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Identifying accurate associations between miRNAs and diseases is beneficial for

diagnosis and treatment of human diseases. It is especially important to develop an

efficient method to detect the association between miRNA and disease. Traditional

experimental method has high precision, but its process is complicated and

time-consuming. Various computational methods have been developed to uncover

potential associations based on an assumption that similar miRNAs are always related to

similar diseases. In this paper, we propose an accurate method, MDA-SKF, to uncover

potential miRNA-disease associations. We first extract three miRNA similarity kernels

(miRNA functional similarity, miRNA sequence similarity, Hamming profile similarity

for miRNA) and three disease similarity kernels (disease semantic similarity, disease

functional similarity, Hamming profile similarity for disease) in two subspaces, respectively.

Then, due to limitations that some initial information may be lost in the process and

some noises may be exist in integrated similarity kernel, we propose a novel Similarity

Kernel Fusion (SKF) method to integrate multiple similarity kernels. Finally, we utilize

the Laplacian Regularized Least Squares (LapRLS) method on the integrated kernel

to find potential associations. MDA-SKF is evaluated by three evaluation methods,

including global leave-one-out cross validation (LOOCV) and local LOOCV and 5-fold

cross validation (CV), and achieves AUCs of 0.9576, 0.8356, and 0.9557, respectively.

Compared with existing seven methods, MDA-SKF has outstanding performance on

global LOOCV and 5-fold. We also test case studies to further analyze the performance

of MDA-SKF on 32 diseases. Furthermore, 3200 candidate associations are obtained

and a majority of them can be confirmed. It demonstrates that MDA-SKF is an accurate

and efficient computational tool for guiding traditional experiments.

Keywords: Laplacian Regularized Least Squares, disease similarity, miRNA similarity, miRNA-disease association,

Similarity Kernel Fusion

1. INTRODUCTION

MicroRNAs (miRNAs) are a set of small non-coding RNAs (about 20 − 25 nucleotides) that can
normally function as negative regulators of target messenger RNA (mRNA) expression in the
process of post-transcription (Jiang et al., 2010b). They restrain target mRNA via base pairing, and
influence gene translation. And, it has been verified that miRNA also function as positive regulators
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(Lu et al., 2008). In recent years, some existing works demonstrate
that miRNAs are involved in many significant biologic processes,
including cell differentiation, development, proliferation, and
signal transduction (Carthew and Sontheimer, 2009). In addition,
some previous studies prove that miRNAs are related to
various diseases, including cancers (Iorio et al., 2005), Alzheimer
(Cogswell et al., 2008), Diabetes (Caporali et al., 2011), and
Lymphoma (Roehle et al., 2008). For example, the expression
level of hsa-mir-21 is related to more than 125 diseases (Li et al.,
2014). Therefore, identifying more associations betweenmiRNAs
and diseases is beneficial for diagnosis and treatment of human
complex diseases.

Traditional experimental method has high precision for
discovering potential associations, but its process is complicated
and time-consuming. It is especially important to develop
an efficient and convenient method to detect the association
between miRNA and disease. Up to now, massive associations
are obtained via traditional experiments and stored in some
public database. The dbDEMC (Yang et al., 2010) collects 20037
associations including 2,224 miRNAs and 36 cancer types. The
HMDD (Li et al., 2014) stores 10,368miRNA-disease associations
including 572 miRNAs and 378 diseases. The miR2Disease (Jiang
et al., 2009) stores 3,273 miRNA-disease associations including
349 miRNAs and 163 diseases. Based on known associations,
various computational methods have been developed to uncover
potential associations.

In the past few years, computational methods achieve
outstanding performance for discovering the novel associations
between miRNAs and diseases (Lan et al., 2016; Zeng et al.,
2016b; Zou et al., 2016; Chen et al., 2017a; Li et al., 2017b). Most
of existing computational methods are based on an assumption
that miRNAs with high similarity tend to be related with
same diseases and vice versa (Liu et al., 2016). The method
proposed by Jiang et al. (2010a) uses a discrete hyper-geometric
probability distribution to calculate the strength of miRNA-
disease associations. The HDMP (Xuan et al., 2013) calculates the
miRNAs functional similarity that be assigned different weights
on the basis of miRNA family and cluster. Then, all the unlabeled
miRNAs are ranked by their final scores. The RWRMDA (Chen
et al., 2012) uses miRNAs functional similarity network and the
model of Random Walk to calculate the probability of candidate
miRNAs for a special disease. The MIDP (Xuan et al., 2015)
employs an improved Random Walk to set scores for candidate
miRNAs, so the miRNA with larger score has higher possibility
associated with the special disease.

