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Initiation of flowering moves plants from vegetative to reproductive development. The

time when this transition happens (flowering time), an important indicator of productivity,

depends on both endogenous and environmental factors. The core genetic regulatory

network canalizing the flowering signals to the decision to flower has been studied

extensively in the model plant Arabidopsis thaliana and has been shown to preserve its

main regulatory blocks in other species. It integrates activation from the FLOWERING

LOCUS T (FT ) gene or its homologs to the flowering decision expressed as high

expression of the meristem identity genes, including AP1. We elaborated a dynamical

model of this flowering gene regulatory network and applied it to the previously published

expression data from two cultivars of domesticated chickpea (Cicer arietinum), obtained

for two photoperiod durations. Due to a large number of free parameters in the model, we

used an ensemble approach analyzing the model solutions at many parameter sets that

provide equally good fit to data. Testing several alternative hypotheses about regulatory

roles of the five FT homologs present in chickpea revealed no preference in segregating

individual FT copies as singled-out activators with their own regulatory parameters, thus

favoring the hypothesis that the five genes possess similar regulatory properties and

provide cumulative activation in the network. The analysis reveals that different levels

of activation from AP1 can explain a small difference observed in the expression of the

two homologs of the repressor gene TFL1. Finally, the model predicts highly reduced

activation between LFY and AP1, thus suggesting that this regulatory block is not

conserved in chickpea and needs other mechanisms. Overall, this study provides the

first attempt to quantitatively test the flowering time gene network in chickpea based on

data-driven modeling.
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INTRODUCTION

The depleted genetic diversity of many domesticated
agriculturally important plants is a common problem for
breeders, providing an obstacle in developing new forms with
desired features. One such feature important for domesticated
chickpea (Cicer arietinum) is early flowering time, which
enforces more rapid transition from vegetative to reproductive
growth. Due to high sensitivity of chickpea to ascochyta blight,
it is essential to reduce the full plant cycle, from sowing to
maturation, in order to fit it to relatively short growing seasons
having dry weather and, hence, low disease pressure (Kumar
and Abbo, 2001). These growing seasons are quite short in
major chickpea growing regions, pushing breeders to developing
chickpea lines with early flowering time. Thus, it is important to
identify key genes regulating floral transition and quantitatively
understand the behavior of the flowering time gene network.

The floral transition has been intensively studied in model
organisms, such as Arabidopsis (Arabidopsis thaliana) (Srikanth
and Schmid, 2011; Andrés and Coupland, 2012), and in other
plants, including important crops and legumes (Kumar and
Abbo, 2001; Dong et al., 2012; Shrestha et al., 2014; Blümel et al.,
2015; Peng et al., 2015; Weller and Ortega, 2015; Zhang et al.,
2016; Ridge et al., 2017). Flowering starts in response to various

environmental signals, including photoperiod and vernalization,
and endogenous signals, such as autonomous and circadian

clock, and molecular pathways have been identified conducting

these signals to the core gene network that integrates them into
a binary decision to flower. Despite the high complexity of these
pathways and many unknown regulators, it has been shown that
key genes regulating the process are conserved between species.
In particular, the flowering signals lead to the elevated expression
of the floral pathway integrator gene FLOWERING LOCUS T
(FT), or its homologs, in the leaves (Kardailsky et al., 1999;
Kobayashi et al., 1999; Pin and Nilsson, 2012; Jaeger et al., 2013).

In Arabidopsis, the understanding of the core gene network
integrating the flowering signals transmitted via the expression
of FT has evolved to the general scheme illustrated in Figure 1A

(Jaeger et al., 2013). FT is a mobile factor transported from
the leaves to the apical meristem, where it forms the complex
with the transcription factor FD. This complex activates the
meristem identity genes LEAFY (LFY) and APETALA1 (AP1),
which also activate each other. The expression of AP1 activates
genes controlling flower development and thus can be considered
as the output of the network specifying the floral transition
(Kaufmann et al., 2010). In order to keep the center of the shoot
apical meristem in a vegetative state, the key floral repressor
TERMINAL FLOWER1 (TFL1) inhibits expression of LFY and
AP1 in this region. The resulting gene interaction graph takes
the form shown in Figure 1B, incorporating evidence for some
additional interactions: TFL1 acts as a repressor in the complex
with FD, LFY activates FD, and AP1 represses TFL1. As many
genes are omitted, each node in the graph in fact represents a
group of genes (Jaeger et al., 2013).

The knowledge about the regulatory interactions between the
genes from Figure 1 has been obtained via extensive genetic
studies, and it provides a unique opportunity for computational

FIGURE 1 | The core gene network controlling floral transition. (A) The general

scheme of processes involved in floral transition. (B) The graph of the

regulatory interactions proposed for Arabidopsis, and the list of the FT and

TFL1 homologs in chickpea considered in our model. The interaction graph

was adopted from (Jaeger et al., 2013).

modeling of this gene regulatory network, when experimental
data on the system behavior is available. The modeling allows
to gain mechanistic insights into specific properties of the
floral transition system and produce testable predictions. Jaeger
et al. (2013) elaborated a dynamical model of the core network
from Figure 1 based on the data on the flowering time for a
set of the wild type and mutant Arabidopsis genotypes. They
showed that the floral transition dynamics can be explained
by splitting the network into several feedback and forward
loops, each bearing a clear functional role (Pullen et al., 2013).
Leal Valentim et al. (2015) studied a similar gene network,
particularly considering that the complex TF-FD activates LFY
via the intermediate transcription factors SOC1 and AGL24.
They measured expression dynamics of all genes involved and
used this data to calibrate a dynamical model. Using this data-
driven approach, they tested various hypotheses about regulation
of LFY by SOC1 and AGL24 and showed that perturbations can
spread through the network in a nonlinear way.

