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Alzheimer’s disease (AD) is the most common cause of dementia. It is the fifth leading
cause of death among elderly people. With high genetic heritability (79%), finding the
disease’s causal genes is a crucial step in finding a treatment for AD. Following the
International Genomics of Alzheimer’s Project (IGAP), many disease-associated genes
have been identified; however, we do not have enough knowledge about how those
disease-associated genes affect gene expression and disease-related pathways. We
integrated GWAS summary data from IGAP and five different expression-level data
by using the transcriptome-wide association study method and identified 15 disease-
causal genes under strict multiple testing (α < 0.05), and four genes are newly identified.
We identified an additional 29 potential disease-causal genes under a false discovery
rate (α < 0.05), and 21 of them are newly identified. Many genes we identified are also
associated with an autoimmune disorder.

Keywords: Alzheimer’s disease, genome-wide association study, autoimmune diseases, transcriptome-wide
association study, false discover rate

INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia which is characterized by a decline
in cognitive skills that affects a person’s ability to perform everyday activities. Estimated 5.4 million
people in the United States are living with AD. It is the fifth-leading cause of death among those
age 65 and older (Alzheimer’s Association, 2016). Although some drugs showing effectiveness to
mitigate the symptoms from getting worse for a limit time, no treatment can stop the disease.
Heritability for the AD was estimated up to 79% (Gatz et al., 2006). However, the current finding
of AD-associated genetic variants is not enough to fully explain the AD signal pathway in sufficient
detail.

During recent years, with the rapid advance of next-generation DNA sequencing, identify
disease-related mutation from large data set and develop treatment become possible (Cheng et al.,
2016a, 2018a,b). Genome-wide comparison studies (GWASs) have identified a significant amount
of common genetic variants associated with complex traits and diseases (Welter et al., 2014; Hu
et al., 2017a,b). Many previous studies have identified genes such as APOE (Mahoney-Sanchez
et al., 2016; Liao et al., 2017) on chromosome 19. However, the causal relation of those associated
genes and variants remain unclear. For example, recent study and data showed that a female
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FIGURE 1 | Eight scenarios of causal assumption between gene, expression and trait in TWAS study. Null hypothesis: gene expression is completely independent of
traits (A–D). Alternative hypothesis: causal relation exists between SNPs and traits (E–H).

with the APOE gene under greater risk than a male with the
APOE gene (Cacciottolo et al., 2016; Mazure and Swendsen,
2017). This strongly indicates that we have little knowledge about
how this risk factor effect people.

With GWAS summary data provided by the International
Genomics of Alzheimer’s Project (IGAP) (Lambert et al., 2013),
we are able to study AD in great detail. For a complex disease
such as AD, the top single nucleotide polymorphisms (SNPs)
often located in the non-coding region, hard to know which gene
is modified by that mutation and many significant SNPs are in

high linkage disequilibrium (LD) with non-significant SNPs, plus
many associated SNPs are more likely to locate in expression
regulation region of the disease causal gene (Nicolae et al., 2010;
Karch et al., 2016). To identify disease-associated genes, we
used the transcriptome-wide association study (TWAS) (Gusev
et al., 2016) method which integrates GWAS summarization
level data, expression level data from human tissue. TWAS
method can eliminate potential confounding and find disease
causal gene by focusing only on expression trait linking related
by genetic variation; it can also increase statistical power from

Frontiers in Genetics | www.frontiersin.org 2 January 2019 | Volume 9 | Article 653

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00653 December 24, 2018 Time: 10:22 # 3

Hao et al. Transcriptome-Wide Alzheimer’s Association Study

the lower multiple-testing burden and the noise reduction
of gene expression from environmental factors (Gusev et al.,
2016).

Previous studies have pointed out at AD is closely related
to autoimmune disorders (D’Andrea, 2005; Carter, 2010). After
detecting possible disease causal gene for AD, we manually
curated existing research about the autoimmune diseases that
potentially related to AD.

MATERIALS AND METHODS

Data we used for SNP-trait association is a large-scale GWAS
summary data provided by IGAP with total 17,008 AD cases and
37,154 controls, include 7,055,881 SNPs, we selected 6,004,159
SNPs. Expression level data are from adipose tissue (RNA-seq),
whole blood (RNA array), peripheral blood (RNA array), brain
tissue (RNA-seq and RNA-seq splicing) (Raitakari et al., 2008;
Nuotio et al., 2014; Wright et al., 2014; Fromer et al., 2016).
Selection method can be find in Supplementary Materials.

