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As a biomarker of inflammation, C-reactive protein (CRP) has attracted much attention
due to its role in the incidence of type 2 diabetes mellitus (T2DM). Prospective
studies have observed a positive correlation between the level of serum CRP and the
incidence of T2DM. Recently, studies have reported that drugs for curing T2DM can
also decrease the level of serum CRP. However, it is not yet clear whether high CRP
levels cause T2DM. To evaluate this, we conducted a Mendelian randomization (MR)
analysis using genetic variations as instrumental variables (IVs). Significantly associated
single nucleotide polymorphisms (SNPs) of CRP were obtained from a genome-wide
study and a replication study. Therein, 17,967 participants were utilized for the genome-
wide association study (GWAS), and another 14,747 participants were utilized for the
replication of identifying SNPs associated with CRP levels. The associations between
SNPs and T2DM were from the DIAbetes Genetics Replication And Meta-analysis
(DIAGRAM) consortium. After removing SNPs in linkage disequilibrium (LD) and T2DM-
related SNPs, the four remaining CRP-related SNPs were deemed as IVs. To evaluate
the pooled influence of these IVs on the risk of developing T2DM through CRP,
the penalized robust inverse-variance weighted (VW) method was carried out. The
combined result (OR 1.114048; 95% CI 1.058656 to 1.172338; P = 0.024) showed that
high levels of CRP significantly increase the risk of T2DM. In the subsequent analysis of
the relationship between CRP and type 1 diabetes mellitus (T1DM), the pooled result
(OR 1.017145; 95% CIl 0.9066489 to 1.14225; P = 0.909) supported that CRP levels
cannot determine the risk of developing T1DM.

Keywords: C-reactive protein, type 2 diabetes mellitus, causal effect, genome-wide association studies,
mendelian randomization, type 1 diabetes mellitus

INTRODUCTION

According to the 8th edition of the International Diabetes Federation (IDF) Diabetes Atlas, the
number of Diabetes Mellitus (DM) patients has continued to increase across the globe. DM includes
a group of chronic metabolic diseases involving hyperglycemia (Olokoba et al., 2012; Pan et al.,
2013; Shiand Hu, 2014), which, over prolonged periods, leads to injury in various tissues of the body
(Atar and Hanssen, 2017; Gentile et al., 2017). The corresponding abundant fatal complications
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occur for patients suffering from DM for over 10 years. The IDF
Diabetes Atlas reported that 425 million DM patients are adults,
two-thirds (327 million) of whom are of working age. Over 90%
of these patients are type 2 DM (T2DM) patients. Thus, it is
urgent for us to explore a way to reduce the number of individuals
with T2DM (Zou et al., 2018).

Accumulated evidence shows that intermediate phenotypes,
such as body mass index (BMI) (Zhang et al., 2017; Cheng et al,,
2018a), systolic blood pressure (Svensson et al., 2017), circulating
uric acid (Xu et al, 2016), etc., are responsible for the onset
of this type of DM (Cheng et al., 2018¢). To prevent T2DM,
it would be valuable to influence these intermediate phenotypes.
Although there have been recent successes, a large number of
potential intermediate phenotypes causing T2DM need to be
identified.

Since chronic low-grade inflammation is associated with
T2DM (Kohn et al., 2005), one of its markers, C-reactive protein
(CRP), is frequently investigated as an intermediate phenotype
that increases the risk of T2DM. Doi et al. (2005) conducted an
observational study for a mean of 9.0 years on 1,759 Japanese
patients without diabetes. They observed that elevated CRP
concentration is a significant predictor of diabetes, independent
of obesity and insulin resistance. Analogous conclusions were
also observed in American and European individuals (Freeman
et al.,, 2002; Nakanishi et al., 2003). On the other hand, after
adjusting for sex, adiposity, and insulin resistance, no association
between CRP and the risk of T2DM was shown in other
studies (Festa et al., 2002; Krakoff et al., 2003; Thorand et al.,
2007).