Above methods have significant performances at the aspect
of finding novel associations, but can not work for a new
disease without known related miRNAs. The WBSMDA (Chen
et al., 2016) uses miRNA functional similarity matrix and
disease semantic similarity matrix and Gaussian interaction
profile kernel similarity matrix to reconstruct miRNA and
disease similarity matrix. Then, an probability value for the
miRNA-disease association can be calculate by using Within-
Scores and Between-Scores. The WBSMDA solves the limitation
of previous computational models, that is to say, it could
work for diseases without any known related miRNAs and
miRNAs without any known associated diseases. The NCPMDA

(Gu et al., 2016) reconstructs miRNA similarity matrix by
using miRNA functional similarities, miRNA family information
and known associations, and constructs disease similarity
matrix by integrating disease semantic similarity matrix and
known associations. Then, the network consistency projection
is employed to calculate final score of miRNA-disease pair. This
method gets outstanding performance when handling a disease
without any known related miRNAs.

Recently, machine learning algorithms are popular methods
for identifying miRNA-disease associations (Luo and Xiao, 2017;
Xiao et al., 2017; Luo et al., 2018). RLSMDA (Chen and Yan, 2014)
constructs miRNA functional similarity and disease semantic
similarity in two different subspaces. Then, two cost functions
are constructed by Regularized Least Squares respectively.
Finally, all predicted associations between two subspaces are
combined to denote as the final results. This method has
excellent performance at the aspect of uncovering potential
associations between miRNAs and diseases. The PBMDA (You
et al., 2017) uses miRNA functional similarity, disease semantic
similarity, Gaussian interaction profile kernel similarity and
known associations to construct a heterogeneous graph. A
specific depth-first search algorithm is employed to traverse all
pathes in the graph. Finally, the miRNA-disease score can be
obtained to represent association probability. The LRSSLMDA
(Chen and Huang, 2017) extracts miRNA functional similarity,
disease semantic similarity, Gaussian interaction profile kernel
similarity, and applies the Laplacian Regularized Sparse Subspace
Learning to discover potential associations between miRNAs and
diseases. The method proposed by Zeng et al. (2018) constructs
a bilayer network by integrating miRNA and disease similarity
networks and adjacency network. Then, this bilayer network and
structural perturbation method (SPM) are employed to uncover
potential associations.

Although all the mentioned methods have achieved
outstanding performance for uncovering potential associations,
most of them have suffered from different limitations or
restrictions (Chen et al., 2017c; Peng et al., 2018). For example,
how better to integrate these multiple kernels when extracting
various similarity kernels for miRNAs and diseases. Most of
models employ the linear weighting method to integrate multiple
kernels into one kernel (Chen et al., 2017b; Lan et al., 2017).
We believe that some information may be lost in the process
and noises may exist in the final similarity kernel for Similarity
Network Fusion (SNF) (Wang et al., 2014). Therefore, we
propose the method of Similarity Kernel Fusion (SKF) in this
paper. We retain the initial information of each kernel when
integrating multiple kernels, and use a weight matrix to eliminate
noises in the integrated similarity kernel.

In this paper, we introduce the method of MDA-SKF to
uncovering potential associations between miRNAs and diseases.
First, we construct similarity kernels from two subspaces,
including miRNA subspace and disease subspace. In miRNA
subspace, we extract miRNA functional similarity kernel and
miRNA sequence similarity kernel. And we first propose miRNA
Hamming profile similarity kernel using the miRNA-disease
associations. These similarity kernels are used to represent
miRNA similarity. In disease subspace, we extract disease
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semantic similarity kernel and disease functional similarity
kernel. And we first propose disease Hamming profile similarity
kernel by using disease-miRNA associations. These similarity
kernels are employed to represent disease similarity. Second,
we respectively integrate three kernels into one kernel by using
SKF in each subspace. Then, we use the Laplacian Regularized
Least Squares (LapRLS) (Xia et al., 2010) and integrated kernel
to uncover potential associations in two subspaces. Finally, we
average two predicted association matrices as the final predicted
associations.

Three evaluation methods are used to verify the performance
of MDA-SKF, including global Leave-One-Out Cross Validation
(global LOOCV), local Leave-One-Out Cross Validation
(local LOOCV), and 5-fold cross validation (5-fold CV).
Compared with existing seven methods, MDA-SKF has the
outstanding performance for uncovering potential miRNA-
disease associations. For further verification, we use global
validation and local validation to analyze 32 diseases associations.
The experimental results show that our method have reliable
performance on detecting novel associations. Meanwhile, we
find that some special associations and corresponding miRNAs
require more attention. These associations can be used to guide
the traditional experience.

