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Multiple sclerosis (MS) is the most common neurological disorder in young adults.
Despite extensive studies, only a fraction of MS heritability has been explained, with
association studies focusing primarily on protein-coding genes, essentially for the
difficulty of interpreting non-coding features. However, non-coding RNAs (ncRNAs) and
functional elements, such as super-enhancers (SE), are crucial regulators of many
pathways and cellular mechanisms, and they have been implicated in a growing
number of diseases. In this work, we searched for possible enrichments in non-
coding elements at MS genome-wide associated loci, with the aim to highlight their
possible involvement in the susceptibility to the disease. We first reconstructed the
linkage disequilibrium (LD) structure of the Italian population using data of 727,478
single-nucleotide polymorphisms (SNPs) from 1,668 healthy individuals. The genomic
coordinates of the obtained LD blocks were intersected with those of the top hits
identified in previously published MS genome-wide association studies (GWAS). By a
bootstrapping approach, we hence demonstrated a striking enrichment of non-coding
elements, especially of circular RNAs (circRNAs) mapping in the 73 LD blocks harboring
MS-associated SNPs. In particular, we found a total of 482 circRNAs (annotated in
publicly available databases) vs. a mean of 194 ± 65 in the random sets of LD blocks,
using 1,000 iterations. As a proof of concept of a possible functional relevance of this
observation, we experimentally verified that the expression levels of a circRNA derived
from an MS-associated locus, i.e., hsa_circ_0043813 from the STAT3 gene, can be
modulated by the three genotypes at the disease-associated SNP. Finally, by evaluating
RNA-seq data of two cell lines, SH-SY5Y and Jurkat cells, representing tissues relevant
for MS, we identified 18 (two novel) circRNAs derived from MS-associated genes. In
conclusion, this work showed for the first time that MS-GWAS top hits map in LD blocks
enriched in circRNAs, suggesting circRNAs as possible novel contributors to the disease
pathogenesis.

Keywords: multiple sclerosis, single-nucleotide polymorphism, association, long non-coding RNA, circular RNA,
micro RNA, super-enhancer

Frontiers in Genetics | www.frontiersin.org 1 December 2018 | Volume 9 | Article 647

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2018.00647
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2018.00647
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2018.00647&domain=pdf&date_stamp=2018-12-17
https://www.frontiersin.org/articles/10.3389/fgene.2018.00647/full
http://loop.frontiersin.org/people/612353/overview
http://loop.frontiersin.org/people/474636/overview
http://loop.frontiersin.org/people/474396/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00647 December 13, 2018 Time: 17:30 # 2

Paraboschi et al. Non-coding Variation in MS

INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune disease of the
central nervous system, characterized by demyelination and
progressive neurological impairment (Brownlee et al., 2017).
Epidemiological studies showed both an important role of the
environment in determining MS risk (Ramagopalan et al., 2010),
and a strong contribution of genetic components (Belbasis
et al., 2015). To date, besides the human leukocyte antigen
(HLA) gene cluster (Patsopoulos et al., 2013), genome-wide
association studies (GWAS) identified several common variants
contributing to disease pathogenesis with mild effects on risk,
many of which located within or close to genes displaying
primarily immunologic functions (International Multiple
Sclerosis Genetics Consortium [IMSGC] et al., 2007, 2011,
2013; Aulchenko et al., 2008; Comabella et al., 2008; Australia
and New Zealand Multiple Sclerosis Genetics Consortium
(ANZgene), 2009; Baranzini et al., 2009; de Jager et al., 2009;
Jakkula et al., 2010; Nischwitz et al., 2010; Sanna et al., 2010;
Patsopoulos et al., 2011; Martinelli-Boneschi et al., 2012;
Matesanz et al., 2012). Despite these extensive efforts, the
identified GWAS variants explain only 28% of the sibling
recurrence risk (International Multiple Sclerosis Genetics
Consortium [IMSGC] et al., 2013), thus implicating that the
complete spectrum of MS genetic determinants is still far from
being complete. These studies focused primarily on protein-
coding genes, due to the difficulty of interpreting non-coding
features. However, advances in the systematic annotation of
non-coding genes and non-coding functional elements are
revolutionizing genetic approaches and are paving the way to
build a map that can help reveal “hidden” processes underlying
disease associations (Ward and Kellis, 2012).