A recent prospective analysis and meta-analysis study (Lee
etal., 2009) aimed to elucidate the role of CRP in T2DM. The high
association (OR 1.49; 95% CI 1.03-2.15, p = 0.03) between serum
CRP and the risk of diabetes was observed in a Norfolk cohort
including 293 diabetes cases and 708 controls. A consistent result
(RR 1.72; 95% CI 1.54-1.92) was shown in the further meta-
analysis of 16 published studies involving 3,920 diabetes cases and
24,914 controls. However, no significant association (OR 1.00;
95% CI 0.66-1.51, p = 1.0) was obtained after adjustment
for Waist-Hip Ratio (WHR), serum y-glutamyltransferase and
adiponectin. In addition, the heterogeneity of these publications
(I2 = 52.8%) limited the conclusion in the meta-analysis.

The main challenge for current prospective studies is that
the potential confounding factors have a great effect on the
observations (Cheng et al., 2017; Zeng et al., 2018). This lack of
clarity has hindered researchers in determining the association
between CRP and T2DM. In addition, without evidence from
randomized controlled trials (RCTs), it is hard to be sure of the
role of CRP in the risk of T2DM. To this end, the Mendelian
randomization (MR) method (Lawlor et al., 2008), revealing the
role of a risk factor in disease etiology, is utilized here. MR is an
instrumental variable (IV)-based method to infer the causality
between intermediate phenotypes and disease. Genetic variants
that are associated with intermediate phenotypes are introduced
as IVs in MR to estimate the effect of phenotypic exposures on
disease outcome (Figure 1). Due to random distribution of gene
variants during gametogenesis, the confounding effect can be
extremely low.

MATERIALS AND METHODS

Here, we introduced MR analysis for analyzing the causal
effect of CRP on the risk of T2DM, where single nucleotide
polymorphisms (SNPs) are deemed as IVs. The Mendelian
randomization method is a method for testing whether a
changeable exposure has a causal effect on the development of
a disease. In this study, we applied a two-sample MR method.
Through the explanation of the larger proportion of the exposure
variance by general instrumental variables (IVs), this method
can lead to more accurate causal effect estimation (Bowden
et al.,, 2015; Hartwig et al., 2017). The basic principle of MR
analysis for this purpose is shown in Figure 1. According to MR
analysis, SNPs influence T2DM outcome through intermediate
phenotypes of CRP. Therefore, the SNPs should be significantly
associated with CRP but not with T2DM. At the same time, in
the population of genes associated with the phenotype, there may
be a linkage disequilibrium (LD) effect. Due to the non-random
linkage of alleles among different loci in a given population, loci
are thought to be in LD when the frequency of association of their
different alleles is higher or lower than what would be expected
if the loci were independent and associated randomly (Slatkin,
2008; Aissani, 2014). Thus, a notable issue is that the assessment
would be biased for those SNPs in LD, since their effects would be
expanded when combining all of those SNPs (Noyce et al., 2017).
Figure 2 shows the basic idea of dissecting the causal effect
of CRP on the risk of T2DM. First, SNP-CRP, and SNP-
T2DM association information were extracted from two types
of samples, including major and minor alleles for each SNP,
minor allele frequency (MAF), standard error (SE), and beta
coefficients for each effect allele, both in the T2DM and CRP
GWAS databases. Then, suitable SNPs were selected as IVs based
on the following principles: (1) SNPs should be significantly
associated with CRP but not with T2DM; (2) SNPs with LD
should be removed. Finally, a pooled analysis for those IVs based
on MR analysis was conducted to evaluate the influence of CRP
on T2DM. To assess the effect of a single SNP on the result,
a sensitivity analysis was carried out using the leave-one-out
method. Pleiotropy in a MR study occurs when the effect of a SNP
of IVs on T2DM (the outcome) could be independent of CRP (the
intermediate phenotype). Here MR-Egger regression (Bowden
etal., 2015) was used to explore the possibility of pleiotropy.