2. MATERIALS AND METHODS

In this paper, we respectively establish three miRNA similarity
kernels and three disease similarity kernels to predict association
between miRNA and disease. Firstly, we integrate these kernels
into one miRNA kernel and one disease kernel using the
method of Similarity Kernel Fusion (SKF). Then, we employ
Laplacian Regularized Least Squares on the integrated kernels to
uncover potential association. Finally, we combine two predicted
adjacencymatrices frommiRNA and disease subspaces to analyze
potential associations. The flow chart of SKFMDA is shown in
Figure 1.

2.1. Human miRNA-Disease Association
Dataset
We get 5,430 miRNA-disease associations including 495 miRNAs
and 383 diseases, which are downloaded from HMDD (Li et al.,
2014) database. The set of miRNAs is denoted by M = {mi}

p
i=1

and the set of diseases is denoted by D = {dj}
q
j=1. The association

matrix is represented by Y ∈ Rp×q, where Y(i, j) ∈ {0, 1}. When
the miRNAmi is association with the disease dj, Y(i, j) is set to 1;
otherwise, Y(i, j) is set to 0.

2.2. Similarity Kernels for Diseases and
miRNAs
Our method is based on the assumption that miRNAs with high
similarity apt to be related with the same diseases and diseases
with high similarity apt to be related with the same miRNA.
Therefore, we respectively establish three miRNA similarity
kernels and three disease similarity kernels to uncover potential
association between miRNA and disease.

2.2.1. Disease Semantic Similarity
In the MeSH (Lowe and Barnett, 1994) database, the disease di
can be marked as a node in Directed Acyclic Graph (DAG). We
denote a subnetwork as Gdi = (di,Tdi ,Edi ), where Tdi is the
set of all ancestor nodes of di including itself and Edi is the set
of corresponding links. A semantic score of each disease can be
calculated by Equation (1) (Wang et al., 2010).

Ddi (t) =

{

1 if t = di
max{1 ∗ Ddi (t

′)|t′ ∈ children of t} if t 6= di
(1)

where the disease t ∈ Tdi ; 1 is the semantic contribution factor
and 1 = 0.5.

Also, we denote the semantic score of the disease di by
Equation (2).

DV(di) =
∑

t∈Tdi
Ddi (t) (2)

Then, we calculate the disease semantic similarity value between
di and dj by Equation (3).

Kd,1(di, dj) =

∑

t∈Tdi∩Tdj
(Ddi (t)+ Ddj (t))

DV(di)+ DV(dj)
(3)

Finally, we obtain the disease semantic similarity Kd,1 ∈ Rq×q.

2.2.2. Disease Functional Similarity
In the previous works (Luo et al., 2017), the associations between
diseases and genes are used to calculate disease functional
similarity. We download the Log Likehood Score (LLS) that
is the probability of a functional linkage between genes in the
HumanNet (Lee et al., 2011) database. We normalize the LLS by
Equation (4).

LLS∗(gk, gs) =
LLS(gk, gs)− LLSmin

LLSmax − LLSmin
(4)

where LLS(gk, gs) is the LLS between k-th and s-th genes;
LLS∗(gk, gs) is the normalized LLS score; LLSmin and LLSmax

represent the minimum andmaximum LLS scores in HumanNet,
respectively.

We define the functional similarity score between genes by
Equation (5).

FS(gk, gs) =







1 if k = s
LLS∗(gk, gs) if k 6= s ∩ e(k, s) ∈ SHumanNET

0 if k 6= s ∩ e(k, s) /∈ SHumanNET

(5)
where SHumanNET is the set of all links between genes in the
HumanNet database; e(k, s) is the link between k-th and s-th
genes.

Then, we define the functional similarity score between a gene
g and a set of genes G as Equation (6).

FG(g) = max
gs∈G

FS(g, gs) (6)
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FIGURE 1 | The flowchart of MDA-SKF for uncovering miRNA-disease associations.

The associations between diseases and genes are downloaded
from SIDD (Liang et al., 2013). We define the functional
similarity score between diseases by Equation (7).

Kd,2(di, dj) =

∑

gk∈Gj
FGi (gk)+

∑

gs∈Gi
FGj (gs)

|Gi| + |Gj|
(7)

where gk ∈ Gj and gs ∈ Gi; Gi and Gj represent sets of genes
which are related to diseases di and dj, respectively.

Finally, we obtain the disease functional similarity Kd,2 ∈

Rq×q.

2.2.3. MiRNA Functional Similarity
We construct miRNA functional similarity kernel Km,1 ∈ Rp×p,
according to MISIM (Wang et al., 2010) proposed by Wang et al.
This method used the disease semantic similarity and the known
associations between miRNAs and diseases to structure miRNA
functional similarity kernel. Here, Km,1(mi,mj) is the functional
similarity score between miRNAsmi andmj.