In this frame, non-coding RNAs (ncRNAs) have recently
emerged as crucial regulators of many pathways and cellular
mechanisms (Vidigal and Ventura, 2015; Barrett and Salzman,
2016; Quinn and Chang, 2016), and they have been implicated
in a growing number of diseases (Mendell and Olson, 2012;
Vučićević et al., 2014). Many long ncRNAs (lncRNAs), for
instance, were shown to contribute to the pathogenesis of
neurological and psychiatric conditions in different ways, from
regulation of transcription to modulation of RNA processing
and translation (Vučićević et al., 2014). In addition, microRNAs
(miRNAs) dysregulation was associated with several disorders,
such as different kinds of cancers and immune-related diseases
(Mendell and Olson, 2012). Another group of ncRNAs with
regulatory functions is represented by circular RNAs (circRNAs),
a novel class of RNAs generated from the back-splicing of exons
or introns (Jeck et al., 2013). By acting as miRNA sponges,
or by binding to RNA-associated proteins, circRNAs regulate
gene expression at the transcriptional or post-transcriptional
level, although their exact mechanism of action still needs to
be clarified (Greene et al., 2017). Moreover, they have been
associated with human diseases such as ischemic heart disease,
Alzheimer’s disease, diabetes, cancer, as well as MS (Cardamone
et al., 2017; Greene et al., 2017; Iparraguirre et al., 2017).

Among non-coding functional elements, also super-enhancers
(SEs) have been described as key gene expression regulators

(Pott and Lieb, 2015). SEs are genomic regions characterized
by a strong enrichment in binding sites both for transcriptional
coactivators, specifically the Mediator protein, and for factors
generally associated with enhancer activity, such as RNA
polymerase II and chromatin factors (Pott and Lieb, 2015).
Very interestingly, many SE regions are significantly enriched
in disease-associated single-nucleotide polymorphisms (SNPs),
including those related to autoimmunity, and more specifically
to MS (Hnisz et al., 2013; Farh et al., 2015). The enrichment in
GWAS variants within enhancers suggests that they influence
the disease risk by altering gene regulation. However, only a
few disease-associated SNPs directly alter a transcription factor
motif; many trait-associated SNPs instead modulate the enhancer
activity by changing nearby nucleotides, resulting in slight but
critical alterations of gene expression (Farh et al., 2015).

In this work, we aim at identifying ncRNAs and SEs mapping
in proximity of MS GWAS-significant signals that could point to
so-far unexplored mechanisms involved in the susceptibility to
the disease.

MATERIALS AND METHODS

Defining the Linkage Disequilibrium (LD)
Structure of the Italian Population
The global LD structure of the Italian population was explored
by using genome-wide genotyping data (727,478 quality-checked
markers, genotyped with the Affymetrix 6.0 GeneChip platform;
Affymetrix, Santa Clara, CA, United States) obtained from
1,668 healthy controls (for genotyping details see Myocardial
Infarction Genetics Consortium et al., 2009). Haplotype blocks
were estimated with the Plink program (Purcell et al., 2007)
following the default procedure described for the Haploview
software (Barrett et al., 2005). Pairwise LD was calculated for
SNPs within 200 kb for autosomal chromosomes. Chromosome
X was excluded from this analysis, leading the total number of
SNPs used for LD studies to 699,676.

To verify whether the Italian LD structure was comparable
to the European one, we analyzed the 1000 Genomes data on
European subjects (phase 1 project) (1000 Genomes Project
Consortium et al., 2015). This test was performed on chromosome
22 data, by selecting only those SNPs whose genetic information
was available both in the Italian and 1000 Genome populations.
These were used to calculate the European LD structure.

Retrieving the Reference Files for
ncRNAs and Regulatory Elements
Reference files for the analysis were retrieved for lncRNAs,
miRNAs, circRNAs, and SEs. In particular: (1) The reference
gene transfer format (GTF) file for lncRNAs was obtained from
GENCODE (Harrow et al., 2012), selecting the comprehensive
gene annotation of lncRNA genes on the reference chromosomes,
version 251. (2) The miRNA reference file was downloaded from
miRBase2 (Griffiths-Jones, 2004; Griffiths-Jones et al., 2006, 2008;

1https://www.gencodegenes.org/human/release_25lift37.html
2http://www.mirbase.org/
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Kozomara and Griffiths-Jones, 2011, 2014) version 20. (3) The
circRNA reference file was obtained from the circBase database3

(Glažar et al., 2014), by downloading data from all the available
studies on humans (Jeck et al., 2013; Memczak et al., 2013;
Salzman et al., 2013; Zhang et al., 2013; Rybak-Wolf et al.,
2015). (4) The SE reference file was downloaded from the SEA:
Super-Enhancer Archive4 (Wei et al., 2016) based on studies on
humans.

In all cases, genome version hg19 was considered; databases
were accessed on April 2016.

Defining Overlapping Regions Between
LD Blocks, MS Genome-Wide Significant
SNPs, and ncRNAs/SEs
Multiple sclerosis-associated SNPs, excluding those mapping
in the highly complex HLA region, were retrieved from the
literature (Supplementary Table 1) (International Multiple
Sclerosis Genetics Consortium [IMSGC] et al., 2013). Their
genomic coordinates were crossed with those of the LD blocks,
to identify the blocks in which each single SNP resides.