Samples for Associations Between

Genetic Variants and CRP

Significantly associated SNPs of CRP were sourced from (Elliott
et al., 2009). They carried out a genome-wide study and
a replication study to identify loci associated with plasma
CRP concentrations. Their data collection took place from
1989 to 2008, and genotyping occurred from 2003 to 2008.
In total, 17,967 participants from five studies (Wyszynski
et al.,, 2005; Bouatia-Naji et al., 2008; Chambers et al., 2008;
Yuan et al., 2008; Sabatti et al., 2009) were collected for
the genome-wide association study (GWAS), and another
14,747 participants who were not included in the GWAS
were collected for the replication study of SNPs associated
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FIGURE 1 | The basic principle of estimating the influence of CRP on T2DM.
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FIGURE 2 | Overview of our method demonstrating the basic ideas for dissecting the influence of CRP on T2DM.

with CRP. The participants were from West London in the
United Kingdom, the Northern Finnish Birth Cohort, the
northernmost provinces of Finland, the Lausanne Cohort, and
France. All of these participants were 30-75 years of age. Genetic
loci associated with CRP were identified from GWAS. The single
most closely associated SNP of CRP for each genetic locus was
further replicated.

Samples for Associations Between
Genetic Variants and T2DM

Associations between SNPs and T2DM were obtained from the
DIAbetes Genetics Replication And Meta-analysis (DIAGRAM)
consortium (Zeggini et al., 2008; Lango Allen et al., 2010; Morris
et al., 2012), which is a grouping of researchers with shared
interest in performing large-scale studies to characterize the
genetic basis of T2DM in individuals of European descent.
The initial instance of DIAGRAM (DIAGRAM v1) combined
data from the Diabetes Genetics Initiative, the Finland-
United States Investigation of NIDDM Genetics, and the
Wellcome Trust Case Control Consortium (Zeggini et al., 2008;
Lango Allen et al., 2010; Morris et al., 2012). An incremental
meta-analysis (DIAGRAM v2) added another five GWAS

studies of European-descent samples. The recent meta-analysis
(DIAGRAM v3) collected 12,171 cases and 56,862 controls.

SNP Selection

We extracted the significantly associated SNPs (P-value <
5 x 1078) of CRP from (Elliott et al., 2009). Then, we extracted
the association between these SNPs and T2DM to remove T2DM-
associated SNPs (P-value < 5 x 1072). The remaining SNPs
were further assessed using the web tool SNAP! (Johnson et al.,
2008) to remove SNPs in LD (International HapMap Consortium
etal., 2007). The remaining SNPs were selected as IVs for further
analysis.

Pooled Analysis

Figure 2 shows the process of pooled analysis based on the
selected SNPs (IVs), which includes MR analysis, sensitivity
analysis, and pleiotropy analysis.

MR Analysis
We first calculated the influence of individual SNPs on T2DM
through CRP as individual-level data and then calculated the

Thttps://ldlink.nci.nih.gov/?tab=snpclip
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pooled influence of these individual-level data using the penalized
robust inverse-variance weighted (IVW) method (Bowden et al.,
2015; Burgess et al., 2016). Assuming X, Y, and Z are CRP, T2DM,
and selected SNPs (IVs), respectively, the Wald ratio (Bxy) of
CRP to T2DM for a specified SNP is defined as the following.

Bxy = Bzy/Bzx (1)

where Bzy represents the per-allele log(OR) of T2DM based on
Morris et al.’s (2012) study. Bzx is the per-allele log(OR) of CRP
based on Locke et al.’s (2015) study. In addition, the SE of the
BMI-T2DM association of each Wald ratio is defined as the
following.

SExy = SEzy/SEzx 2)

where SEzy and SEzx represent the SE of the variant-
T2DM and variant-CRP associations from corresponding studies,
respectively. Based on Equations 1 and 2, the individual-level
data of the influence of each SNP (IV) on T2DM through
CRP was obtained. These data were then analyzed using the
penalized robust IVW method (Burgess et al., 2016). The IVW
estimate is the same as the two-stage least squares estimate using
individual-level data. The penalization of weights from candidate
instruments produces heterogeneity in causal estimates, which
generates the penalized IVW method, robust IVW method,
and penalized robust IVW methods; these methods have been
demonstrated to improve the robustness of the findings.