2.2.4. MiRNA Sequence Similarity
We obtain 495 miRNA sequences from miRBase
database(Kozomara and Griffithsjones, 2014), and calculate
sequence similarity of miRNAs by using the Needleman–
Wunsch Algorithm. Then, we obtain miRNA sequence similarity
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kernelKm,2 ∈ Rp×p, whereKm,2(mi,mj) is the sequence similarity
score between miRNAsmi andmj.

2.2.5. Hamming Profile Similarity
The assumption that similar diseases are always related to similar
miRNAs, is employed to uncover miRNA-disease associations.
For a pair of vectors whose lengths are same, Hamming profile
is the number of elements of which corresponding values
are different. Higher Hamming profile value indicates lower
similarity for two vectors. Therefore, we use Hamming profile
and the topologic information of all known associations to
measure disease similarity. Here, Hamming profile similarity
kernel for diseases is defined as Equation (8).

Kd,3(di, dj) = 1−
|IP(di)! = IP(dj)|

|IP(di)|
(8)

where Kd,3 ∈ Rq×q is the Hamming profile similarity for diseases;
IP(di) ∈ {0, 1}p×1 is the i-th column of the association matrix Y .

Similarly, we calculate Hamming profile similarity kernel for
miRNAs as Equation (9).

Km,3(mi,mj) = 1−
|IP(mi)! = IP(mj)|

|IP(mi)|
(9)

where Km,3 ∈ Rp×p is the Hamming profile similarity for
miRNAs; IP(mi) ∈ {0, 1}1×q denotes the i-th row of the
associations matrix Y .

2.3. Similarity Kernel Fusion
We extract three miRNA similarity kernels (miRNA functional
similarity, miRNA sequence similarity, Hamming profile
similarity for miRNA) and three disease similarity kernels
(disease semantic similarity, disease functional similarity,
Hamming profile similarity for disease) in the above section.

In the following, we use similarity kernel fusion (SKF) to
integrate three miRNA similarity kernels Km,l, l = 1, 2, 3.
Therefore, we get the integrated similarity kernel K∗

m ∈ Rp×p.
Firstly, we normalize each original kernel by Equation (10).

Pm,l(mi,mj) =
Km,l(mi,mj)

∑

mk∈M
Km,l(mk,mj)

(10)

where Pm,l represents a normalized kernel and satisfies
∑

mk∈M
Pm,l(mk,mj) = 1.

Secondly, we construct a sparse kernel for each original kernel
by Equation (11).

Sm,l(mi,mj) =

{

0 if mj /∈ Ni
Km,l(mi ,mj)

∑

mk∈Ni
Km,l(mi ,mk)

if mj ∈ Ni
(11)

where Sm,l represents a sparse kernel and satisfies
∑

mj∈M
Sm,l(mi,mj) = 1; Ni represents a set of all neighbors of

mi including itself.
Thirdly, we integrate three miRNA kernels by Equation (12).

Pt+1
m,l

= α(Sm,l ×

∑

r 6=l P
t
m,r

2
× STm,l)+ (1− α)(

∑

r 6=l P
0
m,r

2
) (12)

where P0m,r represents the initial status of Pm,r ; P
t+1
m,l

is the status
of l-th kernel after t + 1 iterations; α ∈ (0, 1).

After t + 1 iterations, the overall kernel can be computed as
Equation (13).

Km =
1

3

3
∑

l=1

Pt+1
m,l

(13)

Finally, a weight matrix is established to further eliminate noise
in the overall kernel as Equation (14).

wm(mi,mj) =







1 if mj ∈ Ni ∩ mi ∈ Nj

0 if mj /∈ Ni ∩ mi /∈ Nj

0.5 otherwise
(14)

The integrated miRNA similarity kernel can be obtained as
Equation (15).

K∗
m = wm ◦ Km (15)

Similarity, we calculate the integrated disease similarity kernel as
K∗
d
∈ Rq×q.

2.4. Laplacian Regularized Least Squares
In this paper, we use Laplacian Regularized Least Squares
(LapRLS) to uncover potential miRNA-disease associations. For
themiRNA subspace, The objective function of LapRLS is defined
as Equation (16).

min
Fm

||Y − Fm||
2
F + βm||F

T
mLmFm||

2
F (16)

where Y is the known association matrix; βm is the regularization
coefficient of LapRLS. Fm ∈ Rp×q represents the predicted

association matrix in the miRNA subspace; Lm = D
− 1

2
m (Dm −

K∗
m)D

− 1
2

m , in which Dm is a diagonal matrix whose diagonal
element is the sum of the row elements of K∗

m.
The derivation of optimization algorithm were presented in

Xia et al. (2010). We calculate the predicted association matrix
Fm ∈ Rp×q in the miRNA subspace as Equation (17).