The next step was searching for partial/total overlapping
between LD blocks containing the genome-wide associated SNPs
and the different classes of ncRNAs (lncRNAs, miRNAs and
circRNAs) or SE elements. The overlaps were identified on
the basis of the genomic coordinates of each LD block (using
as borders the physical positions of the most 5′ and 3′ SNPs
belonging to the block) and of each ncRNAs/SE elements (for
these genomic features, coordinates were extracted from the
reference files described in the previous section). The final list
includes both the elements completely contained within the LD
blocks and those showing only a partial overlap. Filtering for
redundancy was used to eliminate multiple annotations referring
to the same element. All procedures were performed using
awk command line (described in the section Supplementary
Material).

Enrichment Analysis
To determine if the MS-related LD blocks are significantly
enriched in ncRNA genes and SE elements, a bootstrapping
strategy was adopted.

First, a set of random SNPs was extracted from the “Genome-
Wide Human SNP array 6.0” manifest (copy number variants
were excluded), which is one of the most used genotyping
arrays in MS GWAS. The number of SNPs to be extracted was
chosen in order to obtain either a number of LD blocks similar
to the one of the MS-related analysis (Random set I) or an
overall genomic region of equal length (i.e., 3.8 Mb; Random set
II). Again, the HLA region and X chromosome were avoided.
Moreover, since about half of the MS-associated SNPs are located
in introns (Supplementary Table 1) (International Multiple
Sclerosis Genetics Consortium [IMSGC] et al., 2013), the random
SNP sets were constructed to mirror the proportion of intronic
SNPs of the MS list. More in particular, to perform this step,

3http://www.circbase.org/
4https://sea.nebulagene.com/SEA/index.html

two complete lists of SNPs from the “Genome-Wide Human SNP
array 6.0” manifest were generated: one containing only SNPs
annotated as intronic in the manifest file, the second containing
only extragenic SNPs. SNPs were chosen from both lists with
a randomized procedure (using the gshuf Unix command),
respecting the constraints above mentioned.

Then, the LD blocks in which the random SNPs reside were
identified, and a search for overlapping regions between LD
blocks and ncRNAs/SE regions was performed, as described
above.

Finally, the results were filtered to avoid redundancy, and
the total number of lncRNAs, miRNAs, circRNAs, and SEs was
annotated. The entire procedure was repeated 1,000 times for
random set I and II, and the outputs of each set averaged, in order
to compare the resulting means with the result obtained with
the MS SNP set. The comparison was based on the % of times
in which the same (or a larger) number of lncRNAs, circRNAs,
miRNAs, or SEs was obtained in the 1,000 iterations respect to
the MS dataset. Enrichment p-values were calculated according
to Davison and Hinkley method (Davison and Hinkley, 1997).

All analyses were performed using in-house developed Perl
scripts (listed in the section Supplementary Material).

The entire procedure is schematized in Supplementary
Figure 1.

Replication on an Unrelated Disease
To test the specificity of the analysis on MS, we repeated the
entire workflow considering a disease with a completely different
etiology, i.e., coronary artery disease (CAD).

The list of CAD-associated SNPs was derived from the
literature (Supplementary Table 2) (Nikpay et al., 2015).

Genotype-Dependent Analysis of
circRNA Expression
DNA samples were extracted from whole blood of 35 healthy
donors using an automated DNA extractor (Maxwell 16 System;
Promega, Madison, WI, United States). All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. To genotype the MS-associated SNP rs2293152,
PCR amplifications (GoTaq; Promega) and Sanger sequencing,
using the BigDye Terminator Cycle Sequencing Ready Reaction
Kit v1.1 and an ABI-3500 Genetic Analyzer (Thermo Fisher
Scientific, Waltham, MA, United States), were performed
following standard protocols.

Peripheral blood mononuclear cells (PBMCs) of the same
healthy donors were isolated by means of centrifugation on a
Lympholyte Cell separation medium (Cederlane Laboratories
Limited, Hornby, ON, Canada) gradient. RNA extraction
was performed using the EuroGold Trifast kit (Euroclone,
Wetherby, United Kingdom). RNA was reverse-transcribed
using the Superscript-III Reverse Transcriptase (Thermo Fisher
Scientific) and random hexamers (Promega), according to the
manufacturers’ instructions.

Semi-quantitative real-time RT-PCRs to detect the expression
levels of circRNA hsa_circ_0043813 were performed by using
divergent primers (5′-ACATTCTGGGCACAAACACA-3′ and
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5′-CCTCTGAGAGCTGCAACG-3′), the FastStart SYBR Green
Master mix (Roche, Basel, Switzerland), and a LightCycler 480
(Roche). HMBS (hydroxymethylbilane synthase) was used as
housekeeping gene; reactions were performed in triplicate, and
expression data were analyzed using the GeNorm software
(Vandesompele et al., 2002).

CircRNA Analysis by RNA Sequencing
RNA was extracted using the Maxwell 16 LEV simplyRNA
Cells Kit (Promega) from SH-SY5Y (human neuroblastoma) and
Jurkat E6-1 (human T lymphocyte) cell lines. RNA quality was
assessed by the LabChip GX Touch instrument (PerkinElmer,
Waltham, MA, United States). RNA sequencing was performed
using the TruSeq Stranded Total RNA Library Prep Kit (Illumina,
San Diego, CA, United States), following the manufacturer’s
instructions and a paired-end sequencing strategy. SH-SY5Y and
Jurkat samples underwent a high-coverage paired-end 75- and
150-bp strand-specific sequencing, respectively, using a NextSeq
500 platform (Illumina).