Transcriptome-Wide Association Study
Transcriptome-wide association study can be viewed as a test for
correlation between predicted gene expression and traits from
GWAS summary association data. The predicted effect size of
gene expression on traits can be viewed as a linear model of
genotypes with weights based on the correlation between SNPs
and gene expression in the training data while accounting for LD
among SNPs.

There are eight modes of causality for the relationship
between genetic variant, gene expression, and traits. Scenarios
Figures 1E–H should be identified as significant by TWAS and
its corresponding null hypothesis is gene expression completely
independent of traits (Figures 1A–D). By only focusing on the

genetic component of expression, the instances of expression-
trait association that is not caused by genetic variation but
variation in traits can be avoided. One aspect that needs to be
noticed is, same as other methods, TWAS is also confounded by
linkage and pleiotropy.

Performing TWAS With GWAS Summary
Statistics
We integrated gene expression measurements from five tissues
with summary GWAS to perform multi-tissue transcriptome-
wide association. In each tissue, TWAS used cross-validation
to compare predictions from the best cis-eQTL to those from
all SNPs at the locus. Prediction models choosing from BLUP
(Lofgren et al., 1989), BSLLM (Zhou et al., 2013), LASSO
(Tibshirani, 1997), and elastic net (Gamazon et al., 2015).

Transcriptome-wide association study Imputes effect size
(z-score) of the expression and trait are linear combination
of elements of z-score of SNPs for traits with weights. The
weights, W =

∑
e,s

∑
−1
s,s , are calculated using ImpG-Summary

algorithm (Pasaniuc et al., 2014) and adjusted for LD.
∑

e,s is the
estimated covariance matrix between all SNPs at the locus and
gene expression and

∑
s,s is the estimated covariance among all

SNPs which is used to account for LD.
Standardized effect sizes (Z-scores) of SNPs for a trait at a

given cis locus can be denoted as a vector Z. Also, the imputed
Z-score of expression and trait, WZ, has variance. W

∑
s,s W

t.
Therefore, the imputation Z score of the cis genetic effect on the
trait is,

ZTWAS =WZ/(W6s,sWt)
1
2 .

Bonferroni correction is usually applied when identifying
significant disease-associated gene. The standard multiple testing
conducted in TWAS is 0.05/15000 (Gusev et al., 2016). But
traditional p-value cutoffs adjusted by Bonferroni correction

TABLE 1 | Significant genes identified by TWAS under strict multiple testing.

Gene Chromosome Tissue P-Value Z-score Related to autoimmune diseases

PVRL2 19 Brain (CMC) RNA-seq 4.92E-34 −12.1626 Yes

TOMM40 19 Whole Blood (YFS) RNA Arr ay 1.13E-25 10.4749

CLPTM1 19 Brain (CMC) RNA-seq 5.73E-17 −8.37061

CLU 8 Brain (CMC) RNA-seq splicing 1.45E-16 −8.26075

CR1 1 Brain (CMC) RNA-seq 4.08E-15 7.8523 Yes

CEACAM19 19 Adipose (METSIM) RNA-seq 3.38E-11 6.62905 Yes

MS4A6A 11 Whole Blood (YFS) RNA Array 2.92E-10 6.30316

TRPC4AP 20 Brain (CMC) RNA-seq splicing 9.43E-10 6.1188

MLH3 14 Brain (CMC) RNA-seq splicing 7.86E-09 −5.77148 Yes

MS4A6A 11 Peripheral Blood (NTR) RNA Array 5.72E-08 5.4272

PTK2B 8 Peripheral Blood (NTR) RNA Array 9.93E-08 5.32809

PVR 19 Brain (CMC) RNA-seq 2.05E-07 −5.19443 Yes

PICALM 11 Peripheral Blood (NTR) RNA Array 2.84E-07 5.1337 Yes

MS4A4A 11 Adipose (METSIM) RNA-seq 6.11E-07 4.99

BIN1 2 Whole Blood (YFS) RNA Array 1.18E-06 4.859114

FNBP4 11 Whole Blood (YFS) RNA Array 1.49E-06 −4.81307

PTK2B 8 Whole Blood (YFS) RNA Array 2.89E-06 4.6784 Yes

BIN1 2 Peripheral Blood (NTR) RNA Array 3.24E-06 4.65503 Yes
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TABLE 2 | Additional gene under Benjamini and Hochberg procedure.