Fm = K∗
m(K

∗
m + βmLmK

∗
m)

−1Y (17)

Similarity, we can calculate the predicted association matrix Fd ∈

Rq×p in the disease subspace as Equation (18).

Fd = K∗
d (K

∗
d + βdLdK

∗
d )

−1YT (18)

The predicted matrices in miRNA and disease subspaces are
Fm and Fd, respectively. Then, we define the final predicted
association matrix as Equation (19).

F∗ =
Fm + FT

d

2
(19)

where F∗ ∈ Rp×q.
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FIGURE 2 | The relative errors of SKF model with different number of iterations.

FIGURE 3 | The AUC values of SKF model with different values of α.

FIGURE 4 | The AUC values of SKF model with different numbers of neighbors.
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3. RESULTS

In this section, we analyze the performance of MDA-SKF from
many aspects. First, we introduce three evaluation methods
(global LOOCV, local LOOCV, and 5-fold CV) and two validation
methods (global verification and local verification) to analyze
the performance of MDA-SKF. Second, we discuss about the
convergence and the parameter selection of SKF. Third, we
compare the performance of SKF with SNF and average kernel.
Fourth, we compare the performance of MDA-SKF with other
excellent methods for uncovering potential associations between
miRNAs and diseases. Fifth, we use case studies to further
evaluate the reliability of MDA-SKF.

3.1. Evaluation Criteria and Verification
Methods
In this paper, we use two evaluation criteria including AreaUnder
the Curve (AUC) and Area Under the Precision-Recall curve
(AUPR) to evaluate the performance of models. AUC is the area
under the receiver operating characteristic (ROC) curve, which is
created by plotting true positive rate against false positive rate at
various threshold settings. AUPR is the area under the curve that
is created by plotting precision against recall at various threshold
settings.

In the process of experiments, global LOOCV, local LOOCV,
and 5-fold CV are applied to evaluate the model’s performance.
In the global LOOCV, one of 5,430 known associations is left
out in turn as the test set, and other associations are remained
as the training set. In the local LOOCV, the known associations
between a special disease and all miRNAs are left out as the
test set, and other associations are regarded as training set. In
the 5-fold, all known associations are randomly divided into
five non-overlapping sets. each set is employed in turn to as
test set and other sets are employed to as training set. In the
process of experiments, the known associations in test set are
reset to unknown, that is to say, some 1 are replaced by 0 in the
association matrix Y .

Massive associations between miRNAs and diseases are
obtained via the traditional experiment and stored in several

databases, which provide a good condition for evaluating the
performance ofMDA-SKF.We use twomethods including global
validation and local validation to further analyze the reliability
of MDA-SKF. In the global validation, we regard 5,430 known
associations as training set that is used to uncover potential
associations. These candidate associations are confirmed by the
miR2Disease and dbDEMC databases. In the local validation,
all known associations that are related to a special disease are
reset to unknown ones. We use the rest of association as training
set to uncover potential associations for this special disease.
These candidate associations are confirmed by the HMDD,
miR2Disease, and dbDEMC databases.

3.2. Convergence Performance
Since the convergence is very important for an iterative
algorithm, we analyze the number of iterations of SKF. We

define the relative error as Et =
‖Pt+1−Pt‖

‖Pt‖
in the process of

iterations. We turn the number of iterations from 1 to 30 with
step 1 to calculate the E after each iteration. The convergence
processes of three miRNA kernels and three disease kernels are
calculated in our experiments and the results of E are shown in
Figure 2. It can be clearly seen that the process of convergence
is very fast and the value of E achieves to 10−7 after 5 iterations.
This phenomenon demonstrates that SKF model have excellent
convergence performance in the process of integrating multiple
kernels. In this paper, we set the number of iterations as 10 to
ensure that it is enough to converge.

3.3. Parameter Selection
In this section, we discuss about the parameter selection of SKF.
There are two parameters α and the size of neighbors denoted as
k. For selecting parameter α ,we use 5-fold CV and local LOOCV
to analyze the values of α. We take α from 0.1 to 1 with step 0.1 in
order to calculate AUC, shown in Figure 3. It can be found that
AUC keep little fluctuation in the range between 0.1 and 0.9. As
we can see, the value of AUC decreases by at least 0.1 when α = 1
(removing the original kernel information). It demonstrates that
retaining the original information of each kernel is significant for

FIGURE 5 | The AUC values of SKF model with different values of β.
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integrating multiple kernels. In this paper, the value of α is set
to 0.1.

