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INTRODUCTION

Reference genomes for all organisms on earth are now attainable owing to advances in genome
sequencing technologies (Goodwin et al., 2016). Generally, species that contribute considerably to
the economy or human welfare are sequenced and are considered more important than others.
Furthermore, coastal indigenous people mainly depend on marine species for their food sources,
which has resulted in the extinction of several marine species (Cisneros-Montemayor et al., 2016).
Of these, an extinction risk assessment of marine fishes, mainly for sea breams (Family: Sparidae),
has recently been conducted by way of a global extinction risk assessment from the dataset of the
International Union for Conservation of Nature’s Red List Process, which mentions that around
25 species are threatened/near-threatened according to their body weight (Comeros-Raynal et al.,
2016). Another report clearly showed the benefit of worldwide aquaculture production, which
contributed to 47% of total seafood production, and also highlighted the over-fishing of sea breams
(FAO, 2018). The Republic of Korea is the fourth largest seafood producer in the world, producing
3.3 million tons in 2015 and exporting seafood worth $1.6 billion in 2016; therefore, aquaculture-
associated research is fundamental for Korea. In the present study, the red sea bream (Pagrus
major), which belongs to the family Sparidae, which comprises 35 genera, 132 species, and 10
subspecies (de la Herran et al., 2001; NCBI, 2018), was assessed. It is widely distributed in the
coastal regions of Korea, Japan, China, and Taiwan (Blanco Gonzalez et al., 2015), commonly on
rocky substrates, soft sand, and muddy bottoms. Species of this family are hermaphroditic and
mature 4 years after birth, surviving for 10 or more years. This group of fishes is an important
resource to better understand the genetics of sexual dimorphism. Another major factor affecting
this species is microbial infections, which are dominant in the aquaculture industry and account
for a considerable decline in aquaculture production (Nam et al., 2016; Sawayama et al., 2017).
Few studies have analyzed the molecular markers associated with these problems. Recently, sexual
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dimorphism-related genes from the Sparus aurata genome
have been profiled, including stage-specific expression (Pauletto
et al.,, 2018), and three other studies have assessed molecular
markers associated with microbial and environmental toxicity
in the red sea bream (Ilida et al., 2016; Hano et al., 2017;
Sawayama et al, 2017). However, genome-wide molecular
marker characterization is needed to conduct genome selection
in breeding schemes (Lopez et al., 2014), which is not possible
in P. major, owing to the absence of a reference genome. To the
best of our knowledge, only two draft genomes (S. aurata and
Spondyliosoma cantharus) are available for the entire Sparidae
family, which is the largest clade in class Actinopteri (de la Herran
et al,, 2001), but there is no draft or reference genome sequence
for the genus Pagrus. Therefore, we constructed a draft genome
using contig level assembly, with a size of 829.3 Mb, employing
the 90X PacBio sequence alone.

Value of the Data

This draft genome would be considerably useful for detailing
the molecular characterization of various breeding-associated
problems in species from the family Sparidae as well as other
comparative genome mining applications.

MATERIALS AND METHODS

Sample Collection and Genomic DNA

Extraction

A single female fish (4.25kg) was collected on December
2016 from the Jeju Fisheries Research Institute and maintained
at 22 + 0.5°C in aerated seawater (NFRDI-2016-01-2). The
abdominal muscle tissues were sampled aseptically and stored
in liquid nitrogen for genomic DNA extraction. The complete
experimental procedure, from DNA isolation to sequencing, was
conducted using DNALink, South Korea (www.dnalink.com), as
instructed in the respective product protocols.

Genomic DNA Library Preparation and

Sequencing

Highly concentrated genomic DNA (gDNA) (24 pg) from
each given sample was prepared using a DNeasy Animal Mini
Kit (Qiagen, Hilden, Germany). The complete isolated gDNA
was quantified using a ND-1000 spectrophotometer (Thermo
Scientific, Wilmington, DE, USA) and Qubit fluorometer. The
total gDNA were subjected to other steps i.e., fragmentation
with Covaris G-Tube to obtain > 20 KB fragments, filtering of
small fragments using 0.45X AMPure®, fragment end repair
using ExoVII, ligation of blunt adapters using double standard
DNA fragments, attachment of the primer and polymerase to
the SMRTbell™ templates (Template Prep Kit 1.0), and the
addition of MagBeads. Finally, the impurities were washed out
carefully with 1.0X AMPure® and only the double stranded
DNA fragments with blunt adapters were subjected to sequencing
using C4-chemistry (DNA sequencing Reagent 4.0) in the PacBio
(Pacific Biosciences) sequencing platform by capturing a movie
for 1 x 240min of each SMRT cell. Similarly, the isolated
gDNAs were also subjected to sequencing library preparation
with stranded Ilumina paired-end (PE) protocols (Illumina,