A possibility to extend these results to chickpea depends on
what we know about the inflorescence genes in this species. We
concentrate on two chickpea cultivars in this study, CDCFrontier
and ICCV 96029. CDC Frontier is a photoperiod-sensitive kabuli
chickpea cultivar developed at the University of Saskatchewan
(Warkentin et al., 2005), exhibiting relatively late flowering (Daba
et al., 2016; Ridge et al., 2017). The reference genome sequence
was obtained for this cultivar (Varshney et al., 2013). ICCV 96029
is a photoperiod-insensitive desi chickpea cultivar developed
by the International Crops Research Institute for the Semi-
Arid Tropics, India, representing the earliest flowering chickpea
cultivar currently known. Quantitative trait loci associated with
early flowering were investigated, and it was shown that a
single recessive allele with some additional modifiers confer early
flowering of ICCV 96029 (Kumar and van Rheenen, 2000; Gaur
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et al., 2015; Upadhyaya et al., 2015; Mallikarjuna et al., 2017).
Ridge et al. (2017) provided evidence that a mutation in an
ortholog of the key circadian gene ELF3 can be associated with
earliness in ICCV 96029 under short day growth conditions, but
their analysis of the expression of clock genes in ICCV 96029 did
not reveal any clear differences for this cultivar.

In contrast to the single FT gene in Arabidopsis, Ridge et al.
(2017) identified five FT homologs in chickpea: FTa1, FTa2, FTa3,
FTb, and FTc, named according to affiliation with one of the
three clades (FTa, FTb, and FTc). They also found two chickpea
orthologs of TFL1 (TFL1a and TFL1c). Furthermore, Ridge et al.
(2017) measured the expression dynamics of the homologs of
all genes from the core gene network for CDC Frontier and
ICCV 96029 under two growth conditions (short day, SD, and
long day, LD) and identified specific differences in expression
between these genotypes. In particular, they noted that the up-
regulation of FT andAP1 expression was synchronous with floral
bud initiation, thus confirming that regulation of floral transition
in chickpea occurs via the FT gene family.

We aimed to investigate a possibility to extend the core gene
network from Figure 1 to chickpea. Assuming this network is
conserved, we developed a dynamical model of gene expression
and applied it to the previously published expression time series
(Ridge et al., 2017). We used the resultant model to dissect
interactions in which targets were found insensitive to regulator
action. This points to chickpea specific deviations in regulation
of floral transition. We also studied if the TFL1 homologs are
mutually distinguishable in the context of the model. Finally, we
tested several hypotheses about how the FT-like genes combine
in their activation of the meristem identity genes.

RESULTS

Model
We modeled the flowering time gene network shown in
Figure 1. We formulated the model in terms of the ordinary
differential equations in which the change rates of gene product
concentrations are regulated by the activators and inhibitors via
the Hill-type regulation functions (the model equations (1–5)
are described in details in section Materials and Methods). The
formulation of the model equations depends on how we combine
the activation from the FT-like genes. The baseline model
(model, or hypothesis, H0) assumes that the five FT homologs
are mutually indistinguishable in their activation of the meristem
identity genes (LFY and AP1). In this model, FD forms the
complex with the total FT concentration equal to the sum of the
protein concentrations from each FT homolog. The activation
of LFY by the FT-FD complex is characterized in the model
equations by the regulation function containing the following
regulatory parameters: oneMichaelis–Menten constant (K8), one
Hill parameter (n8), and one maximal synthesis rate (v8) (see
equation (6) in section Materials and Methods), and a similar
set of regulatory parameters quantify the activation of AP1 by
the total FT concentration. An alternative model (H1) assumes
that only one of the five FT’s is enough to activate transition to
flowering, so the concentration of only that FT participates in the
complex FT-FD and activates LFY and AP1 (see equation (7) in

section Materials and Methods for the case of LFY activation).
In another alternative model (H2), we tried to distinguish a
single FT gene from the other four assuming that this singled-
out gene has the regulatory parameters distinct from the rest of
the FT genes, while these FT’s still activate cumulatively (like
in model H0). The activation from the singled-out FT gene and
the activation from the total concentration of the rest of the FT
genes are represented in the model by two distinct regulation
functions (see equation (8) in section Materials and Methods
for the case of LFY activation). Models H1 and H2 have five
possible versions, where each version is associated with one FT
homolog separated from the other FT-like genes. We tested only
four of them, excluding FTa3 from the analysis due to its very low
expression in both growth conditions.

We applied the models to describe the previously published
dynamic expression data for all genes from the core network
measured in two chickpea cultivars, ICCV 96029 and CDC
Frontier (Ridge et al., 2017). We failed to find a good model
solution for the expression data from CDC Frontier (the best
solution is shown in Supplementary Figure 1; we also discuss
possible reasons in Discussion). Therefore, the rest of the paper
describes modeling results for ICCV 96029.

