14(0.02) 0.224(0.05) 0.265(0.68) 2.873(0.81) NC NC

North clade 0.03(0.10) 0.517(0.62) −1.24(0.10) −1.214(0.36) 3.000(0.361–3.500) 0.172(0.021–0.201) Ma

South clade 0.05(0.46) 0.089(0.57) 0.30(0.68) 5.06(0.97) 12.675(0.420–24.616) 0.727(0.024–1.412) Ma

Estimates were acquired under a model of spatial expansion using ARLEQUIN. τ, time in several generations elapsed since the sudden expansion episode; HRag,
Harpending’s raggedness index; SSD, the sum of squared deviations; NC, not calculated; Ma, million years ago.

FIGURE 5 | Mismatch distribution analysis for cpDNA sequence data of all populations (A), north clade (B), and south clade (C) in L. tibetica.

FIGURE 6 | Divergence time between the major north and south lineages of L. tibetica, based on analysis of internal transcribed spacer regions. B indicates the
divergence time of L. tibetica from M. reptans, and A indicates the divergence time between the north and south lineages.

9, 10, and 12–15 showed higher haplotype and nucleotide
diversities.

The total alignment length of ITS in all individuals was
693 bp, which included eight substitutions that enabled
us to identify thirteen genotypes (G1–G13; Table 3).
In combination with the geographical distribution of
L. tibetica, our results indicated that the G1–G4 genotypes
were mainly distributed to the south of the Tanggula
Mountains, while the other genotypes were found to the
north (Figure 3).

The program SAMOVA divided all the populations into
two groups based on the chloroplast sequences, corresponding
to the south and north lineages. The south lineage included
populations 1–7, 9, 10, 12, and 13 while the north lineage
included populations 8, 11, and 14–29, although the FCT was not
the highest. The FCT values changed very little with increasing
number of groups (K) and were highest at K = 5 when
populations 6, 14, and 15 formed three groups (these populations
had a high proportion of private haplotypes). The average genetic
diversity (HS) was 0.311, while the total genetic diversity (HT)
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FIGURE 7 | Distribution models for L. tibetica, simulated based on current, mid-Holocene (6 ka), last glacial maximum (20 ka), and last interglacial maximum (135 ka)
periods.

was 0.644. The NST (0.662) was significantly higher than GST
(0.507), as shown by a U-test (P < 0.01), indicating significant
phylogeographical structure in L. tibetica. AMOVA revealed
that 61.50% of genetic variation was partitioned among groups,
15.50% among populations within the group, and 22.94% within
populations (Table 4). Moreover, the average gene flow among
the populations and between the two groups of L. tibetica was
0.249 and 0.149, respectively.

Phylogeny and Demographic History
Based on cpDNA Sequences
The Bayesian inference tree topology of the 19 cpDNA haplotypes
strongly supported the hypothesis of two lineages (south and
north; Figure 4A). Haplotypes in the south lineage occurred
in populations from the south of the QTP, and haplotypes in
the north lineage occurred in populations from the north. The
maximum-parsimony median-joining network also grouped all
the cpDNA haplotypes into two major groups (south and north)
separated by two mutational steps (Figure 4B).

The results of Tajima’s D and Fu’s FS was not significant.
However, the observed mismatch distributions of haplotypes for
each lineage failed to reject the spatial expansion model (SSD,
HRag values P > 0.05; Table 5 and Figure 5). The observed
mismatch distributions of the whole population rejected the
spatial expansion model (SSD, HRag values P < 0.05; Table 5).
Based on the range of the plastid DNA substitution rate, a
haplotype sequence length of 2,179 bp and 2-year generation
time, the expansion of the south lineage was estimated to have
occurred at 0.727 Ma (with a confidence interval 0.024–1.412

Ma), and that of the north at 0.172 Ma (with a confidence interval
0.021–0.201 Ma).

Divergence Time Analysis Based on ITS
Sequences
According to preliminary calculations using ITS sequence data,
L. tibetica diverged from M. reptans around 25 Ma, and the
divergence of L. tibetica between the major north and south
lineages was dated at around 8.63 Ma (Figure 6). These estimates
of dates of origin need to be treated with caution but the
estimated divergence times correspond well with the geological
evidence of the QTP uplift during the late Miocene and Pliocene
(Li and Fang, 1999; Zheng et al., 2000; Mulch and Chamberlain,
2006).