Meanwhile, the number of neighbors is an important
parameter in this paper. It is related to the amount of important
information and the noise reduction. In the 5-fold, k is taken
from 30 to 100 with step 3 to find the optimal value. In the
local LOOCV, the k is gradually varying from 30 to 350 with
step 3 to find the best value. In Figure 4, we select the optimal
k by the highest AUC value, and find that 36 and 192 are the
best parameters of k for 5-fold and local LOOCV, respectively.
Since both global LOOCV and 5-fold are similar, k is set to 36
in the global LOOCV. It’s obvious that the value of k in the local
LOOCV is bigger than that in the 5-fold. In the local LOOCV, our
method produces the novel disease without knownmiRNA-based
associations, so needs muchmore information about miRNA and
disease similarity kernels.

The regularization coefficients of LapRLS, βm and βd, are
closely related to the performance of LapRLS. We make βm equal
to βd in this paper. To get obtain the optimal β , we take β from
2−20 to 210 and use 5-fold CV and local LOOCV to analyze the
performance of LapRLS with different values of β . The results are
shown in Figure 5. As seen in Figure 5, the AUC decreases when
β increases from 20 to 210 and keeps slight change when β less
than 2−3 and 20 for 5-fold CV and local LOOCV, respectively.
In the 5-fold CV, the best AUC is 0.9553 when β are 2−5. In the
local LOOCV, the best AUC is 0.8356 when β is 2−1. Therefore,
we select the optimal β as 2−5 and 2−1 for 5-fold CV and local
LOOCV, respectively.

3.4. Comparison With Other Fusion
Strategies
In this section, we compare the performance of Similarity Kernel
Fusion (SKF) with Similarity Network Fusion (SNF) and average
kernel fusion (AVG). The results demonstrate that SKF have
significant performance in integrating multiple kernels. We use
5-fold CV to evaluate the performance of three fusion strategies.
The results are shown in Figure 6. It can be observed that the
best AUC of 0.9520 and the best AUPR of 0.5689 are obtained
by SKF. Comparing with SNF, SKF achieves AUC improvement

of 0.037 (0.9520 over 0.9150) and AUPR improvement of
0.2247 (0.5689 over 0.3442). Comparing with AVG, SKF achieves
AUC improvement of 0.0268 (0.9520 over 0.9252) and AUPR
improvement of 0.1458 (0.5689 over 0.4231). It shows that SKF is
more excellent than SNF at the aspect of uncovering associations
between miRNAs and diseases.

3.5. Comparison With Other Existing
Methods
In this section, we compare the prediction performance of MDA-
SKF with other seven existing methods [i.e., PBMDA (You
et al., 2017), MCMDA (Li et al., 2017a), NCPMDA (Gu et al.,
2016), WBSMDA (Chen et al., 2016), HDMP (Xuan et al., 2013),
RLSMDA (Chen and Yan, 2014), and LRSSLMDA (Chen and
Huang, 2017)] in global LOOCV, local LOOCV and 5-fold CV.
Because other existing methods employ 5-fold CV in their paper,
we choose 5-fold CV rather than 5-fold CV in this section.
In Table 1, MDA-SKF obtains the highest AUCs in 5-fold CV
(0.9501) and global LOOCV (0.9536), but NCPMDA obtains
the best AUC (0.8584) in local LOOCV. Comparing with other
existing methods, MDA-SKF achieves AUC improvement of
at least 0.0358 and 0.0316 in global LOOCV and 5-fold CV,
respectively.

TABLE 1 | The comparison results between SKFMDA and other seven

computational methods.

Methods Global LOOCV Local LOOCV 5-fold CV

PBMDA 0.9169 0.8341 0.9172

MCMDA 0.8749 0.7718 0.8767

NCPMDA 0.9073 0.8584 0.8763

WBSMDA 0.8030 0.8031 0.8185

HDMP 0.8366 0.7702 0.8342

RLSMDA 0.8426 0.6953 0.8569

LRSSLMDA 0.9178 0.8418 0.9181

MDA-SKF 0.9576 0.8356 0.9557

Bold values represent the best value in columns.

FIGURE 6 | The AUC and AUPR of three fusion strategies in the 5-fold CV.
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TABLE 2 | The results of global validation and local validation.

