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Human facial asymmetry is due to a complex interaction of genetic and environmental

factors. To identify genetic influences on facial asymmetry, we developed a method

for automated scoring that summarizes local morphology features and their spatial

distribution. A genome-wide association study using asymmetry scores from two local

symmetry features was conducted and significant genetic associations were identified for

one asymmetry feature, including genes thought to play a role in craniofacial disorders

and development: NFATC1, SOX5, NBAS, and TCF7L1. These results provide evidence

that normal variation in facial asymmetry may be impacted by common genetic variants

and further motivate the development of automated summaries of complex phenotypes.
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1. INTRODUCTION

The ability to make connections between genetic and phenotypic variation, hinges on phenotypic
descriptions that are sufficiently detailed to capture the traits of interest. Biomedical imaging creates
very high dimensional datasets that can be analyzed and used to extract phenotype descriptions.
Traditional phenotyping from images consists of 2D and 3Dmeasurements of landmarks manually
placed on the image. Landmark data is typically sparse and is likely insufficient to capture the
complexity necessary for an association with genetic data. A recent study, testing the relationship
of facial asymmetry, estimated from nine mid-facial landmarks, with genetic variation at 102 single
nucleotide polymorphism (SNP) loci, recently associated with facial shape variation, was unable
to identify any SNP relating to asymmetry (Windhager et al., 2014). Methods for automatically
phenotyping images and incorporating complex shape information, will be key in understanding
the genetic basis of morphology. New approaches such as the BRIM method, developed by
Claes et al., have shown the promise of summarizing morphological differences in novel ways
to identify genes affecting normal morphology (Claes et al., 2014). The aim of this study is
to use automated phenotyping to produce a score of facial asymmetry that incorporates local
morphological measurements and their spatial distribution to investigate the genetic basis of facial
asymmetry.

Previous analysis of symmetry in 3D facial images has included manual landmarks (Devlin
et al., 2007; Stauber et al., 2008), automated measurements (Mercan et al., 2013, 2018), plane of
symmetry calculation (Linden et al., 2017), and dense surface registration of a 3D image with a
mirrored version (Yu et al., 2009; Demant et al., 2010; Darvann et al., 2011; Djordjevic et al., 2012).
Surface registration-based methods show particular promise due to their independence from the
plane of symmetry and ability to provide dense shape information across the surface of the face.
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Recent applications of surface-registration based methods have
been validated by comparison to traditional landmark methods
and used quantified asymmetry in individuals using the
average transform magnitude or root mean squared error from
predefined regions (Claes et al., 2011; Kornreich et al., 2016;
Öwall et al., 2016; Verhoeven et al., 2016) and principle modes
of variation (Lanche et al., 2007).

In previous work, our group have developed voxel-based
deformable morphology analysis methods capable of quantifying
facial development in embryos and postnatal animals, from 3D
imaging modalities with high precision. Using compact feature
representation of image differences, facilitates the comparisons
between individuals and across groups (Rolfe et al., 2011, 2013,
2014). In this work we introduce a surface-registration based
method to quantify bilateral symmetry in individuals and a
metric to summarize how an individual’s facial asymmetry and its
spatial distribution compares to asymmetry in a healthy, control
population.

In this study, we preform GWA analysis on two facial
asymmetry scores using a sample of 3186 healthy subjects. Highly
significant genetic associations were identified for one of our
scores, including genes known to play a role in craniofacial
disorders: NFATC1, SOX5, NBAS or likely to play a role in
craniofacial development: TCF7L1.

2. MATERIALS AND METHODS

2.1. Data
The datasets used in this work were previously collected as
part of the FaceBase Consortium’s 3D Facial Norms Dataset,
described in detail by Weinberg et al. (2016). This study was
one of the purposes, under informed consent, and IRB approval
was obtained for their use in this work. The dataset consisted
of 3D photographic facial surface scans and genetic data from
3186 3D facial meshes from healthy subjects of European
Caucasian ancestry, between the ages of 3 and 40 years old. Error
screening and quality control measures were followed to reduce
variability, due to factors such as facial expression and poor
image quality. Subjects were screened for many confounding
environmental factors, including: (1) a personal history of facial
trauma; (2) a personal history of facial reconstructive or plastic
surgery; (3) a personal history of orthognathic/jaw surgery or jaw
advancement; (4) a personal history of any facial prosthetics or
implants; (5) a personal history of any palsy, stroke, or neurologic
condition affecting the face; (6) a personal or family history
of any facial anomaly or birth defect; and/or (7) a personal
or family history of any syndrome or congenital condition
known to affect the head and/or face (Weinberg et al., 2016).
To demonstrate that the age range in this dataset did not
disrupt the results, we also ran a GWAS excluding pre-pubertal
individuals (under 14). The genes identified as significant on
the whole dataset still met our threshold for significance on the
restricted dataset. These results are reported in Figure S1 and
Table S1.