The circRNA analysis was then performed using the DCC
software (Cheng et al., 2016). In detail, raw reads were first
aligned to the hg19 version of the genome using STAR (Dobin
et al., 2013), switching on the detection of chimeric alignments
to detect reads containing backspliced products, as suggested
by the DCC manual. In a first step, reads were mapped using
both mates; subsequently, an additional separate mate mapping
was performed. After mapping, DCC was used to analyze
the chimeric reads to detect circRNAs. Only those circRNAs
supported by at least five reads were considered for further
analyses. CircRNAs mapping on mitochondrial DNA or in
repetitive regions of the genome were filtered out.

Data Repository
Raw sequence files of SH-SY5Y have been deposited in NCBI
Sequence Read Archive (SRA) under the following Bioproject ID:
PRJNA483101, and with the accession number SRP155458; raw
sequence files of Jurkat cells have been deposited in the GEO
database (Accession No.: GSE110525).

RESULTS

The Global LD Structure of the Italian
Population Is Not Different From the
European One
The LD structure of the Italian population was built by using data
on 699,676 genotyped SNPs on 1,668 healthy subjects. A total of
96,666 LD blocks (with an average length of 17.48 kb; range 0.01–
200 kb) were identified in autosomes, ranging from 1,421 blocks
of chromosome 22 to 8,148 of chromosome 2 (on average: 4,394
blocks per chromosome).

The comparison of the LD structure of chromosome 22 of
the Italian and European populations confirmed a substantial
similarity in the blocks distribution (Pearson’s χ2 p = 0.79), thus
suggesting that the Italian population is a good representation of
the European LD structure, and confirming the data previously
obtained by Mueller et al. (2005). The substantial overlap between
the structures of the Italian and of the European populations
was also confirmed by a principal component analysis performed
using genotype data of our cohort and those from the 1000
Genome project (503 available individuals; Supplementary
Figure 2).

MS-Associated Regions Are Significantly
Enriched in circRNAs and SEs
With the aim of identifying ncRNAs and SE regulatory
elements mapping in LD blocks harboring MS GWAS-significant
signals, we selected through literature data mining all those
SNPs that reached a genome-wide significant threshold in MS
GWAS studies and meta-analyses (Supplementary Table 1). We
excluded from this list all SNPs mapping in the HLA region as
well as those located on the X chromosome. The list of 97 SNPs
was intersected with that of LD blocks inferred for the Italian
population. Our automated pipeline allowed the identification of
73 LD blocks, each harboring a single genome-wide significant
SNP. For 24 out of the 97 SNPs used for the analysis, it was not
possible to establish a precise LD block.

TABLE 1 | Results of the analysis performed on the MS-associated loci (upper part) and on 1,000 random sets (middle and lower part).