Disease Global validation Local validation

GVa P1(%)b D1c P2(%)d Successi LVe P3(%)f D2g P4(%)h Successi

Adrenocortical carcinoma 11 22 69 13.94 ◦ 27 54 99 20 ◦

Biliary tract neoplasms 2 4 136 27.47 × 6 12 144 29 ×

Bladder neoplasms 32 64 95 19.19 ◦ 39 78 126 25 ◦

Brain neoplasms 44 88 222 44.85 ◦ 45 90 224 45 ◦

Breast neoplasms 43 86 394 79.60 ◦ 50 100 433 87 ◦

Cervical neoplasms 37 74 108 21.82 ◦ 38 76 109 22 ◦

Chordoma 16 32 59 11.92 ◦ 19 38 59 12 ◦

Colon neoplasms 43 86 344 69.49 ◦ 46 92 354 72 ◦

Colorectal carcinoma 45 90 385 77.78 ◦ 50 100 425 86 ◦

Endometrial neoplasms 5 10 33 6.67 ◦ 21 42 62 13 ◦

Esophageal neoplasms 39 78 262 52.93 ◦ 43 86 277 56 ◦

Gastric neoplasms 42 84 342 69.09 ◦ 50 100 401 81 ◦

Head and neck neoplasms 28 56 164 33.13 ◦ 40 80 187 38 ◦

Hepatocellular carcinoma 43 86 326 65.86 ◦ 49 98 326 66 ◦

Kidney neoplasms 44 88 314 63.43 ◦ 43 86 316 64 ◦

Leukemia 44 88 243 49.09 ◦ 46 92 243 49 ◦

Liver neoplasms 16 32 79 15.96 ◦ 32 64 113 23 ◦

Lung neoplasms 45 90 376 75.96 ◦ 50 100 394 80 ◦

Lymphoma 47 94 337 68.08 ◦ 48 96 339 68 ◦

Melanoma 31 62 283 57.17 ◦ 49 98 321 65 ◦

Mesothelioma 14 28 82 16.57 ◦ 22 44 103 21 ◦

Nasopharyngeal neoplasms 33 66 272 54.95 ◦ 38 76 276 56 ◦

Carcinoma, neuroendocrine 7 14 33 6.67 ◦ 8 16 36 7 ◦

Carcinoma, oral 32 64 190 38.38 ◦ 41 82 201 41 ◦

Ovarian neoplasms 33 66 299 60.40 ◦ 48 96 340 69 ◦

Pancreatic neoplasms 43 86 388 78.38 ◦ 50 100 397 80 ◦

Prostate neoplasms 45 90 296 59.80 ◦ 49 98 339 68 ◦

Retinoblastoma 17 34 105 21.21 ◦ 33 66 121 24 ◦

Sarcoma 40 80 206 41.62 ◦ 38 76 206 42 ◦

Skin neoplasms 0 0 2 0.40 × 0 0 9 2 ×

Testicular neoplasms 1 2 4 0.81 ◦ 2 4 10 2 ◦

Thyroid neoplasms 23 46 115 23.23 ◦ 33 66 140 28 ◦

aGV is the number of confirmed associations in top 50 when using global validation. bP1 is the proportion of GV in the top 50 associations. cD1 is the number of miRNAs. Those

miRNAs are associated with special disease and belonging to 498 miRNAs. The associations between those miRNAs and special disease can be verified from databases, like dbDEMC

or miR2Disease. dP2 is the proportion of D1 in the 495 miRNAs. eLV is the number of confirmed associations in top 50 when using local validation. fP3 is the proportion of LV in the top

50 associations. gD2 is the number of miRNAs. Those miRNAs are associating with special disease and belonging to 498 miRNAs. The associations between those miRNAs and special

disease can be verified from databases, like dbDEMC or miR2Disease or HMDD. hP4 is the proportion of D2 in the 495 miRNAs. iFor global validation, It demonstrates that MDA-SKF

gets excellent performance when P1 is larger than P2. For local validation, It demonstrates that MDA-SKF gets excellent performance when P3 is larger than P4. It is recorded as ◦

otherwise it is recorded as ×.

3.6. Case Studies
In this section, we employ global validation and local validation
on multiple important human diseases to further evaluate the
reliability of MDA-SKF. To evaluate the performance of MDA-
SKF, we select 32 diseases associated with more miRNAs. In
the global validation, 5,430 associations are used to uncover
potential associations. In the local validation, for a special disease,
all known associations related to this special disease are reset
as unknown associations. Then, other known associations are
implemented to uncover potential associations. We extract top
50 candidate associations for each special disease. All predicted