Gene Chromosome Tissue P-Value Z-score Previously identified

PHACTR1 6 Whole Blood (YFS) RNA Array 3.41E-06 −4.64434

PTPMT1 11 Whole Blood (YFS) RNA Array 4.45E-06 4.58895

MTCH2 11 Peripheral Blood (NTR) RNA Array 5.76E-06 4.535

C1QTNF4 11 Adipose (METSIM) RNA-seq 8.82E-06 4.44

FAM180B 11 Brain (CMC) RNA-seq 1.09E-05 −4.39814 Yes

DMWD 19 Whole Blood (YFS) RNA Array 1.22E-05 4.3733

ELL 19 Whole Blood (YFS) RNA Array 1.89E-05 4.277 Yes

ZNF740 12 Brain (CMC) RNA-seq splicing 2.08E-05 4.25599

NYAP1 7 Adipose (METSIM) RNA-seq 2.47E-05 −4.21777

SDAD1 4 Whole Blood (YFS) RNA Array 3.04E-05 −4.17062

MTSS1L 16 Brain (CMC) RNA-seq splicing 3.35E-05 4.14833

PHKB 16 Brain (CMC) RNA-seq 3.70E-05 −4.1257 Yes

SLC39A13 11 Brain (CMC) RNA-seq splicing 4.01E-05 −4.10667 Yes

CD33 19 Whole Blood (YFS) RNA Array 4.04E-05 4.1051 Yes

AP2A2 11 Brain (CMC) RNA-seq 4.28E-05 −4.09193 Yes

ZYX 7 Adipose (METSIM) RNA-seq 4.56E-05 −4.07718

ZNF232 17 Brain (CMC) RNA-seq splicing 4.73E-05 −4.0688

ZNF232 17 Brain (CMC) RNA-seq splicing 4.76E-05 4.0671

DLST 14 Peripheral Blood (NTR) RNA Array 5.26E-05 4.0436 Yes

TBC1D7 6 Adipose (METSIM) RNA-seq 5.34E-05 4.0403

ELL 19 Adipose (METSIM) RNA-seq 5.48E-05 4.03401

SLC39A13 11 Brain (CMC) RNA-seq splicing 5.79E-05 −4.02128 Yes

TMCO6 5 Whole Blood (YFS) RNA Array 6.50E-05 3.9938

CEL 9 Whole Blood (YFS) RNA Array 6.99E-05 3.97671 Yes

MYBPC3 11 Adipose (METSIM) RNA-seq 7.05E-05 3.97 Yes

TBC1D7 6 Brain (CMC) RNA-seq splicing 7.48E-05 −3.96063

LRRC25 19 Peripheral Blood (NTR) RNA Array 7.74E-05 −3.9523

TBC1D7 6 Brain (CMC) RNA-seq splicing 8.37E-05 3.93351

KIR3DX1 19 Peripheral Blood (NTR) RNA Array 8.87E-05 3.9195

SIX5 19 Peripheral Blood (NTR) RNA Array 9.32E-05 3.9076

HBEGF 5 Whole Blood (YFS) RNA Array 9.92E-05 −3.8926 Yes

NUP88 17 Peripheral Blood (NTR) RNA Array 1.60E-04 −3.7748

FAM105B 5 Whole Blood (YFS) RNA Array 1.61E-04 3.773

ARL6IP4 12 Peripheral Blood (NTR) RNA Array 2.10E-04 3.707

Gene Chromosome Tissue P-Value Z-score

PHACTR1 6 Whole Blood (YFS) RNA Array 3.41E-06 −4.64434

PTPMT1 11 Whole Blood (YFS) RNA Array 4.45E-06 4.58895

MTCH2 11 Peripheral Blood (NTR) RNA Array 5.76E-06 4.535

C1QTNF4 11 Adipose (METSIM) RNA-seq 8.82E-06 4.44

FAM180B 11 Brain (CMC) RNA-seq 1.09E-05 −4.39814

DMWD 19 Whole Blood (YFS) RNA Array 1.22E-05 4.3733

ELL 19 Whole Blood (YFS) RNA Array 1.89E-05 4.277

ZNF740 12 Brain (CMC) RNA-seq splicing 2.08E-05 4.25599

NYAP1 7 Adipose (METSIM) RNA-seq 2.47E-05 −4.21777

SDAD1 4 Whole Blood (YFS) RNA Array 3.04E-05 −4.17062

MTSS1L 16 Brain (CMC) RNA-seq splicing 3.35E-05 4.14833

PHKB 16 Brain (CMC) RNA-seq 3.70E-05 −4.1257

SLC39A13 11 Brain (CMC) RNA-seq splicing 4.01E-05 −4.10667

CD33 19 Whole Blood (YFS) RNA Array 4.04E-05 4.1051

AP2A2 11 Brain (CMC) RNA-seq 4.28E-05 −4.09193

ZYX 7 Adipose (METSIM) RNA-seq 4.56E-05 −4.07718

ZNF232 17 Brain (CMC) RNA-seq splicing 4.73E-05 −4.0688

(Continued)
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TABLE 2 | Continued