List n Blocks Blocks§(kb) DNA content (Mb) n LncRNAs n CircRNAs n MiRNAs n SEs

MS set 73 52.2 3.8 30 482 7 23

SD – 54.8 – – – – –

Random sets (I)∗ 73.8 40.6 2.9 22.6 193.8 2.1 2.4

SD 4.0 5.7 0.4 5.6 65.0 2.1 1.8

%∗∗ – – – 11.0 0 3.6 0

p-value – – – 0.11 9.9∗10−4 0.36 9.9∗10−4

Random sets (II)∗ 96.0 40.2 3.8 29.3 249.3 2.7 3.1

SD 4.6 4.8 0.5 6.3 76.4 2.5 2.0

%∗∗ – – 46.4 0.6 6.3 0

p-value – – – 0.46 0.006 0.06 9.9∗10−4

§Average length of the LD blocks. ∗For the random sets analysis, the average values calculated on 1,000 iterations are indicated. ∗∗% of times in which the same or
a larger number of lncRNAs, circRNAs, miRNAs, or SEs was obtained in the 1,000 iterations as compared to the MS dataset. p-Values were calculated as described
(Davison and Hinkley, 1997); in detail: p-value = [1+sum(s > = s0)]/(N + 1), where s is the observed value in the random set, s0 is the value of the observed MS-specific
result, and N is the number of bootstraps. n, number; SD, standard deviation.
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The genomic coordinates of the 73 LD blocks were hence
intersected with those of ncRNAs and SEs annotated in public
genomic databases. This analysis evidenced the presence of 30
lncRNAs, 482 circRNAs, 7 miRNAs, and 23 SEs partially or
totally overlapping the 73 identified blocks (Table 1). To test
for possible significant enrichments in non-coding elements, the
same workflow was applied to randomly selected SNPs (Random
set I). To this aim, subsets of 94 SNPs were randomly selected
from the genome, and the process was repeated 1,000 times. The
pipeline identified, on average, 73.8 LD blocks (median value: 74)
in which 22.6 lncRNAs (median: 22), 193.8 circRNAs (median:
185), 2.1 miRNAs (median: 2), and only 2.4 SEs (median: 2)
were located (Table 1). Comparing the random set I results with
the MS dataset, we obtained the same or a larger number of
lncRNAs, circRNAs, and miRNAs in the 11, 0, and 3.6%, of the
iterations, respectively, thus indicating a very strong enrichment
in circRNAs in MS dataset. None of the randomly selected
SNP subsets evidenced the same or a larger number of SE hits
when compared to the MS list, thus confirming the enrichment
in these regulatory elements previously reported by Farh et al.
(2015) (observations that, however, were focused specifically
on immune-related genes). Since the average length of the LD
blocks in the Random set I was 22% lower than the one of MS
LD blocks, we repeated the enrichment analysis on a genomic
region spanning the same length as the MS dataset (3.8 Mb;
Random set II). Also in this case, 1,000 iterations confirmed
a strong enrichment in circRNAs and SEs in MS LD blocks
(Table 1).

To test the specificity of the results, we applied the same
pipeline on another dataset, composed of SNPs associated with
CAD, a disease with a different etiology from MS. In this case, 55
SNPs were retrieved from the literature and used for the analysis,
and 36 LD blocks were identified (Table 2). The workflow
evidenced the presence of 19 lncRNAs, 122 circRNAs, 1 miRNA,
and 2 SEs mapping within the corresponding blocks. When
compared to the CAD dataset, the random bootstrapping strategy
applied 1,000 times evidenced the same (or a larger) number of
lncRNAs, circRNAs, miRNAs, and SEs in the 4.6, 12.4, 45.9, and
26.7% of the iterations, respectively (Table 2), thus suggesting
only a slight enrichment in lncRNAs in the CAD dataset. No
significant enrichment was evidenced in circRNAs and SEs.

TABLE 2 | Results of the analysis performed on the CAD-associated loci (upper
part) and on 1,000 random sets (lower part).

List n Blocks n LncRNAs n CircRNAs n MiRNAs n SEs

CAD set 36 19 122 1 2

Random sets∗ 35.3 11.3 73.4 1.0 1.0

SD 2.7 4.1 42.5 1.4 1.1

%∗∗ – 4.6 12.4 45.9 26.7

p-value – 0.05 0.12 0.46 0.27

∗For the random sets analysis, the average values calculated on 1,000 iterations
are indicated. n, number; SD, standard deviation. ∗∗% of times in which the same
or a larger number of lncRNAs, circRNAs, miRNAs, or SEs was obtained in the
1,000 iterations as compared to the CAD dataset. p-Values were calculated as
described in the footnote of Table 1.

FIGURE 1 | Characterization of the hsa_circ_0043813 circRNA deriving from
the STAT3 gene. (A) Schematic representation of the STAT3 genomic region
spanning from exon 12 to 14. Exons are depicted as boxes (in scale), and
introns as lines. The position of the SNP rs2293152 is shown by an arrow.
(B) Schematic representation of the formation of the STAT3 circRNA
hsa_circ_0043813 through a back-splicing event between exons 14 and 12.
Exons are approximately drawn to scale; the curved arrow joins the 5′ splice
site of exon 14 to 3′ splice site of exon 12. On the right, a schematic
representation of the circRNA is depicted; arrows below exon 12 and 14
indicate the divergent primer couple used to detect the circRNA. Below the
scheme, direct-sequencing electropherogram shows the head-to-tail splice
junction, indicated by a black arrow, located between exons 14 and 12.
(C) Boxplots showing expression levels of the hsa_circ_0043813 circRNA
measured by semi-quantitative real-time RT-PCR in PBMCs of 35 healthy
controls. Boxes define the interquartile range; the thick line refers to the
median. Results were normalized to expression levels of the HMBS
housekeeping gene, and for each sample three technical replicates were
performed. The number of subjects belonging to each group is also indicated
(n). The significance level of t-test analysis is shown. ∗p < 0.05; ns, not
significant.

The list of circRNAs/SE elements mapping within MS-
or CAD-specific blocks is given in the Supplementary
Table 3.
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FIGURE 2 | CircRNA landscape of SH-SY5Y and Jurkat cells. (A) Table showing alignment statistics of RNA-seq experiments in SH-SY5Y and Jurkat cells. M,
million reads. (B) Venn diagrams representing the number of circRNAs shared by SH-SY5Y and Jurkat cells. The number of circRNAs identified only in one cell type
is also shown. Yellow circles represent those circRNAs derived from MS-associated genes. (C) Venn diagrams representing the number of circRNAs that were
already described in circBase for each cell line.