San Diego, CA, USA). The fragmented libraries were subjected
to size selection and sequenced with an Illumina Hiseq 2000
sequencer.

lllumina Pre-process and Genome Size

Estimation

Full Illumina DNA sequences were subjected to pre-processing
steps, which included adapter trimming, quality trimming
(Phred(Q) > 20), and contamination removal. The adapter
and quality trims were conducted using Trimmomatic-0.32
functions (Bolger et al., 2014), and the microbial contamination
of each sample was removed using CLCMapper v4.2.0 (www.
giagenbioinformatics.com) with an in-house database. Here,
the in-house database was constructed from bacterial (ftp://ftp.
ncbi.nlm.nih.gov/genomes/ GENOME_REPORTS/prokaryotes.
txt), viral (ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/), and
marine (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA13694)
metagenomes. All the pre-processed sequences from the paired-
end library were subjected to genome size estimation using the
k-mer based method (which was used in the panda genome
Li et al., 2009. The k-mer frequencies (k-mer size = 19) were
obtained using the Jellyfish v2.0 method (Mar¢ais and Kingsford,
2011), and the genome size was calculated from the given
formulas: Genome Coverage Depth = (k-mer Coverage Depth
X Average Read Length) / (Average Read Length — k-mer size
+1) and Genome size = Total Base Number / Genome Coverage
Depth. Alternatively, the PacBio sequences were only subjected
to error correction using CLCAssemblyCell v4.2.0.

PacBio Error-Correction and de-novo

Genome Assembly

Complete PacBio sequence reads were processed for error
correction (Read Quality > 0.75 and Read Length > 50) with
processed Illumina short reads using SMRTAnalysis v2.3 and
the error corrected PacBio reads were imported to a diploid-
aware hierarchical genome assembler to construct the contigs
from the long-sequence PacBio reads, i.e., FALCON (Chin
et al, 2016). The assembled contigs were further subjected
to sequence polishing using the Quiver consensus method to
reduce the base called errors (Chin et al., 2013). Finally, the
assembled and polished contigs were assessed to determine
genome completeness using BUSCO v3.0 (Simao et al., 2015).
The reference BUSCO datasets used were vertebrata_odb9 and
actinopterygii_odb9. The quality of the assembly was assessed by
short-reads mapping to the draft using CLCMapper v5.0.4.

De novo Repeat Region Prediction and

Classification

The repeat regions were predicted using the de novo method
and classified into repeat subclasses. The de novo repeat
prediction for P. major was conducted using RepeatModeler
(www.repeatmasker.org/RepeatModeler/), which includes other
methods such as RECON (Bao and Eddy, 2002) (http://eddylab.
org/software/recon/), RepeatScout (Price et al., 2005) (https://
bix.ucsd.edu/repeatscout/), and TRF (Benson, 1999) (https://
tandem.bu.edu/trf/trf html). The modeled repeats were classified
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FIGURE 1 | lllustration of genome size, genes, and functional elements of the Pagrus major genome. (A) k-mer based genome size estimation; (B) assembled contigs
length distributions; (C) de-novo repeat predictions and sub-class distributions; (D) length distribution of the predicted genes with their functional annotation status;
(E) sequence blast similarity score distribution, and (F) species distribution obtained from BLAST.
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into their subclasses using the reference Repbase v20.08 database
(www.girinst.org/repbase/) (Bao et al., 2015) and these repeats
were masked using RepeatMasker v4.0.5 (www.repeatmasker.
org) with RMBlastn v2.2.27F.