candidate associations are found in Supplementary Table 1. The
statistical results are shown in Table 2. GV and LV are the
numbers of confirmed associations in the top 50 by using global
validation and local validation, respectively. P1 and P3 are the
proportion of confirmed associations in the top 50 by using
global validation and local validation, respectively. D1 is the
number of miRNAs, and those miRNAs are associated with
special disease and belonging to 498 miRNAs. The associations
between those miRNAs and special disease can be verified from
databases, like dbDEMC or miR2Disease. P2 is the proportion
of D1 in the 495 miRNAs. D2 is the number of miRNAs, and
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those miRNAs are associated with special disease and belonging
to 498 miRNAs. The associations between those miRNA and
special disease can be verified from databases, like dbDEMC or
miR2Disease or HMDD. P4 is the proportion of D2 in the 495
miRNAs. In Table 2, we find that P1 and P3 are significantly
greater than P2 and P4 for the majority of diseases, respectively,
excepting Biliary Tract Neoplasms and Skin Neoplasms. We also
find that all candidate associations related with five diseases
(Breast Neoplasms, Colorectal Carcinoma, Gastric Neoplasms,
Pancreatic Neoplasms, and Lung Neoplasms) are confirmed for

local validation. It demonstrates that MDA-SKF has excellent
reliability for uncovering the associations between miRNAs and
diseases.

To find some important miRNAs and potential associations,
we analyze candidate associations relating with eight important
human diseases (Breast Neoplasms, Colorectal Carcinoma,
Gastric Neoplasms, Pancreatic Neoplasms, Lung Neoplasms,
Colon Neoplasms, kidney neoplasms, lymphoma). Among them,
six disease (Breast Neoplasms, Colorectal Carcinoma, Gastric
Neoplasms, Pancreatic Neoplasms, Lung Neoplasms, Colon

FIGURE 7 | The case study in the global verification. The red line represents unconfirmed; the green line represents confirmed.
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FIGURE 8 | The case study in the local verification. The red line represents unconfirmed; the green line represents confirmed.

Neoplasms) are the top six diseases that are related to more
miRNAs in the dbDEMC and miR2Disease database, and kidney
neoplasms and lymphoma are used as case studies in many
previous paper.

In the global validation, we gain a total of 400 candidate
associations for eight diseases. The confirmed results are shown
in Figure 7. In Figure 7, the red line represents unconfirmed
and the green line represents confirmed. It can be find that
most of candidate associations are confirmed by the miR2Disease
and dbDEMC databases. It is obvious that five diseases are
related to the same set of miRNAs, including hsa-let-7g, hsa-mir-
1, hsa-mir-106b, hsa-mir-142, hsa-mir-15b, hsa-mir-223, and
hsa-mir-29a.

In the local validation, we also gain a total of 400 candidate
associations for eight diseases. The confirmed results are shown
as Figure 8. In Figure 8, we find that most of 400 candidate
associations are confirmed by the HMDD, miR2Disease and
dbDEMC databases. It is obvious that eight diseases are related
to the same set of miRNAs, including hsa-let-7a, hsa-let-7b, hsa-
mir-1, and so on. It is worth noting that three associations,
hsa-mir-34c and kidney neoplasms, hsa-mir-34c and lymphoma,
hsa-mir-34c and colon neoplasms, are unconfirmed in the
current databases. Meanwhile, hsa-mir-34c is related to other
five diseases in the database. Therefore, we believe that these
three novel associations have a high probability of linkage
between miRNAs and diseases, and they need more attention in
subsequent traditional experiments.

4. CONCLUSIONS

We propose MDA-SKF to uncover potential miRNA-disease
associations in the paper. First, we extract three miRNA kernels
(miRNA functional similarity, miRNA sequence similarity,
miRNA Hamming profile similarity kernel) and three disease
kernels (disease semantic similarity, disease functional similarity,
disease Hamming profile similarity kernel) to embody the
similarity of miRNAs and diseases, respectively. Then, we
propose Similarity Kernel Fusion (SKF) model by using original
information of each kernel and the newly designed noise-
reduction methods to better integrate multiple kernels. Then,
Laplacian Regularized Least Squares (LapRLS) is employed
on integrated kernels to uncover potential miRNA-disease
associations.

Many experiments show that compared with other seven
outstanding models, MDA-SKF has better precision on the three
evaluation methods (global LOOCV, local LOOCV, and 5-fold
CV). In order to further evaluate the reliable of MDA-SKF, two
validation methods (global validation and local validation) are
used to execute case studies of 32 diseases. A large number of
candidate associations are confirmed by the HMDD, dbDEMC
and miR2Disease databases. In addition, three associations (hsa-
mir-34c and kidney neoplasms, hsa-mir-34c and lymphoma, hsa-
mir-34c and colon neoplasms) and some special miRNAs (hsa-
let-7g, hsa-mir-1, hsa-mir-106b, etc) need more attention. The
future work may further take more machine learning methods
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and more similarity kernels into account to accurately uncover
associations between miRNAs and diseases. Also, similar strategy
can be applied in the other link prediction problems, such
as circular RNA detection (Zeng et al., 2017b), disease gene
prediction (Zeng et al., 2016a, 2017a) and sequence analysis (Zou
et al., 2018).
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