SNP rs2293152 Genotype Influences
STAT3 hsa_circ_0043813 Expression
Levels
The newly observed enrichment in circRNAs in MS led us to test,
as a proof of concept, whether the different genotypes of an MS-
associated SNP could influence the expression levels of a circRNA
mapping in the corresponding LD block. To this aim, we decided
to better characterize a circRNA deriving from STAT3 (Signal
Transducer and Activator of Transcription 3), a gene necessary
for pro-inflammatory cytokines signaling (Adamson et al., 2009)
and that it is required for differentiation and expansion of Th17
cells, key players of MS disease activity (Brucklacher-Waldert
et al., 2009). In particular, four different SNPs mapping in
STAT3 have been described as associated with MS in GWA
studies: rs744166 (Jakkula et al., 2010), rs2293152 (Patsopoulos
et al., 2011), rs9891119 (International Multiple Sclerosis Genetics
Consortium [IMSGC] et al., 2011), and rs4796791 (International
Multiple Sclerosis Genetics Consortium [IMSGC] et al., 2013).
Among them, rs2293152 is in close proximity to a protein-
coding exon, being located 50 nt upstream of STAT3 exon 14
(Figure 1A), and could in theory affect the expression levels
of the circRNAs hsa_circ_0043813 (CircBase, chr17:40481427-
40481794, hg19), which is composed of exons 12, 13, and 14
(Refseq NM_003150).

To confirm the existence/expression of hsa_circ_0043813, we
first performed a RT-PCR assay with a divergent primer couple

tagging exons 12 and 13 on RNA extracted from PBMCs of
two healthy controls. Direct sequencing of the circRNA product
confirmed the presence of the backspliced exons 12 and 14,
joined by a head-to-tail splice junction (Figure 1B). The analysis
of the expression levels of the hsa_circ_0043813 circRNA was
hence performed on a total of 35 healthy subjects: 6 homozygous
for the CC genotype, 16 heterozygous, and 13 homozygous GG
(Figure 1C). Our data showed significant different expression
levels upon genotype stratification, with the CC subjects showing
the highest levels of expression (one-way ANOVA p = 0.023).

CircRNA Landscape in SH-SY5Y and
Jurkat T Cell Lines
Due to the striking enrichment in circRNAs mapping in the
regions associated with MS, we looked at the circRNA landscape
of two cell lines, SH-SY5Y and Jurkat cells, representing tissues
relevant for MS, by analyzing high-coverage RNA-seq data
already available in our lab. We obtained ∼186 and 197 million
reads for SH-SY5Y and Jurkat cells, respectively (Figure 2A).
The circRNA analysis detected the presence of 539 circRNAs
supported by at least five reads in SH-SY5Y cells, and of
2,032 circRNAs in Jurkat cells. About half (52%) of circRNAs
identified in SH-SY5Y cells were also present in the Jurkat
sample (Figure 2B). Most of the detected circRNAs were already
annotated in circBase (89% for SH-SY5Y, 68% for Jurkat cells;
Figure 2C). In Supplementary Table 3 we listed the 61 and 643
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TABLE 3 | CircRNAs identified in Jurkat and SH-SY5Y cell lines within MS-associated genes.

Chr Start∗ End∗ CircRNA ID∗∗ Gene Jurkat SH-SY5Y

3 119219542 119222868 hsa_circ_0001329 TIMMDC1 × ×

3 119219542 119232566 hsa_circ_0006884 TIMMDC1 ×

3 119219542 119236162 hsa_circ_0066874 TIMMDC1 ×

4 103610731 103651893 hsa_circ_0001431 MANBA ×

4 103635595 103651893 hsa_circ_0142051 MANBA ×

4 106155054 106158508 hsa_circ_0070562 TET2 × ×

7 50358644 50367353 hsa_circ_0001708 IKZF1 ×

7 50358644 50459561 novel IKZF1 ×

7 50444231 50459561 novel IKZF1 ×

16 11063018 11076848 hsa_circ_0004179 CLEC16A ×

16 11114050 11145498 hsa_circ_0002086 CLEC16A ×

16 11114050 11154879 hsa_circ_0000672 CLEC16A ×

16 11114050 11220003 hsa_circ_0007846 CLEC16A × ×

17 57808782 57816308 hsa_circ_0006508 VMP1 × ×

17 57808782 57851246 hsa_circ_0005077 VMP1 ×

22 22153301 22162135 hsa_circ_0004872 MAPK1 ×

22 22160139 22162135 hsa_circ_0008870 MAPK1 ×

∗circRNA position is according to DCC output and referred to version hg19 of the genome. ∗∗circRNA identifier is referred to circBase nomenclature.

circRNAs that were newly identified in SH-SY5Y and Jurkat cells,
respectively. Interestingly, we identified 18 (two novel) and 4
circRNAs derived from the MS-associated genes in Jurkat and
SH-SY5Y cells, respectively (Figure 2B and Table 3).