Parameter Estimation and Model Solutions
for ICCV 96029
Models H0 and H1 have the same number of free parameters
(k = 31), and model H2 has six parameters more (k = 37). We
estimated values of these parameters by minimizing the weighted
sum of squared residuals quantifying the difference between the
model solution and the ICCV 96029 data for the two growth
conditions (SD and LD) simultaneously (section Materials and
Methods). The data comprised expression levels of five genes
(TFL1a, TFL1c, FD, LFY, and AP1) in ICCV 96029 on 7 days
under SD and LD, with the total number of data points equal to
m = 70. After estimating the parameter values, we applied the
Akaike information criterion corrected for small data samples for
model comparison, as described further in the text.

As k was relatively large, we refused to estimate the parameter
values by fitting the model to the data from one condition (either
LD or SD) and testing on the data from the other condition.
In that case, the number of parameters k in model H2 would
exceed the number of data points (m = 35 in LD or SD) and
k in other model versions would be close to m, and that would
complicate the application of the Akaike information criterion
for model comparison. As a control, we performed the fitting to
the LD data and tested on the SD data in model H0 and made
sure that the corresponding solutions were qualitatively similar
to the two-conditions fitting results (Supplementary Figure 2).

We further circumvented an overfitting potential of the
two-conditions fitting applying the ensemble approach in the
analysis of model behavior (Samee et al., 2015). In this approach,
all sets of parameter values and solutions resulted from the
fitting procedure were considered as equally suited for biological
conclusions, and the conclusions were derived based on the
analysis of the whole ensemble of the solutions and optimized
parameter values.

Frontiers in Genetics | www.frontiersin.org 3 November 2018 | Volume 9 | Article 547

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Gursky et al. Dynamical Model of Flowering in Chickpea

The parameter optimization under hypothesis H0 resulted
in the model solutions of very similar quality (Figure 2;
distributions of the estimated parameter values are shown in
Supplementary Figure 3). The model correctly reproduces the
main characteristics of the data. The dynamic increase of LFY
and AP1 concentrations can be explained by activation from the
rising expression of the FT genes. LFY activates FD, resulting
in the dynamic increase of its expression. Finally, the floral
repressors TFL1a and TFL1c decrease in time due to repression
by AP1.

Reduced LFY and AP1 Activation
The solution in Figure 2 shows somewhat insufficient expression
levels of both LFY under SD and AP1 under LD. The
analysis of the expression data reveals that LFY behaves rather
counterintuitively under SD as compared with LD and differs
in this behavior from AP1. Namely, LFY is down-regulated in
LD compared to SD, despite the increased activation from the
raising expression of the FT genes in LD compared to SD, and
this holds both for ICCV 96029 and CDC Frontier (Figure 3).
In contrast, the integral expression of AP1 increases from SD

to LD in accordance with the rising activation from FT. This
anticorrelation between LFY and its sole activators (FT and AP1)
observed in the data hampers the model in finding a better
solution.

We analyzed how LFY and other transcription factors are
involved in their regulations in the model for ICCV 96029 by
plotting average values of the Hill functions which implement in
the model equations each regulatory interaction from the gene
network (Figure 4). An active regulation tends to keep the Hill
function value between 0 and 1, while the limit values (0 or 1)
evidence that the interaction between genes is saturated, with
no sensitivity to specific expression levels of the regulators. This
type of saturation occurs for activation of LFY by AP1, with the
corresponding Hill function values pushed to zero. Activation
of AP1 by LFY is also characterized by the Hill function values
close to zero, but the analysis of the Jacobian values of the right-
hand side of the model equations for this regulation still shows
relatively high LFY influence on AP1 (Supplementary Figure 4).
Another saturated regulation involving LFY is activation of
FD. At the same time, LFY is sensitive to its repressors
(the complexes TFL1a-FD and TFL1c-FD), in contrast to the

FIGURE 2 | Model H0 solutions for ICCV 96029 under two growing conditions. The model solutions (red curves) corresponding to all parameter sets found by

optimization are shown for five flowering time genes and for the short day (SD, upper panels) and long day (LD, lower panels) conditions. The black dots and error

ranges are the mean expression data and standard deviation, respectively, taken from (Ridge et al., 2017).

FIGURE 3 | Integral expression levels of LFY and AP1 under two growth conditions in two cultivars, based on the data from (Ridge et al., 2017). At each time where

data was available, 100 expression values were sampled from the normal distribution with the mean and s.d. presented at this temporal point in the data. These

values then were interpolated across time, producing a set of 100 expression dynamics, and these dynamics were integrated over time. The chart and error bars

show means and standard deviations, respectively, over this set of the integral values.
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FIGURE 4 | Average values of the regulation functions characterizing

regulation in the model for ICCV 96029. For each set of the optimized

parameter values, the averaged values of the regulation functions from the

model equations were obtained by integrating these functions over time under

SD and LD and dividing by the integration time interval; the figure shows box

plots of the distributions of these values over all sets of the optimized

parameter values. The type of regulation corresponding to each regulation

function is shown on the horizontal axis, where arrow indicates the direction of

the regulation. FT-FD and TFL1-FD denote the complexes of FD with all FT and

two TFL1 proteins, respectively. Dots show outliers.

saturated repression of AP1 by these complexes (Figure 4).
Overall, this analysis of the model and expression data suggests
that there are regulators of LFY missing in the core gene network
under study.