Gene Chromosome Tissue P-Value Z-score

ZNF232 17 Brain (CMC) RNA-seq splicing 4.76E-05 4.0671

DLST 14 Peripheral Blood (NTR) RNA Array 5.26E-05 4.0436

TBC1D7 6 Adipose (METSIM) RNA-seq 5.34E-05 4.0403

ELL 19 Adipose (METSIM) RNA-seq 5.48E-05 4.03401

SLC39A13 11 Brain (CMC) RNA-seq splicing 5.79E-05 −4.02128

TMCO6 5 Whole Blood (YFS) RNA Array 6.50E-05 3.9938

CEL 9 Whole Blood (YFS) RNA Array 6.99E-05 3.97671

MYBPC3 11 Adipose (METSIM) RNA-seq 7.05E-05 3.97

TBC1D7 6 Brain (CMC) RNA-seq splicing 7.48E-05 −3.96063

LRRC25 19 Peripheral Blood (NTR) RNA Array 7.74E-05 −3.9523

TBC1D7 6 Brain (CMC) RNA-seq splicing 8.37E-05 3.93351

KIR3DX1 19 Peripheral Blood (NTR) RNA Array 8.87E-05 3.9195

SIX5 19 Peripheral Blood (NTR) RNA Array 9.32E-05 3.9076

HBEGF 5 Whole Blood (YFS) RNA Array 9.92E-05 −3.8926

NUP88 17 Peripheral Blood (NTR) RNA Array 1.60E-04 −3.7748

FAM105B 5 Whole Blood (YFS) RNA Array 1.61E-04 3.773

ARL6IP4 12 Peripheral Blood (NTR) RNA Array 2.10E-04 3.707

are made too strict in order to avoid an abundance of false
positive results. The thresholds like 0.05/15000 for significant
genes are usually chosen so that the probability of any single
false positive among all loci tested is smaller than 0.05, which
will lead to many missed findings. Instead, False Discovery
Rate error measure is a more useful approach when a study
involves a large number of tests, since it can identify as many
significant genes as possible while incurring a relatively low
proportion of false positives (Storey and Tibshirani, 2003). For
each tissue, we used the Benjamini and Hochberg procedure
(Benjamini and Hochberg, 1995) in addition to the Bonferroni
correction for all gene tested. The Benjamini and Hochberg
procedure is one of false discovery rate procedures that are
designed to control the expected proportion of false positives. It
is less stringent than the Bonferroni correction, thus has greater
power. Since this is study is more exploratory, we can pay more
risk of type I error for larger statistical power. It works as
follows:

Put individual p-values in ascending order and assign ranks to
the p-values.

(1) Calculate each individual Benjamini and Hochberg critical
value with formula k

mα, where k is individual p-value’s rank,
m is total number of tests and α is the false discovery rate.

(2) Find the largest k such that Pk ≤
k
mα and reject the null

hypothesis for all Hi for i = 1, ...k.

RESULTS

To determine which gene is significantly associated with AD, we
first performed strict multiple testing Bonferroni correction (p-
value < 0.05/15000). We found 15 significant genes (Table 1),
11 of them has identified by previous studies of AD. In order
to increase the search range, we performed false discovery

rate under the same alpha (0.05). After the Benjamini and
Hochberg procedure (Benjamini and Hochberg, 1995), we found
29 additional genes (Table 2). Nine of those genes has previously
identified to be related to AD.

PVRL2 (p-value 4.92∗10ˆ−34 in Brain (CMC) RNA-seq, also
known as NECTIN2) is a well-known gene for AD. This gene
encodes a single-pass type I membrane glycoprotein and interact
with AOPE gene (Kulminski et al., 2018). TOMM40 [p-value
1.13∗10ˆ−25 in Whole Blood (YFS) RNA Array] is also located
adjacent to APOE. It has been identified by previous studies
worldwide as AD related gene (Lyall et al., 2014; Goh et al., 2015;
Mise et al., 2017). It is the central and essential component of the
translocase of the outer mitochondrial membrane (Humphries
et al., 2005). This confirmed that mitochondrial dysfunction plays
a significant role in AD-related pathology (Swerdlow and Khan,
2004; Roses et al., 2016).