Finally, UBAP2 and WHSC1, and MPP6 and ZNF124 were the
genes giving origin to the highest number of different circRNAs
species in Jurkat and SH-SY5Y, respectively (Supplementary
Figure 2). These genes show completely different genomic
structures, going from 29 exons distributed on a region of 127 kb
in the case of the UBAP2 gene, to 4 exons spread over 16 kb
for the ZNF124 gene. Instead, for all these genes we observed
highest level of expression in cell lines of lymphoid origin and
in SH-SY5Y when compared to other cell lines (source5).

DISCUSSION

New classes of ncRNAs have been described over the last
years; they all display regulatory functions, being part of a
large RNA communication network that ultimately regulates the
fundamental cellular functions (Adams et al., 2017). Many of
them have in fact emerged as regulators of crucial mechanisms
(Vidigal and Ventura, 2015; Barrett and Salzman, 2016; Quinn
and Chang, 2016), and evidence suggests their implication in
various diseases (Mendell and Olson, 2012; Vučićević et al.,
2014). Given this background, in this work we aimed at
identifying possible enrichments in non-coding elements at
MS genome-wide associated loci, that could point to their
involvement in the susceptibility to the disease.

By taking advantage of the top hits identified in MS
GWASs and of the LD structure of the Italian population, we
demonstrated a striking enrichment of circRNAs in the LD blocks

5https://www.proteinatlas.org/

harboring MS-associated SNPs. This result suggests that this
class of ncRNAs could play an important role in the disease
predisposition and supports emerging evidence in the literature
indicating that a dysregulation of the back-splicing process could
be a signature of the disease. More specifically, our group
identified in MS patients, for the first time, one dysregulated
circRNA (Cardamone et al., 2017) derived from GSDMB, a
gene associated with susceptibility to asthma and autoimmune
diseases. Subsequently, Iparraguirre et al. (2017) performed
a microarray analysis identifying 406 differentially expressed
circRNAs and validating two of them (both deriving from the
ANXA2 gene). As the biogenesis of circRNAs competes with pre-
mRNA splicing (Ashwal-Fluss et al., 2014), alterations in the
back-splicing process may also interfere with alternative splicing
(AS), a mechanism already demonstrated to be dysregulated in
MS (Evsyukova et al., 2010; Paraboschi et al., 2015).

Considering that AS dysregulation has been described as a
possible pathogenic mechanism underlying autoimmune diseases
(Evsyukova et al., 2010; Paraboschi et al., 2015; Juan-Mateu
et al., 2016), and given the tight interconnection between AS and
back-splicing, we hypothesized that an enrichment in circRNAs
could be a signature also for other autoimmune disorders.
Recent findings showed that immune-mediated diseases have
a complex network of shared genetic architecture, with ∼70%
of the associated loci for each disease being shared with other
autoimmune disorders (Farh et al., 2015). We hence investigated
whether we could identify a ncRNA signature also in systemic
lupus erythematosus (SLE) and rheumatoid arthritis (RA), taking
advantage of the GWAS top hits for these diseases (Okada et al.,
2014; Bentham et al., 2015). By applying the same pipeline
used for MS, we observed in SLE a circRNA enrichment in
the LD blocks corresponding to GWAS signals (Supplementary
Tables 3, 4). This result is in line with a growing body of
evidence in the literature of an involvement of circRNAs in the
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disease: circHLA-C was in fact shown to be increased in patients
affected by lupus nephritis (LN), a kidney disease caused by
SLE. In addition, circHLA-C was correlated with clinical disease
activities and was suggested to act as sponge for miR-150 (which,
in turn, positively correlates with renal chronicity index in LN
patients) (Luan et al., 2018). Regarding RA, we could not find any
circRNA enrichment in the LD blocks corresponding to genome-
wide associated loci (Supplementary Table 5). This finding,
however, may not be so surprising: systematic reviews on familiar
clustering of autoimmune disorders found evidence of an inverse
clustering of RA and MS, suggesting that these two pathologies
might be less closely related than other autoimmune diseases
(Richard-Miceli and Criswell, 2012).

In our work, by studying STAT3 hsa_circ_0043813, we also
showed that the expression level of specific circRNAs may be
influenced by the genotype of disease-associated SNPs (which
might be defined as circ-eQTL). This observation could be
very useful in understanding the functional impact of disease-
associated SNPs, a task that still remains a key challenge of the
post-GWAS era. Our hypothesis is that some variants associated
with MS may impact on the biogenesis or on the sequence
of circRNAs. This is in line with what has been reported for
circANRIL, the only example of circRNA for which a link
between disease associated SNPs and circRNA biogenesis has
been demonstrated (Holdt et al., 2016). CircANRIL derives
from the lncRNA ANRIL (Burd et al., 2010), transcribed from
the CAD risk locus on chromosome 9p21. Holdt et al. (2016)
demonstrated that carriers of the CAD-protective haplotype at
this locus have significantly increased expression of circANRIL,
and this is inversely correlated with the expression of linear
ANRIL (linANRIL). Moreover, highest circANRIL:linANRIL
ratios are found in CAD-free patients, thus implying an
atheroprotective role of circANRIL. It is therefore likely that
SNPs contained in the 9p21 haplotype are responsible for
differential circANRIL formation, and that subtle genotype-
directed gene expression differences may modulate the risk to
develop the disease (Holdt et al., 2016). On the basis of this
example, we can speculate that there might be other cases in
which a disease-associated SNP exerts its functional effect by
modulating the levels of specific circRNAs and, hence, modifying
the ratio of the circular:linear isoforms. Of note, the RNA-seq
analysis of the circRNA landscape in Jurkat cells highlighted