Figure 4 shows four regulations characterized by the average
Hill function values that are considerably far from the saturation
limits: activation of LFY and AP1 by FT and repression of TFL1a
and TFL1c by AP1. This fact allows us to use the model for testing
various alternative hypotheses about these regulations.

Difference in TFL1a and TFL1c Expression
can be Explained by Different Regulation
by AP1
We tested a hypothesis that a small difference in TFL1a
and TFL1c expression observed in the data (Figure 5) can
be explained by different regulation by AP1. Because of this
difference in the expression, we included TFL1a and TFL1c in
the model as two distinct dynamical variables whose dynamics
are under control of the following four parameters per factor
(equations (1–2) in section Materials and Methods): maximal
expression rate vi, dissociation constant Ki, cooperativity
parameter ni, and degradation rate λi (i = 1,2). If the model
fitting produced no significant difference in these parameters
between TFL1a and TFL1c, there would be no means to
distinguish between these factors in the model and we would
have to consider a single dynamical variable TFL1 = TFL1a +

TFL1c instead. If the difference in parameter values exists, there
is an interesting question about whether this difference can be
explained by different regulation from AP1. If AP1 is indeed
involved, a statistically significant difference should exist between

values of the regulatory parameters K1 and K2 and/or between
values of n1 and n2, because these parameters are associated with
repression ofTFL1a andTFL1c by AP1. A possible difference in vi
and/or λi should be attributed to other, AP1 independent, factors.

The optimized parameter values for TFL1a and TFL1c form
two clearly separated clusters, which correspond to the main
box (“main cluster”) and the outliers (“outlying cluster”) in
the AP1→TFL1a and AP1→TFL1c parts of Figure 4, and it is
already seen in this figure that the regulation by AP1 differs
between the analyzed target genes within the main cluster. The
Hill exponents ni are the same in the main cluster for both TFL1a
and TFL1c (ni = 1, i = 1,2), but we see the significant difference
in Ki values in this cluster: K1 = 561.14 ± 0.13 (TFL1a) and
K2 = 401.14 ± 0.08 (TFL1c) (p-value = 2 × 10−9). Therefore,
the model suggests different regulatory properties of AP1 in its
action on the genes TFL1a and TFL1c, linked to possible different
association kinetics to their promoters. The outlying cluster is
characterized by a small influence of AP1 and contain only from
5 to 6 parameter sets with very similar Ki and ni values, so we
consider this cluster as not relevant.

Model Suggests Cumulative Activation by
the FT Homologs
We tested whether an individual FT gene stands out against the
other FT homologs by fitting the three versions of the model
(models H0, H1, and H2) described above and in Materials and
Methods, with subsequent comparison of their fitting quality.We
considered only four of the five FT genes in the tests excluding
FTa3, since its expression was small relative to the other ones
(Figure 6A).

We first checked if a single FT gene can provide the full
activation from the FT gene family in the network, thus serving
as a unique transmitter of the flowering signal (modelH1). Under
this assumption, we replaced the sum of FT concentrations in the
model equations by the concentration of one of the four FT’s and
fitted each resulted version of themodel to the expression data for
ICCV 96029. For each tested FT gene, model H1 demonstrated
worse fitting quality as compared to the baseline model with the
cumulative activation from all FT genes (model H0) (Figure 6B;
p-value = 3 × 10−7 for FTa1 as the sole activator; 7 × 10−9,
FTa2; 2 × 10−5, FTb; 10−4, FTc). Breaking the cost function
into the separate SD- and LD-related components reveals that
all versions of model H1 have worse quality in description of
the LD data and all except the FTa2- and FTc1-related models
have worse description of the SD data (Supplementary Figure 5).
Since models H0 and H1 have the same number of parameters,
neither of them is prone to overfitting to a larger extent than the
other one, and, hence, we can conclude about better relevance of
model H0 based on the fitting quality comparison and without
applying additional quality measures.

As several FT genes are required for better description of the
expression data, a question yet remains about whether different
FT’s activate the meristem identity genes differently in terms of
their regulatory parameters. We implemented this possibility in
modelH2 by singling an FT out from the other four and adding a
new regulation function to the model equations representing the
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FIGURE 5 | Integral expression levels of TFL1a and TFL1c under two growth conditions in two cultivars, based on the data from (Ridge et al., 2017). The integral

expression levels were calculated as described in Figure 3.