Sensitivity Analysis Based on Leave-One-Out
Validation

We conducted a leave-one-out validation to test the sensitivity of
the selected SNPs (IVs). First, a SNP among the IVs was removed
from the I'Vs to carry out a penalized robust IVW estimate. Then,
the fluctuation of the results before and after removing the SNP
was observed as the sensitivity. This process was repeated for each
of the IVs.

Pleiotropy Analysis Using MR-Egger Regression
MR-Egger regression (Bowden et al., 2015), an adaption of Egger
regression, was utilized here to detect the directional pleiotropy
of IVs. This regression permits variants to show their pleiotropy
and assumes that each variant is valid. Only when every variant
used for IVs is independent of the alternative path affecting the
disease (i.e., horizontal pleiotropy) can yield a consistent estimate
via MR-Egger regression (Bowden et al., 2015). The pleiotropy
bias of MR analysis is regarded as analogous to small-study bias.
Additionally, the average pleiotropic effect across the genetic
variants was captured by the estimated value of the intercept
in Egger regression. Thus, an intercept that differs from zero is
indicative of overall directional pleiotropy.

All the statistical tests for the pooled analysis were undertaken
using the R Packages of meta-analysis’ and Mendelian
Randomization® (Yavorska and Burgess, 2017).

Zhttp://cran.r-project.org/web/packages/meta/index.html
3https://cran.r-project.org/web/packages/MendelianRandomization/

RESULTS

IVs for Pooled Analysis

Five SNPs of five genetic loci were significantly associated with
CRP (P-value < 5 x 10~%) based on the previous genome-wide
study and the replication study (Elliott et al., 2009). One of them
(rs4420638) was associated with T2DM and so was removed.
Since the remaining four SNPs were assessed without LD, these
SNPs were eventually selected for the pooled analysis in Table 1.
Each line of the table documents 13 items involving the SNP, EA
and its frequencies, the beta coefficients of the SNP on the risk of
BMI and T2DM, and SEs.

Pooled Analysis Result

Figure 3 shows the effect of each SNP and the combined effect of
all four SNPs on T2DM through CRP using the penalized robust
IVW method. The pooled result (OR 1.114048; 95% CI 1.058656
to 1.172338; P = 0.024) showed that high CRP significantly
increases the risk of T2DM.

Figure 4 shows the sensitivity analysis result of SNPs based
on leave-one-out validation. The ORs undergo substantial change
after removing rs4537545 or rs7553007. In comparison, the ORs
undergo a smaller change after removing rs6700896 or rs1183910.
These results demonstrated that rs4537545 or rs7553007 drive the
penalized robust IVW estimate.

The further estimate of the horizontal pleiotropic effect of
these SNPs (IVs) was conducted via MR-Egger analysis. As a
result, we got an intercept of 0.017 (95% CI 0.001 to 0.033,
P = 0.039). This means a potential horizontal pleiotropic effect
could bias our estimates.