the existence of 18 circRNAs deriving from seven MS-associated
genes (∼8% of the total number of genes here considered;
Supplementary Table 1). This group of circRNAs, together with
their linear counterparts, could be a good starting point for
an in-depth analysis of circular:linear isoform ratio in PBMCs
of MS patients vs. controls, also in the perspective to find
novel, simple, and reliable biomarkers for MS susceptibility and
progression.

We are aware that our work has the potential limitation
of comparing MS-associated loci, which are by definition non-
random, with randomly sampled genomic regions. However,
we think we have accounted for the main sources of bias by
considering regions of equal length and exon density, and by
performing a large number of iterations.

In conclusion, this work showed for the first time that
MS-GWAS top hits map in LD blocks enriched in circRNAs,
suggesting that this feature could be shared by other autoimmune
diseases, and pointing to circRNAs as possible novel contributors
to the disease pathogenesis.
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Vučićević, D., Schrewe, H., and Orom, U. A. (2014). Molecular mechanisms of long
ncRNAs in neurological disorders. Front. Genet. 5:48. doi: 10.3389/fgene.2014.
00048

Ward, L. D., and Kellis, M. (2012). Interpreting noncoding genetic variation in
complex traits and human disease. Nat. Biotechnol. 30, 1095–1096. doi: 10.1038/
nbt.2422

Wei, Y., Zhang, S., Shang, S., Zhang, B., Li, S., Wang, X., et al. (2016). SEA: a
super-enhancer archive. Nucleic Acids Res. 44, D172–D179. doi: 10.1093/nar/
gkv1243

Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., et al.
(2013). Circular intronic long noncoding RNAs. Mol. Cell. 51, 792–806.
doi: 10.1016/j.molcel.2013.08.017

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Paraboschi, Cardamone, Soldà, Duga and Asselta. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org 10 December 2018 | Volume 9 | Article 647

https://doi.org/10.1016/j.jneuroim.2010.06.003
https://doi.org/10.1016/j.jneuroim.2010.06.003
https://doi.org/10.1038/nature12873
https://doi.org/10.3390/ijms161023463
https://doi.org/10.1371/journal.pgen.1003926
https://doi.org/10.1002/ana.22609
https://doi.org/10.1002/ana.22609
https://doi.org/10.1038/ng.3167
https://doi.org/10.1086/519795
https://doi.org/10.1086/519795
https://doi.org/10.1038/nrg.2015.10
https://doi.org/10.1016/S1474-4422(10)70094-6
https://doi.org/10.1016/S1474-4422(10)70094-6
https://doi.org/10.1186/gm305
https://doi.org/10.1016/j.molcel.2015.03.027
https://doi.org/10.1016/j.molcel.2015.03.027
https://doi.org/10.1371/journal.pgen.1003777
https://doi.org/10.1038/ng.584
https://doi.org/10.1186/gb-2002-3-7-research0034
https://doi.org/10.1016/j.tcb.2014.11.004
https://doi.org/10.1016/j.tcb.2014.11.004
https://doi.org/10.3389/fgene.2014.00048
https://doi.org/10.3389/fgene.2014.00048
https://doi.org/10.1038/nbt.2422
https://doi.org/10.1038/nbt.2422
https://doi.org/10.1093/nar/gkv1243
https://doi.org/10.1093/nar/gkv1243
https://doi.org/10.1016/j.molcel.2013.08.017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Interpreting Non-coding Genetic Variation in Multiple Sclerosis Genome-Wide Associated Regions
	Introduction
	Materials and Methods
	Defining the Linkage Disequilibrium (LD) Structure of the Italian Population
	Retrieving the Reference Files for ncRNAs and Regulatory Elements
	Defining Overlapping Regions Between LD Blocks, MS Genome-Wide Significant SNPs, and ncRNAs/SEs
	Enrichment Analysis
	Replication on an Unrelated Disease
	Genotype-Dependent Analysis of circRNA Expression
	CircRNA Analysis by RNA Sequencing
	Data Repository

	Results
	The Global LD Structure of the Italian Population Is Not Different From the European One
	MS-Associated Regions Are Significantly Enriched in circRNAs and SEs
	SNP rs2293152 Genotype Influences STAT3 hsa_circ_0043813 Expression Levels
	CircRNA Landscape in SH-SY5Y and Jurkat T Cell Lines

	Discussion
	Ethics Statement
	Author Contributions
	Supplementary Material
	References