FIGURE 6 | Testing alternative hypotheses on regulation by the FT genes in ICCV 96029. (A) Expression data of the FT genes in ICCV 96029 under SD and LD;

reproduced from (Ridge et al., 2017). (B) Values of the cost function (weighted residual sum of squares; equation (9) in Materials and Methods) quantifying the

goodness of fit for model H0 and four versions of model H1, for all optimized parameter sets. Each version of model H1 is marked on the bottom of the panel by the

name of the FT gene participating as a sole FT activator in the model. (C) The same as in (B), but for model H2. Each version of model H2 is marked on the bottom of

the panel by the name of the FT gene singled out in the model equations from the other FT genes. (D) Akaike information criterion corrected for small data samples

(AICc; equation (10) in Material and Methods) for H0 and four versions of model H2, marked as in (C). The relative values of AICc normalized to the H0 value are

shown. The use of a more conventional form of AICc yields a similar figure (Supplementary Figure 8 and Supplementary Text).

activating action of this FT with its own regulatory parameters
(v, K, and n), while preserving in the equations the activation
from the sum of the other FT concentrations. Model H2
exhibited a better fitting quality thanH0 for the singled-out genes
FTa1 (p-value = 0.005) and FTc (p-value = 0.0004), with no
improvement for the other two FT genes (p-value = 0.09 for
the singled-out FTa2 and 0.12 for FTb) (Figure 6C). Both FTa1-
and FTc-related models H2 demonstrate better fit to the LD-
data, with no significant improvements in fits to the SD-data
(Supplementary Figure 6).

We can try to find features in the expression of FTa2 and
FTb that can be attributed to their worse individual performance
in the model. Figure 6A shows that the expression dynamics of
FTa2 is almost identical under SD and LD for a long time and
becomes down-regulated under LD at later days, in contrary to
the behavior of all other FT’s and to the up-regulation of AP1 in
LD (Figure 3). At the other extreme, the up-regulation of FTb
in LD is the strongest among the FT genes, and this raise in

expression might be too large to represent the difference between
SD and LD adequately. However, model H1 with FTb as the
only FT activator performs best among all FT genes on average
(Figure 6B), and both FTb-related models (H1 and H2) provide
the lowest cost function values among all models, including H0
(see the minimal cost values in Figures 6B,C), which hints at
possible importance of this gene.

The observed better performance of models H2 with the
singled-out genes FTa1 and FTc can be related to overfitting,
since model H2 has six parameters more than the baseline model
H0. We controlled this by evaluating the Akaike information
criterion corrected for small data samples (AICc; equation (10)
in section Materials and Methods), which assesses the quality
of a model applied to a data by combining the fitting quality
of the model and its complexity in terms of the number of free
parameters. Smaller values of this measure correspond to better
models. AICc evaluation reveals that its value for each version
of model H2 is more than four times larger than for model
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H0 (Figure 6D), which suggests that the complexity added to
model H2 is not justified by the resulted improvement in fitting.
Therefore, we conclude that the model with the cumulative
activation from all FT genes (model H0) is the most relevant for
the given expression data.

DISCUSSION

We presented a computational model of the core gene network
controlling the floral transition and investigated its ability to
describe the expression data in two chickpea cultivars. We were
able to find goodmodel solutions for ICCV 96029, which suggests
a general conservation of the core gene network from Figure 1 in
this chickpea cultivar. On the other hand, the modeling results
were negative for CDC Frontier. A possible reason for this could
be related to the specific choice of the modeling formalism. This
explanation does not seem likely, since the modeling formalism
is quite general and has been successfully applied to the same
gene network in Arabidopsis (Leal Valentim et al., 2015). Another
explanation which we find more probable is that this gene
network is more perturbed in CDC Frontier than in ICCV 96029.

Several key differences between CDC Frontier and ICCV
96029 were reported based on the analysis of the expression
data (Ridge et al., 2017): ICCV 96029 exhibits much earlier and
much stronger up-regulation of the expression of AP1, according
to the earlier appearance of visible floral buds as compared to
CDC Frontier. The floral repressors TFL1a and TFL1c have lower
expression levels in ICCV 96029 than in CDC Frontier, also in
accordance with the early flowering of the former. On the other
hand, the differences in expression of FD and LFY are not as
visible between the cultivars.

The expression levels of the FT genes in the data are
significantly different for the two cultivars, and the total FT
concentration in CDC Frontier can be estimated as close to the
background levels (Figure 7A). This can partially explain why the
model is not feasible for the expression data from CDC Frontier.
Such small FT levels could possibly be related to the observed fact
that the first floral buds, appeared in CDC Frontier at 31 days

after sowing in SD and at 32 days in LD, were abortive, although
the low expression of some of these genes persisted for much
longer time (Ridge et al., 2017). Furthermore, investigation of the
autocorrelation functions of the FT expression time series reveals
very different patterns in the FT signals between the cultivars
(Figure 7B), and these patterns are translated to the rest of the
core network genes almost without changes (Figure 7C). It is
interesting to note a periodic signal in the FT dynamics in CDC
Frontier with a period of two days, although this signal can yet be
an experimental artifact related to low expression levels.

Another important difference between the cultivars that we
see in the data and that might contribute to the difference
in the modeling results concerns the dependence between
concentrations of TFL1a/TFL1c and LFY/AP1. TFL1a and TFL1c
repress LFY and AP1, and AP1 represses the TFL1-like genes
(Ratcliffe et al., 1999; Kaufmann et al., 2010). Therefore, we
should expect that these two groups of transcripts should avoid
coexistence in the data and, hence, exhibit a negative correlation
over time. We do see this correlation in the data from ICCV
96029, but not from CDC Frontier (Table 1). Moreover, Table 1
shows that these mutual repressors tend to show a positive
correlation in the CDC Frontier data. Regardless of whether this
inconsistency in the CDC Frontier data should be attributed to
an artifact or it hints at alternative regulations between the TFL1-
like genes and the inflorescence identity genes in this cultivar, this
property evidently impedes the modeling success under given
assumptions.