Gene Prediction and Annotation

The genes from the P. major draft were predicted using an in-
house gene prediction pipeline, which includes three modules:
an evidence-based gene modeler (EVM), an ab-initio gene
modeler, and a consensus gene modeler. Finally, functional
annotation processing was conducted for the consensus genes.
Initially, sequenced transcriptomes from two methods [Illumina
(186.6 Gb) and IsoSeq (1.2 Gb)] were mapped to the P. major
repeat masked draft genome using Tophat (Trapnell et al.,
2012) and the transcripts/gene structural boundaries were
predicted using Cufflink (Trapnell et al., 2012) and PASA
(Haas et al, 2003). To train the ab-initio, gene modeler
and EVM (which includes Exonerate Slater and Birney, 2005,
AUGUSTUS Stanke et al, 2006 and GENEID Blanco et al,
2007), as well as several genomes (Danio rerio, Gasterosteus
aculeatus, Tetraodon nigroviridis, Takifugu rubripes, Oryzias
latipes, Notothenia coriiceps, Haplochromis burtoni, Stegastes
partitus, Sebastes schlegelii, Oplegnathus fasciatus, and Homo
sapiens) were used for prediction. Finally, the predicted
gene and transcript models from the EVM and ab-initio
modeler were subjected to the consensus gene modeler (which
includes EVidenceModeler, Haas et al, 2008) to produce
the final gene and transcript models. Finally, the consensus
transcripts were subjected to functional annotation from
biological databases (NCBI-NR databases, Swiss-Prot, Gene
Ontologies and KEGG pathways) using Blast2GO (Gétz et al.,
2008).

Preliminary Analysis Report

The P. major genome size was estimated as ~806 Mb (Figure 1A)
using the k-mer method from 190.3 Gb of the short-read
sequences (Table 1), which were generated using the Illumina
sequencer. The 73 Gb long-read sequences, which were generated
using the PacBio sequencer, were assembled into 1,657 contigs
with a total size of 829.3 Mb and an N50 of 2.8 Mb (Table 1),
and 92.6% of the paired short-reads were mapped correctly
to the assembled contigs, which clearly showed the assembly
quality. Particularly, 12% of the contigs were > 1Mb in length
(Figure 1B) and < 7% of the contigs were < 10KDb in size
(Figure 1B). The repeat contents in the genome were 257 Mb
(31.1%) bases, which were predicted and classified into their sub-
classes (Figure 1C). In this genome, 28,343 consensus genes were
predicted with an average length of 5,913 bp (Table 1, section
C) and, among those, 76.2% of the genes obtained annotations
from the Uniprot database (Figure 1E). Most of the short
genes were left unannotated compared to others (Figure 1D).
Moreover, 52% of the annotated genes obtained annotation
from the fish Danio rerio (Figure 1F). Additionally, BUSCO
scores were obtained for the two datasets: 97.8% (2,529/2,586)
in vertebrata and 97.1% in actinopterygii (4,447/4,584), which
shows the confidence of the completeness of the annotated genes
in the assembled genome. Therefore, we propose that this draft

TABLE 1 | Summary of genome assemblies and gene annotations.

Technology lllumina PacBio
A. SEQUENCES

Raw data in Gb (Coverage) 190.3 (~240 X) 73.0 (~90 X)
Pre-processed data in Gb (%) 156.4 (82%) 73.0 (100%)
B. ASSEMBLY

No of Contigs 1,657

Total Bases 829,318,935

Average length 500,494

Minimum length 163

Maximum length 12,966,191

N50 2,896,215

N (%) 0

GC (%) 41.23

C. GENE

# of genes 28,343 (6.24 exons/ gene)
Average gene length 5,913 bp

Average exon length 178 bp

Repeat elements 31.11%

Genome coverage (gene region) 20.20%

D. ANNOTATIONS
Blast hits
No hits

21,605 (76.22%)
6,738 (23.77%)

version is a near-complete reference genome for P. major and,
in comparison with 68 other available genome assemblies for
the bony fish clade (Percomorphaceae) in the NCBI assembly
(lastly accessed: March 2018), this draft is assembled well at the
contig level. Moreover, this is the best assembled draft for the
genus Pagrus and family Sparidae at the contig level and will be
good as a base to improve scaffold/chromosomal-level genome
assemblies and as a reference for other functional studies.

Deposited Data and Information to the

User

The complete sequences, which were used for the genome
assemblies and annotations, have been deposited in public
data repositories. The DNA libraries used in the current draft
genome assembly for P. major have been deposited in the
NCBI sequence read archive (Project ID: PRJNA480768) and the
structural and functional annotation (CDS, gff, repeat regions,
and proteins) datasets have been deposited in the figshare
repository (doi: 10.6084/m9.figshare.6962867.v1). The format
and description of all the deposited datasets are mentioned in the
readme file, which have been deposited in the figshare repository.
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