All image data used in this project were acquired using
the 3dMD imaging systems (3dMD, Atlanta, GA). These
commercial stereo-photography systems incorporate multiple

camera viewpoints to provide a 3D mesh of the human face,
at no risk to the subject, with the high level of anatomical
integrity required for medical research. Several recent studies
have assessed the amount of noise or variability that may
be present in 3D meshes acquired using the 3dMD system,
compared to alternative methods such as direct anthropometry
and digital photogrammetry (Dindaroğlu et al., 2016), or high-
accuracy industrial “line-laser” scanning (Zhao et al., 2017). The
findings from these studies suggest that the number of errors
likely to be present in a 3dMD dataset is similar to, or an
improvement over more traditional methods. The facial surface
scans were stored as 3D meshes that were not aligned and may
contain extraneous objects such as hair and clothing. Prior to
analysis, images were preprocessed to remove noise, cropped
to extract the facial region and aligned using custom software
developed by our research group (Wu et al., 2014).

A standard set of 24 facial landmarks was collected for each
3D facial mesh. In this study, a subset of 18 landmarks was
selected to minimize the number of subjects excluded, due to
missing the landmark points. A diagram of the landmarks used
for analysis is shown in Figure S2. Details on the procedures used
to identify the landmarks on 3D facial surfaces can be found on
the “Technical Notes” section of the 3DFN website (https://www.
facebase.org/facial_norms/notes).

The genotype data consists of 964,193 SNPs on the Illumina
(San Diego, CA) OmniExpress+Exome v1.2 array plus 4,322
custom SNPs chosen in regions of interest based on previous
studies of the genetics of facial variation.

2.2. Facial Asymmetry Score
Most attempts to summarize image characteristics rely on global
features that describe the image as a whole, or local features
calculated point-wise across the image. Previous work evaluating
asymmetry in facial images has tended toward a local, point-wise
approach (Claes et al., 2011; Kornreich et al., 2016; Öwall et al.,
2016). While these features have been shown to be effective, we
propose a method to produce a richer phenotype description
by scoring an individual’s relationship to a model of normal
asymmetry using both global and local differences. In this work,
the global assessment of facial asymmetry is restricted to the
region below the eyes (defined by the right and left endocathion
landmarks). This restriction limits noise caused by eyelashes,
eyebrows, and the hairline and is consistent with landmark-based
analysis for this data set, as landmarks were not collected in the
forehead region (Weinberg et al., 2016).

In our score assignment system, two local asymmetry
metrics were defined to produce independent scores of
asymmetry. The local metrics were assessed at each point
on the surface of each image. For each asymmetry metric, a
statistical model of asymmetry was calculated and each image
was scored by its distance from the average model using
our novel similarity measure to combine global distribution
information with local point-wise correspondences, to produce
a summary of the local and global differences. The block
diagram of the asymmetry score assignment system is shown in
Figure 1.
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FIGURE 1 | Block diagram of system for assigning asymmetry scores.

2.2.1. Local Asymmetry Metrics

The 18 manually-placed landmarks shown in Figure S2 were
used to align each subject mesh in a common orientation. After
alignment, a base mesh was chosen and corresponding points
in each source mesh were found for each point in the base
mesh, using the dense point correspondence method developed
by Hutton et al. (2003). The locations of corresponding points
for each point in the base mesh were averaged over the group
to generate the average mesh. Each subject mesh was mirrored
across the mid-line and the original and mirrored image were
densely mapped to the average mesh. For each point on the
average image, an asymmetry flow vector was defined by the
difference in position between the corresponding points on the
mirror and original images, representing the transformation due
to asymmetry. This is illustrated in Figure 2.

We defined two properties of local morphology calculated at
each point on an individual facial mesh to capture independent
aspects of facial asymmetry.

1. Angle of surface orientation: angle between the normal vectors
at corresponding points on and the mirror image. This value
quantifies the asymmetry in surface orientation at each point
on the image.

2. Angle of deformation: angle between asymmetry flow vector
and surface normal on the original image. This value
quantifies the direction of the transformation between an
image and its mirrored copy at each corresponding point.

These local asymmetry features are illustrated in Figure 3.
These angle-based features capture one aspect of asymmetry and
are independent of the magnitude of asymmetry.

The magnitude of the deformation can also be used as a local
feature of asymmetry using our method. It is defined at each

FIGURE 2 | Example of corresponding point mapped from an average image

(C) to subject mesh (A) and mirrored copy (B). The asymmetry flow vector is

defined between corresponding points on the subject mesh and its mirrored

copy.