It has been shown that LFY is involved in positive regulation
ofAP1 and is positively regulated by AP1 in Arabidopsis (Wagner
et al., 1999; Jaeger et al., 2013; Leal Valentim et al., 2015). Our
modeling results suggest that some additional factors should
exist providing insufficient activation of these genes in the
model for chickpea. The counterintuitive increase in the integral
expression of LFY under SD as compared with LD, contrary to
the decreasing activation from the FT-like genes, may indicate
that additional activators of LFY participate under SD and
compensate the missing activation. We believe that the absence
of such factors in the core gene network considered in our model
and, as a consequence, the inability to properly handle the LD

FIGURE 7 | Difference in FT behavior between ICCV 96029 and CDC Frontier, based on the expression data from (Ridge et al., 2017). (A) The dynamics of the sum of

concentrations of all five FT transcripts, for the two cultivars and two growth conditions. Developing floral buds were first detected at 15 days (under SD) and 13 days

(LD) in ICCV 96029 and at 31 days (SD) and 32 days (LD) in CDC Frontier (Ridge et al., 2017). (B) Autocorrelation function (ACF) for the expression data time series of

the FT genes. ACF estimates similarity (correlation) between data points as a function of the time lag between them. For each time lag value, an ACF value was

calculated for the expression time series for each FT gene and growth condition (SD and LD), and then an average ACF was calculated over the FT genes and

conditions. (C) The same as in (B) but for the expression dynamics of the genes TFL1a, TFL1b, FD, LFY, and AP1.
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TABLE 1 | Correlations between the expression dynamics of TFL1a/TFL1c and LFY/AP1 in the data from (Ridge et al., 2017).

ICCV 96029 CDC Frontier

SD LD SD LD

TFL1a vs. LFY −0.89 (P < 0.01)* −0.57 (P = 0.10) 0.80 (P < 0.01)* 0.14 (P = 0.36)

TFL1a vs. AP1 −0.89 (P = 0.01)* −0.64 (P = 0.07) 0.18 (P = 0.31) −0.14 (P = 0.41)

TFL1c vs. LFY −0.61 (P = 0.10) −0.64 (P < 0.01)* 0.81 (P < 0.01)* 0.33 (P = 0.13)

TFL1c vs. AP1 −0.96 (P < 0.01)* −0.86 (P < 0.01)* 0.22 (P = 0.20) 0.13 (P = 0.28)

The Spearman rank correlation coefficient ρ was calculated for each cultivar (CDC Frontier and ICCV 96029) and growth condition (SD and LD). The p-values (P) were calculated by

one-tailed permutation test, and the p-values below 0.05 are marked with asterisk.

vs. SD changes in expression is the reason why AP1 is almost
excluded as an activator of LFY in the model solutions. In other
words, this allows for the hypothesis that the LFY-AP1 regulation
module is not conserved in chickpea. However, we should also
consider the possibility that the LD vs. SD increase in expression
of LFY is due to insufficient quality of the data. Future work, both
modeling and experimental, should clarify this point.

Since ICCV 96029 is day length neutral and floral transition
is conferred via the FT genes, we might expect no difference in
FT expression between SD and LD treatments in this cultivar.
However, the expression data by Ridge et al. (2017) shows an
essential difference in expression of these genes (Figures 6, 7A),
and it is important that this difference is transferred to the
SD/LD difference in expression of AP1 (Figure 3), so that the
key gene specifying flower meristem identity exhibits sensitivity
to photoperiod according to the data. This expression data was
collected from the plants with first visible floral buds appeared at
15 days after sowing in SD and 13 days in LD (Ridge et al., 2017),
thus providing the two days difference in floral bud initiation
time between SD and LD. This two days difference diverges
from previous measurements showing no difference in this time
in ICCV 96029 (19 days from seeding ± 0.0) (Daba et al.,
2016), but it qualitatively matches with the observed difference
in expression.

Irrespective of whether this match is confident or not, the
observed raise in expression of the FT genes and AP1 in
LD suggests that some compensatory mechanisms, or missing
repressors, should exist diminishing the influence of that extra
expression on the time to flower. It is reasonable to presume that
these mechanisms should operate in the post-inductive phase
of flower development, as they take the increased expression
of floral meristem identity genes as the input. However,
this conjecture is not in correspondence with the previously
observed fact that ICCV 96029 does not exhibit photoperiod
sensitivity on any of the pre-, inductive, or post-inductive phases
of flower development (Daba et al., 2016). We believe this
expression-based photoperiod sensitivity effect in ICCV 96029 is
a fascinating subject for further studies.

An important difference of legumes and other species from
Arabidopsis is in multiple orthologs of the inflorescence genes,
such as FT, that present in a single copy in Arabidopsis (Pin
and Nilsson, 2012). The regulatory roles of individual copies can
sometimes be separated from the others; for example, FTb has
been shown to have the leading role in pea (Hecht et al., 2011).