Ecological Niche Modeling
The predicted distribution of L. tibetica underwent significant
changes during the glacial-interglacial period (Figure 7). From
the last interglacial maximum to the last glacial maximum to
the mid-Holocene, the range of the predicted distribution of
L. tibetica experienced successive reduction and expansion. There
was no significant change from the mid-Holocene to the current
period (Figure 7). The AUC values for ecological niche modeling
of the north and south lineages were 0.986 and 0.960, respectively,
indicating far better than a random prediction. A test of identity
between the two lineages showed that there was distinct niche
differentiation (P < 0.05). A background test of both lineages
also showed that the ecological niches of the two lineages are
well differentiated (Figures 8a,c,d). Values of Schoener’s D and
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FIGURE 8 | Potential distributions and niche overlap for L. tibetica lineages in the QTP. (a) The location illustration of the simulation area. (b) Vertical lines represent
the empirical value of Warren’s I and Schoener’s D indices, obtained from observed points; the histograms represent the expected distribution of overlap; the null
hypothesis of identical niches is rejected if the empirical value falls outside the 95% probability threshold of the expected distributions (P < 0.05). The potential
distributions for L. tibetica in the North lineage (c) and South lineage (d).

Warren’s I indices suggested significant niche divergence between
the south and north lineages (P < 0.05, Figure 8b).

DISCUSSION

Genetic Structure and Intraspecific
Divergence
The average effective gene flow within the distribution range of
L. tibetica is low, compared with that of previous studies on
other species in the area, e.g., Spiraea mongolica (0.41) (Wang
et al., 2014) and Camellia flavida (0.35) (Wei et al., 2017).
Higher gene flow in those other species might have resulted
in higher genetic differentiation among their populations. We
found that the average effective gene flow among the two lineages
of L. tibetica (0.149) was lower than that among the different
populations (0.249). The seeds of L. tibetica are small and
wingless and disperse near the parent plants, a feature that is
likely to have enhanced the degree of genetic differentiation by
restricting gene flow (Hong et al., 1998). However, we found high
genetic differentiation among the populations, and most genetic
variation was distributed among the populations and groups,
based on SAMOVA. The geographic isolation of populations
within species and variation in ecological factors are major

driving forces to cryptic speciation (Hoskin et al., 2005; Liu et al.,
2013).

The results of SAMOVA, the Bayesian inference tree and
parsimony network analysis showed that L. tibetica comprises
two major cpDNA groups. One group has its main geographic
distribution to the north of the Tanggula and Bayangela
Mountains, while the other group lies mainly to the south of
the QTP. Gene flow across the whole region appears to be
restricted by high mountains, suggesting a significant role of
geography in the genetic differences between the two groups.
Similarly, the ITS sequence variation showed clearly that the
divergence of L. tibetica between the major north and south
lineages was around 8.63 Ma. Although the estimates of dates
of origin need to be treated with caution, they correspond well
with geological evidence that the QTP experienced uplift during
the late Miocene and Pliocene periods (Li and Fang, 1999;
Zheng et al., 2000; Mulch and Chamberlain, 2006). This evidence
suggests that the Tanggula and Bayangela Mountains appear to
act as a geographical barrier for L. tibetica, probably imposed
significant barriers on gene flow and divided the species into
north and south lineages.

As indicated by the cpDNA, the ecological differences between
the two lineages seem to represent species-specific characteristics
that would be sufficient to keep the lineages separated to a high
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degree. Such distinct ecological niches would have reinforced
the divergence of the two lineages following their initial spatial
isolation. Thus, each of the two lineages may have given
rise to some degree of differential adaptation to its respective
environmental conditions. It is likely that the extensive QTP
uplifts created fragmentation and isolation of habitats and niche
differentiation, and provided the preconditions for the adaptive
divergence of fragmented populations and subsequent speciation
(Hewitt, 1996; Abbott and Brennan, 2014). In addition, about
9–8 Ma, enhanced aridity in the Asian interior and the onset
of Indian and East Asian monsoons (Zhisheng et al., 2001)
might have provided different ecological niches for the different
lineages of L. tibetica. Some studies have reported that if related
species live in significantly different niches, ecological divergence
would likely be important in facilitating speciation, even in the
presence of gene exchange (Nosil, 2008; Nosil et al., 2009a;
Anacker and Strauss, 2014; Wan et al., 2016). Although ecological
divergences in this case have not resulted in the emergence of
new species, the initial divergence demonstrates the potential for
ecological speciation. If geographic isolation and restricted gene
flow are maintained long enough, they may eventually lead to
reproductive isolation (Rieseberg and Burke, 2001; Nosil et al.,
2009b; Thorpe et al., 2010), resulting in the formation of new
species. Our results support the conclusion from previous studies
that the uplift of the QTP and its associated climatic changes
were most likely the main cause of plant diversification (Cun and
Wang, 2010; Xu et al., 2010; Yang et al., 2012).