Other highly connected genes function group identified
are BIN1 [p-value 1.18× 10−6in Whole Blood (YFS) RNA
Array; 3.24× 10−6 in Peripheral Blood (NTR) RNA Array],
CLU (p-value 1.45× 10−16), MS4A6A [p-value 5.72× 10−8in
Peripheral Blood (NTR) RNA Array; 2.92× 10−10in Whole
Blood (YFS) RNA Array] (Han et al., 2017).

New Identified Genes
MLH3 [p-value 7.86× 10−9 in Brain (CMC) RNA-seq splicing]
FNBP4 [p-value 1.49× 10−6in Whole Blood (YFS) RNA Array],
CEACAM19 [p-value 3.38× 10−11 in Adipose (METSIM)
RNA-seq], and CLPTM1 [p-value 5.73× 10−17 in Brain (CMC)
RNA-seq] are newly identified AD-associated genes. MLH3 gene
is known for its function in repair mismatched DNA and risk
for thyroid cancer and lupus (Souliotis et al., 2016; Al-Sweel
et al., 2017; Javid et al., 2018). CEACAM19 gene located in
chromosome 19, a previous study showed high expression of
CEACAM19 for patients with breast cancer (Estiar et al., 2017);
CLPTM1 has been shown to increase the risk of lung cancer
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FIGURE 2 | Gene position plot in chromosome 19. Expression data: whole blood.

and melanoma (Llorca-Cardenosa et al., 2014; Lee et al., 2017).
Both CEACAM19 and CLPTM1 gene are located in chromosome
19 and near APOE gene. More detailed studies are needed to
investigate the relationship between those genes and whether
CLPTM1 and CEACAM19 are disease causal gene.

DISCUSSION

APOE Related Genes
Although APOE is not reported to be significant in any tissue,
not enough evidence to conclude that APOE is not related to AD.
Since each SNP has a weight assigned regarding the expression
in TWAS study, even two genes are both significantly related
to a disease, it is very likely only one of them will be showing
significant in TWAS. TOMM40 (Figure 2, p-value 1.13× 10−25)
gene located adjacent to APOE (Pomara et al., 2011), and has a
strong LD with APOE gene (Yu et al., 2007), hence TWAS didn’t
detect this APOE does not imply it is not disease causal gene.
APOE and TOMM40 may interact to affect AD pathology such as
mitochondrial dysfunction (David et al., 2005; Roses et al., 2013).
Further study is needed to show causal relation in detail. PICALM
[p-value 2084× 10−7 in Peripheral Blood (NTR) RNA Array]
and PTK2B [p-value 9.93× 10−8 in Peripheral Blood (NTR)
RNA Array; p-value 2.89× 10−6 in Whole Blood (YFS) RNA
Array] are also related to APOE and TOMM40 gene according to
previous studies (Carter, 2011; Gharesouran et al., 2014; Morgen
et al., 2014; Han et al., 2017).

Association With Autoimmune Diseases
Complex disease such as AD, often shares common pathways
or causal genes with other diseases (Hu et al., 2017c). For

instance, TOMM40 is a shared disease-associated gene between
AD and Type II diabetes (Greenbaum et al., 2014). Recent
studies showing autoimmune diseases have closed relation with
AD (D’Andrea, 2005; Lehrer and Rheinstein, 2015; Wotton and
Goldacre, 2017). Among all the genes we identified through
TWAS method, eight of them are related to autoimmune
diseases.

As shown in Figure 3, PICALM, PVRL2, PVR, and CLU
have shown to be related to systemic, an autoimmune disease
characterized by vascular injury and debilitating tissue fibrosis
(Xia et al., 2010; Ryu et al., 2014; Tsou et al., 2016; van Luijn
et al., 2016). CR1 and CLU gene are related to thymus function
which could potentially cause an autoimmune disorder (French
et al., 1992; Pekalski et al., 2017). MLH3 and BIN1 gene have

FIGURE 3 | Shared disease associated gene between Alzheimer’s disease
(AD) and Autoimmune diseases.
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shown to be associated with Lupus, another severe autoimmune
disease (Armstrong et al., 2014; Souliotis et al., 2016). Although
with existing result, we don’t have enough evidence to prove these
genes are both disease causal genes for AD and autoimmune
disease, further research from areas such as metabolomics and
proteomics is needed to study the disease association between AD
and autoimmune diseases (Cheng et al., 2016b, 2017; Hu et al.,
2018).
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