Themain purpose of ourmodeling approach was to infer possible
differences in regulatory roles or other properties associated with
the five FT homologs and two TFL1 homologs in chickpea (Ridge
et al., 2017). It is important that the model and expression data in
principle allow to perform such inference, as the fitting results
reveal that both FT- and TFL1-like genes are involved in active
regulations.

AP1 was shown to repress TFL1-like genes (Liljegren et al.,
1999; Kaufmann et al., 2010; Jaeger et al., 2013), and we found
that this repression can be different for TFL1a and TFL1c in
chickpea. As this difference concerns only the values of the
equilibrium dissociation constant K, we can suggest that AP1
has different binding properties to the promoters of TFL1a and
TFL1c.

Visual comparison between the expression of the five FT-
like genes in ICCV 96029 does not help in differentiating
their regulatory properties. Our modeling results support the
cumulative activation model, in which all FT proteins have very
similar regulatory properties and activation of the meristem
identity genes occurs via the total FT concentration. Analyzing
their expression data, Ridge et al. pointed at FTb as particularly
important for induction of flowering (Ridge et al., 2017).
However, this gene becomes indistinguishable from the others if
we put it in the modeling context. The ensemble of model fits in
which this gene is singled out does not improve themodel, andwe
get the same conclusions using the Akaike information criterion
to assess the relative performance of the model. On the other
hand, we found that singling FTb out produced the lowest values
of theminimal cost in all types of the computational experiments,
suggesting that its potential of being the leading FT activator is
not exhausted and is not seen only due to possible imperfections
of the model and/or data.

As any modeling approach, our model has limitations.
Perhaps the most important one concerns the large number of
free parameters. We tackled this inevitable problem by utilizing
the ensemble approach in the analysis of the model behavior
(Samee et al., 2015). Despite the existing interdependence
between the model parameters, the optimized parameter values
led to the set of very similar solutions for ICCV 96029. We drew
any conclusions only based on the average over the ensemble of
the optimized parameter values, thus utilizing the “wisdom of the
crowd” principle. We note that, for example, both the model with
the single FTb and the model with the singled-out FTb provide
theminimal costs among all alternative models, while they do not
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perform better on average. Even with the given number of free
parameters, the model was not able to reproduce the expression
data from CDC Frontier, which, in particular, indicates that we
cannot fit any data. Therefore, we believe that the ensemble
approach increases the confidence of our results.

MATERIALS AND METHODS

Model Equations
We model the expression of TFL1a, TFL1c, FD, LFY, and AP1
with the following set of differential equations:

duTFL1a

dt
= v1

K1
n1

K1
n1+uAP1n1

−λ1uTFL1a , (1)

duTFL1c

dt
= v2

K2
n2

K2
n2+uAP1n2

−λ2uTFL1c , (2)

duFD

dt
= v3

uLFY
n3

K3
n3+uLFYn3

−λ3uFD , (3)

duLFY

dt
=

(

v4
uAP1

n4

K4
n4+uAP1n4

+fFT→LFY (t)

)

×

(

K5
n5

K5
n5+ [uFD (uTFL1a + uTFL1c)]

n5

)

−λ4uLFY , (4)

duAP1

dt
=

(

v5
uLFY

n6

K6
n6+uLFYn6

+fFT→AP1 (t)

)

×

(

K7
n7

K7
n7+ [uFD (uTFL1a + uTFL1c)]

n7

)

−λ5uAP1, (5)

where u’s describe the protein concentrations, vi are the maximal
protein synthesis rates, Ki are the Michaelis–Menten constants
(which can be seen as the equilibrium dissociation constants
for the regulators binding the target gene promoters in the case
of a direct transcriptional regulation), ni are the Hill constants
(accounting for the cooperative effects), and λi are the protein
degradation constants. We do not model translation explicitly,
but instead assume that protein concentrations are proportional
to mRNA concentrations for simplicity.

The specific form of the equations is chosen according to
the regulatory graph in Figure 1 and can be read as follows.
The last terms on the right-hand side of all the equations
represent degradation of each protein. The first term on the right-
hand side of equation (1) is the regulation function describing
repression of TFL1a by AP1. The same regulation function but
with different parameters describes repression of TFL1c by AP1
in equation (2). The first term on the right-hand side of equation
(3) represents activation of FD by LFY. The first brackets in
equation (4) contains the sum of the activating inputs to LFY
expression from AP1 (the first term in the sum) and the FT

homologs (the function fFT→LFY (t), described below). This input
is multiplied by the regulation function in the second brackets of
this equation, representing repression of LFY by the FD-TFL1
complex. This repression is represented under the assumption
that TFL1a and TFL1c have equivalent regulatory properties, and
the concentration of the complex is proportional to the product
of the FD concentration (uFD) and the total concentration of
TFL1a and TFL1c (uTFL1a+uTFL1c). The first brackets in equation
(5) contains the sum of the activating inputs to AP1 expression
from LFY (the first term in the sum) and the FT homologs (the
function fFT→AP1(t), described below). This input is multiplied
by the regulation function in the second brackets of this equation,
representing repression of AP1 by the FD-TFL1 complex.