Quaternary Demographic History and
Glacial Refugia of L. tibetica
Climate changes during the Pleistocene glacial-interglacial cycles
had a dramatic effect on species distribution ranges (Comes
and Kadereit, 1998; Hewitt, 2004), causing migration and/or
extinction of populations, followed by periods of isolation,
divergence and subsequent expansion (Taberlet et al., 1998; Cun
and Wang, 2010). During the Pleistocene period, continuing
climatic oscillations caused repeated shifts in the abundance of
alpine species (Tang and Shen, 1995; Herzschuh et al., 2010).
There were some glacial refugia on the QTP platform, giving
some plant species a chance to survive the changing climate
(Yang et al., 2008; Wang et al., 2009, 2015; Li et al., 2011; Gao
et al., 2016; Liu et al., 2018). In the present study, the simulated
distribution from the last interglacial period to the current
period showed that the distribution of L. tibetica experienced
shrinkage and expansion (Figure 7). In the last glacial maximum
period, extreme cold and dry weather substantially reduced
its distribution from a continuous geographical distribution to
a more fragmented pattern. Our distribution simulations for
the mid-Holocene and the current period showed that the
distribution ranges of L. tibetica were the same, and apparently
more extensive than those in the last glacial maximum periods.
Taken together, our results reveal that L. tibetica did experience
population expansion.

Molecular data also provided further support for the above
hypothesis. Based on cpDNA sequence variation, the north and
south lineages of L. tibetica experienced a rapid range expansion

at 0.172 Ma and 0.727 Ma, respectively (Table 5), consistent with
the Pleistocene (Hewitt, 2000; Zheng et al., 2002). The largely
open alpine regions that became available following the end of
the major glaciation would have provided extensive opportunities
for L. tibetica to expand its range. Indeed, such expansions of
geographical range into alpine regions of the QTP have been
reported previously for several plant species and are likely to have
been common during the largest Pleistocene glaciation on the
QTP (Liu et al., 2012, 2013; Gulzar et al., 2018; Lin et al., 2018).
The QTP has been shown to be sensitive to climatic shifts, when
plants were profoundly affected by alpine glaciation (Meng et al.,
2007; Chen et al., 2008).

According to Taberlet and Cheddadi (2002), localities with
high levels of genetic variation and unique haplotypes have often
been recognized as possible refugia or as centers of diversification
for species, whereas localities with low levels of genetic variation
represent recent colonization. Some reports suggest that the
mountainous areas of subtropical China may have provided
refugia for warm-temperate evergreen species through periods
of adverse climatic conditions (Bennett and Provan, 2008; Qiu
et al., 2011; Wang et al., 2015). Our results showed that since the
last glacial maximum, the south and north lineages experienced
population expansion, while the population as a whole showed
no expansion. In addition, even though L. tibetica has only two
major lineages, some of its populations (9, 10, 12, 13, 14, and
15) contained higher haplotype and nucleotide diversities. It is
likely that populations located in the Tanggula Mountains could
survive in alternative habitats within a short distance, allowing
biodiversity to persist during climate modifications (Hoorn et al.,
2013). These patterns collectively suggest that areas south of
the Tanggula and north of the Bayangela Mountains harbored
refugia during the early Pleistocene, and then the southern and
northern distribution ranges expanded rapidly at 0.727 and 0.172
Ma, respectively, during the interglacial periods. It might be
a possible explanation for our finding that these populations
have lower haplotype and nucleotide diversities than do some
other species. Previous reports have suggested that rapid range
expansion should decrease intra-population genetic diversity in
the direction of spread (Hewitt, 1996; Soltis et al., 1997; Nason
et al., 2002).

CONCLUSION

In conclusion, analyses of L. tibetica from our sample
range, bringing together molecular phylogeography and species
distribution modeling, indicate that a combination of geographic
isolation and climatic factors have played a fundamental role
in promoting diversification and evolution of this species. This
study provides valuable evidence that advances research on
genetic differentiation on the QTP.
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