DISCUSSION

In this study, we conducted a MR analysis to explore the causal
effect of CRP on the risk of T2DM. To reduce the confounding
effects, genetic variants were selected as IVs for MR analysis.
Five SNPs associated significantly with CRP were extracted
from Elliott et al’s (2009) study. One of them (rs4420638)
was associated with T2DM and was removed (Zeggini et al.,
2008; Lango Allen et al, 2010; Morris et al., 2012). As a
result, the remaining four SNPs without LD were deemed as
IVs. The combined effect of the four SNPs on T2DM through
CRP (OR 1.114048; 95% CI 1.058656 to 1.172338; P = 0.024)
was determined using the penalized robust IVW method. This
showed that high CRP significantly increases the risk of T2DM.
Brunner et al. (2008) utilized MR analysis for an analogous
purpose. They reached the conclusion that associations between
CRP and diabetes are likely to be noncausal. In that study, three
SNPs were utilized as IVs for MR analysis. The associations
between SNPs and CRP were measured on 5,274 men and
women, and the associations between SNPs and diabetes
were observed among 1,923 patients and 2,932 controls. In
comparison, our study included more samples (17,967 and
69,033 participants for measuring SNPs-CRP and SNPs-diabetes
associations, respectively). In addition, the diabetes cases in
Brunner et al’s (2008) study include type 1 Diabetes Mellitus
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TABLE 1 | Associations of genetic variants of CRP with T2DM.
SNP Locus Chr BP EA NEA EA freq Beta CRP SE CRP P CRP Beta T2DM SE T2DM P T2DM
rs6700896 LEPR 1 65862370 T C 0.38 —0.147 0.01429 1.6E-21 —0.00995 0.01493 0.41
rs4537545 IL6R 1 152685503 T C 0.43 —0.108 0.01531 5.1E-11 —0.01980 0.00991 0.21
rs7553007 CRP 1 157965173 A G 0.33 —0.207 0.01429 3.3E-38 —0.01980 0.01479 0.14
rs1183910 HNF1A 12 119905190 T C 0.32 -0.136 0.01429 1.2E-17 0.02956 0.00981 0.059
rs4420638 APOE 19 50114786 G A 0.19 —-0.218 0.01837 2.1E-25 —0.11333 0.02228 2.0E-7
T2DM, Type 2 diabetes mellitus; EA, effect allele; SE, standard error; EA freq, frequency of effect allele; OR, odds ratio.
SNP Locus chr OR 95% CI L P value

156700896 LEPR 1 —— 1.0700 0.8769, 1.3057

154537545 IL6R 1 —a— 12012 1.0035, 1.4379

1s7553007 CRP 1 —a— 1.1004 0.9566, 1.2658

rs1183910 HNF1A 12 —a— | 0.8046 0.6986, 0.9268

Summary ‘ 1.1140 1.0587,1.1723  80.3% 0.0016

050 075 100 125 150
FIGURE 3 | Forest plot of main results.

(T1DM), T2DM, and others. In contrast, our study focused on
T2DM patients. Overall, our study is more specific, and the
corresponding conclusion should be more reliable.

To further validate that the different conclusion of Brunner
et al. (2008) may be caused by their use of multiple types of
diabetes samples, we conducted a MR analysis to evaluate the
causal effect of CRP on the risk of TIDM. Associations between
SNPs and T1DM were sourced from a meta-analysis of genome-
wide association studies with 5,913 T1DM cases and 8,828
reference samples of European ancestry (Barrett et al., 2009),
which identified three SNPs (rs6700896, rs7553007, rs1183910)
of the five CRP-associated SNPs identified in our study. The
associations between these three SNPs and TIDM were then
extracted in Table 2 as IVs. The pooled result (OR 1.017145; 95%
CI 0.9066489 to 1.14225; P = 0.909) did not support a causal role
of CRP in the onset of TIDM using the penalized robust IVW
method. Therefore, the T1IDM samples in Brunner et al.’s (2008)
study may be responsible for confusing the causality of CRP in
T2DM.

The advantage of MR analysis is that no confounding factor
should be considered when using genetic variants as IVs, since the
genetic variants are free and unaffected by confounding factors.
In comparison, confounding factors can heavily affect the results