We test three alternative hypotheses (H0, H1, and H2) about
functions fFT→LFY and fFT→AP1. Under the null hypothesis H0,
we assume regulatory equivalence of the five FT homologs, so
the total concentration of all FT proteins forms the complex with
FD and activate LFY and AP1 with a single Michaelis–Menten
constant and a single Hill constant, according to the following
expression:

H0: fFT→LFY (t) = v6

[

uFD
∑5

i=1 ui (t − τ)

]n8

K8
n8+

[

uFD
∑5

i=1 ui (t − τ)

]n8
, (6)

u1 = uFTa1, u2 = uFTa2, u3 = uFTa3, u4 = uFTb, u5 = uFTc ,

and a similar expression for the function fFT→AP1 with the
AP1-related constants v7, K9, and n9. The FT concentrations in
equation (6) are calculated with a time delay τ , which is taken to
transport FT from the leaves to the apical meristem.

In the hypothesis H1, we assume that a single FT gene (with
index k) is capable to fully represent the FT-mediated activation
of LFY and AP1:

H1: fFT→LFY (t)=v6
[uFDuk (t − τ)]n8

K8
n8+ [uFDuk (t − τ)]n8

, (7)

and a similar expression for the function fFT→AP1 with the same
uk and with the AP1-related constants v7, K9, and n9.

Under the hypothesis H2, we assume that a member uk of
the FT family is distinguishable from the rest four members of
the family in terms of regulation of LFY and AP1, so that we
can separate it into a distinct regulation function with its own
regulatory constants as follows:

H2: fFT→LFY (t) = v6

[

uFD
∑4

i 6=k ui (t − τ)

]n8

K8
n8+

[

uFD
∑4

i 6=k ui (t − τ)

]n8

+ v7
[uFDuk (t − τ)]n9

K9
n9+ [uFDuk (t − τ)]n9

, (8)

and a similar expression for the function fFT→AP1 with the
AP1-related constants v8, v9 K10, K11, n10, and n11. The first
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term in equation (8) describes the cumulative activation from
four FT proteins distinct from the FT protein with index k,
whose activating input is represented by the second term in this
equation. Depending on which gene of the FT family is singled
out in the described way, we have five possible forms of fFT→LFY

and fFT→AP1 to test under hypothesis H2.
We solved numerically equations (1–5) replacing the

concentrations of all regulators in the right-hand side of the
equations with their expression data values interpolated in time.
This effectively splits the model into four independent parts
which do not contain common parameters: single equations
for TFL1a, TFL1c, and FD, and the system of two equations
for LFY and AP1 sharing the common parameter τ . The initial
conditions for all proteins except TFL1a and TFL1c were equal
to the value of each transcript at the first available day from the
expression data (Ridge et al., 2017). Setting the initial conditions
for TFL1a and TFL1c in the same way led to undesirable
artifacts in the solutions resulted from the fitting procedure
(Supplementary Figure 7); therefore, the initial conditions for
these proteins were set to zero at t = 0, and the functions in
the right-hand side of the model equations were obtained by
interpolating the data values back to zero concentrations at t = 0.
Numerical solution was obtained using either the ode23s solver
in Octave or the NDSolve function in Wolfram Mathematica.

Parameter Estimation
The model contains 31 free parameters (7 vi’s, 9 Ki’s, 9 ni’s, 5 λi’s,
and τ ) under hypothesis H0 and in each version of the model
under hypothesis H1, and there are six more parameters in H2.
For the ICCV 96029 cultivar, the parameter values were found
by minimizing the following weighted residual sum of squares
(wRSS):

wRSS=

5
∑

g=1

T
∑

k=1

(

ug (tk)−udatg (tk)
)2

σg,k
2

, (9)

in which the difference between the model solution ug for genes

g and the data udatg is summed over all genes and over T times at
which the data is available; σg,k is the standard deviation of the
data for gene g and time tk. For fits to the CDC Frontier data,
wRSS was additionally complemented with a penalty term equal
to the covariance between the model solution and data.

The model fitting was performed either to the LD data only
(and the SD data was used for testing) or to the joint LD
and SD data, in which case wRSS from equation (9) should be
calculated for the two growth conditions and summed. In the
case of the LD fits, there were 35 data points in total for ICCV
and 75 data points for CDC Frontier. In the case of fits to
the joint SD and LD data, there were 70 and 145 data points

for ICCV and CDC Frontier, respectively. The expression data
for the five genes under modeling and the five FT homologs
in chickpea was obtained from Figure 5 of the paper by Ridge
et al. (2017). The figure was digitized by the web-based tool
WebPlotDigitizer (Rohatgi, 2018; the extracted expression data
is available at https://zenodo.org, DOI:10.5281/zenodo.1451748).
The cost functional was minimized by the differential evolution,
which is a global parameter search method, using either a
wolframscript program utilizingNMinimize function inWolfram
Mathematica or an entirely parallelized version of the method
implemented in the DEEP software (Kozlov et al., 2016).

We assessed the quality of the alternativemodelsH0–H2 using
the Akaike information criterion adjusted for small data samples:

AICc = 2k− 2log L̂+
2k2+2k

m− k− 1
, (10)

where k is the number of parameters in a model, m is
the number of data points used for model fitting, and L̂ is
the maximum value of the likelihood function. In our case,
2log L̂ = −wRSSmin — the minimal value of the wRSS
functional from equation (9) estimated from the set of model
fits (see Supplementary Text for derivation of L̂). We also
used a classical likelihood function appearing in least squares
fitting.
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