of observational studies. Therefore, most of these observational
studies should be adjusted for potential confounding factors.
However, abundant phenotypes of T2DM make it hard to do
so. This issue occurs in Lee et al’s (2009) prospective study
about whether adiponectin is a confounder. In their study,
observed that CRP was associated with T2DM after adjusting for
age, sex, body mass index (BMI), etc. However, the association
was completely attenuated after further adjustment for serum
adiponectin. The recent evidence suggests that CRP inhibits
adiponectin gene expression in adipocytes (Yuan et al., 2007).
If so, adjustment for adiponectin would be over-adjustment.
Current studies on the treatment of T2DM have also reflected
the potential causal effect of CRP on the risk of T2DM.
During the treatment of T2DM patients with Metformin and
Silymarin, researchers observed a significant decrease of CRP
levels (Koujan et al., 2015; Shi et al., 2016). They even used
these decreased serum levels of CRP as a sensitive predictor in
T2DM patients being treated with drugs (Koujan et al., 2015;
Shi et al., 2016). To explore effective curative options for T2DM,
some researchers mainly refer to the effect of treatment on
the serum CRP levels of T2DM patients. Kim (2014) observed
that training modes can help to decrease the serum CRP level
of T2DM patients. Rutten et al. conducted intensive care and
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Analysis OR 95% CI
No rs6700896 - 1.1196 1.0736,1.1688
No rs4537545 —e— 1.0534 0.9831,1.1286
No 157553007 = 1.0356 0.9569, 1.1196
No 151183910 =24 1.1196 1.0544,1.1901
Main g 1.1140 1.0587,1.1723
050 075 1.00 125 150
FIGURE 4 | Forest plot of sensitivity analyses.
TABLE 2 | Associations of genetic variants of CRP with T1DM.
SNP Chr BP EA NEA EA freq Beta CRP SE CRP P CRP Beta TIDM SE T1DM P TiDM
rs6700896 1 65862370 T C 0.38 —0.147 0.01429 1.6E-21 —0.029 0.026 0.2646856
rs7553007 1 157965173 A G 0.33 —0.207 0.01429 3.3E-38 0.037 0.026 0.1547139
rs1183910 12 119905190 T C 0.32 —0.136 0.01429 1.2E-17 —0.037 0.027 0.17057

T1DM, Type 1 diabetes mellitus; EA, effect allele; SE, standard error; EA freq, frequency of effect allele; OR, odds ratio.

routine care on 235 and 189 T2DM patients, respectively.
A significant decrease of CRP levels based on intensified
multifactorial treatment was observed in T2DM patients after six
years (den Ouden et al., 2015).

The incidence of T2DM can be associated with multiple
phenotypic factors. The potential linkages among these factors
can help us to comprehensively understand the mechanisms of
T2DM. The role of CRP on the risk of T2DM necessitates a
measurable effect for us to mine these linkages. To the best of
our knowledge, CRP is an annular, pentameric protein in blood
plasma, the levels of which rise in response to inflammation.
Thus, long-term inflammation can also increase the risk of
T2DM through CRP. In the previous MR analysis, body mass
index (BMI), and waist circumference (WC) are two immediate
phenotypes of T2DM (Corbin et al., 2016). Stronger associations
between these two phenotypes and CRP were observed in a recent
study (Priyanka et al., 2013). This means that either CRP affects
T2DM through BMI and WC, or BMI and WC affect T2DM
through CRP.

Although our samples were restricted to those of European
ancestry and IVs with LD were removed to reduce bias,

our analysis also has limitations worth consideration. First,
IV-CRP and IV-T2DM associations were sourced from two
different samples. In theory, a single sample source may
be more reliable than multiple sample sources. Fortunately,
the increase of the number of samples reduces this type of
bias. Next, horizontal pleiotropy of IVs may influence the
conclusion of MR method. Here we evaluated the relevance
between genes that IVs were located in (Table 1) with T2DM
using an enrichment tool BLAT2DOLite (Cheng et al., 2016).
No associations were detected, which means that these IVs
cannot impact T2DM directly. Nevertheless, they could take
effect in other immediate phenotypes of T2DM, such as BMI,
WC, etc. The lack of associations between IVs and other
phenotypes limits our further validation. Finally, without a
specified indication, these results are ill-suited for clinical
application.

In summary, we validated that the increase of CRP levels
enhances the risk of T2DM and has no effect on T1IDM using
MR analysis. Here, genetic variations are deemed as IVs to
reduce the potential confounding effect. The further validation
relies on RCTs. The result has a very positive guiding role
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in finding new therapeutic strategies and therapeutic targets.
This is related to the early prevention of T2DM, which has
the potential to indirectly, from the intervention phenotype,
regulate the development of disease. In the future, we
will construct a dataset including the relationships between
genetic variations and the phenotypes of DM. The data
set may be beneficial in designing computational tools for
phenotype interaction (Peng et al.,, 2017, 2018a) and function
association prediction (Cheng et al., 2018b; Hu et al., 2018;
Peng et al., 2018b).
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