FIGURE 3 | Two morphological features are used to densely characterize

facial symmetry and averageness: (A) angle of surface orientation and (B)

angle of deformation.

point on an individual facial mesh as the length of the 3D vector
between that point and the corresponding point on the mirror
image. Results from this approach are included in Figure S3 and
Table S5.

2.2.2. Average Model of Normal Asymmetry

Some asymmetry is expected in normal human facial features
and the type and amount expected varies with location on the
face. For example, asymmetry in the corners of the lips and
eyes is more common than asymmetry in the nasal tip. To take
into account these spatial differences, each asymmetry score was
based on the distance between an individual and an average
model of normal asymmetry rather than the absolute asymmetry
of the face.

The asymmetry heat maps were used to create an average
model of normal asymmetry for each feature. For every point
on the average mesh, the average and standard deviation of each
feature distribution over all corresponding points in the dataset
were calculated. The average and standard deviation heat maps
for the angle of surface orientation feature are shown in Figure 4.

2.2.3. Distance From Average Model of Normal

Asymmetry

To assess the similarity between two feature heat maps the
following questions must be addressed:

1. What feature values are present in the image?
2. Where are regions of similar feature values approximately

located?
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To simultaneously address these two questions, we developed
a similarity metric that combines information about the global
feature distribution and point-wise differences.

Histograms of image features provide a robust description of
global image data that has proven to be powerful in detecting
similarity. However, the use of histogram representations of
features presents two primary drawbacks: the loss of spatial
distribution information and the loss of information due to
quantization. To address this, histograms can be augmented by
the inclusion of additional spatial information and other local
properties (Birchfield and Rangarajan, 2005; Lyons, 2009; Prabhu
and Kumar, 2014; Zeng et al., 2015). In previous work, our
group developed a method to simultaneously assess similarities
in feature values and their regional distribution based on spatial
histograms (Rolfe et al., 2014).

Intuitively, the spatial histogram, or spatiogram is an image
histogram where the distribution of values is spatially weighted
by the similarity of the spatial positions of the values in
each bin. Typically, this is done by modeling the spatial
location of the contents of each histogram bin with a single
or mixture of Gaussian distributions. In this application the
known point correspondences between images in the data set
calculated in section 2.2.1 are leveraged to provide a more precise
score of spatial matching between histogram bins. The spatial
information is incorporated as the set of coherent feature regions
in a histogram bin. For an image I, the histogram of I is defined
as:

hI(b) = nb, b = 1, ...,B, (1)

where nb is the number of pixels with values assigned to the b-th
bin and B is the total number of bins. Our spatially augmented
histogram is defined as:

h(b) =< nb,Rb = (rb1, .., rbm) >, (2)

where nb is the number of points with values assigned to the
bin b, and Rb is the set of m coherent regions rb1, ...rbm where
rbi is a vector of j point indexes < x1, ...xj >. Coherence of
regions is determined by computing connected components. A
connected region rbi is the set of mesh points such that for any
point x, x′ ∈ rbi, there is a path in rbi to from x to x′. A threshold
for coherence can be set for a connected region with greater than
τ mesh points. For this study regions with τ < 20 (corresponding

FIGURE 4 | Average (A) and standard deviation (B) of angle of surface

orientation feature for the data set.

to less than 0.1% of the image) were classified as incoherent. An
example of a feature heat map and coherent regions extracted
from the histogram is shown in Figure 5. In Figure 5A, feature
values from a feature heat map are grouped into histogram bins.
Figure 5B shows the original feature heat map and the extraction
of coherent image regions assigned to Bin 4 of the histogram in
Figure 5A.

The distance metric between two augmented histograms
is typically based on the Bhattacharyya distance between
histograms, weighted by the spatial similarity of the contents
of bin b as in Birchfield and Rangarajan (2005). The difference
between spatial histograms h and h′ is expressed as:

d(h, h′) =
|B|
∑

b=1

9m
b (1−

√

nbn
′
b
). (3)

The spatial weighting term 9m
b

expresses the similarity of
the m spatial regions in bin b. Previously, the Mahalanobis
distance, or number of standard deviations between the means
of the Gaussian distributions in each bin, has been used to
weight the spatial similarity. In this work, we utilized the
spatial weighting term to incorporate the point-wise similarity
between corresponding points from two feature heat maps. This
modification addressed both the need for spatial information
and the loss of information due to histogram quantization. We
defined the spatial weighting term as the mean feature error
between histogram regions, normalized by the standard deviation

FIGURE 5 | Example of coherent region extraction from a feature histogram

bin. The feature histogram from an individual is shown in (A) and coherent

regions in bin 4 are shown in (B).
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at that point, calculated from the average model of asymmetry.
This is expressed as:

9m
b =

m
∑

i=1

wbi

k
∑

j=1

A(xj)− A′(xj)

σj
, (4)

where wbi is the weight of the ith coherent region in bin b, A(xj)
and A′(xj) are the feature values from the two feature maps
at the corresponding point j and σj̄ is the standard deviation
at point j. This spatial weighting term represents average error
between feature maps, measured in standard deviations, for each
coherent region. To achieve a symmetric distance measure, the
total distance between h and h′ was defined as:

ρ(h, h′) =
(d(h, h′)+ d(h′, h))

2
. (5)

This distance ρ(h, h′) was applied to assess the similarity of each
individual feature heat map to the average feature heat map. This
provided a hybrid local-plus-global summary of the abnormality
of asymmetry of an individual and was assigned as our score
of asymmetry. Average feature heat maps for subjects with the
lowest (lower 10 percent of the data set) and highest (upper 10
percent of the data set) asymmetry scores for the angle of surface
orientation feature are shown in Figure 6. In the average heat
map from the high asymmetry score group in Figure 6B, regions
with high values contributed the most to the score in individuals
with high levels of asymmetry.

2.3. Genetic Association Analyses
Whole genome association with each phenotype score was done
using PLINK (Purcell et al., 2007). SNPs with the minor allele
present in less than 5 subjects were removed, resulting in 747,780
remaining SNPs. The first four principle components of the
genetic data were used as covariates to adjust for the effects of
ancestry. A linear model was used to test genetic association
between our phenotype scores and each SNP, controlling for the
effects of age and gender. The Benjamini–Hochberg procedure
was used to adjust the original p-values globally over both
phenotype scores in order to control the false discovery rate

FIGURE 6 | Group average heat maps from subjects with low asymmetry

(angle of surface orientation score in lower 10 percent of data set) (A) and

subjects with high asymmetry (angle of surface orientation score in upper 10

percent of data set) (B). Regions with low asymmetry are blue and regions

with high asymmetry are red.

(FDR) (Benjamini and Hochberg, 1995). Genome-wide Complex
Trait Analysis (GCTA) was used to estimate the proportion of
variance in each phenotype score explained by all GWAS SNPs,
i.e., heritability (Yang et al., 2011).

Each phenotype score was tested for associations with age and
sex. The Pearson correlation coefficient was used to test for an
association with age. An association with sex was tested using
the Kendall rank correlation coefficient (tau). The Kendall test
does not rely on the assumption of normally distributed data and
so is more appropriate for dichotomous data such as sex. The
correlations found between the asymmetry scores, age and sex
were weak, though the correlations had high levels of significance
in terms of the p-values, as reported in the Tables S2, S3. We
speculate that this effect is likely due to the large sample size (i.e.,
statistical power), which made it possible to detect the significant
associations.

3. RESULTS

3.1. Angle of Surface Orientation Score
The top 10 SNPs significantly associated with the angle of surface
orientation scores (p-value < 5 × 10−8) are listed in Table 1,
and the Manhattan plot is shown in Figure 7. Of these SNPs
with highly significant associations, three are located on genes
with known links to craniofacial abnormality and asymmetry
(NFATC1, SOX5, and NBAS) and one (SNX6) is on a gene
with a potential link. NFATC1 encodes a transcription factor
that plays a role in mandibular development and the Wnt
signaling pathway, which is instrumental to facial morphogenesis
(Winslow et al., 2006; Brugmann et al., 2007; Doraczynska-
Kowalik et al., 2017). Mutations in NFATC1 are linked to
Cherubism, a disorder characterized by abnormal bone tissue in
the lower part of the face and a characteristic facial phenotype
(Kadlub et al., 2016). A recent GWA study of morphological
measurements has also suggested a possible link between this
gene and measurements of the mouth (Lee et al., 2017). SOX5
encodes a transcription factor involved in the regulation of
embryonic development that is thought to play a role in
chondrogenesis. SOX5 is linked to Lamb-Shaffer Syndrome,
which can cause an abnormal craniofacial phenotype including
a facial asymmetry, depressed and/or broad nasal bridge, and
bulbous nasal tip (Lamb et al., 2012). Mutations in NBAS are
associated with Pelger-Huet Anomaly, which has a phenotype
including facial asymmetry, long face, and straight nose (Segarra
et al., 2015). It is also linked to Feingold Syndrome 1, which
can result in craniofacial dismorphology including asymmetry,
triangular shaped face, and flat nasal tip (Chen et al., 2012).
SNX6, a member sorting nexin family, has not been definitively
linked to craniofacial disorders, however multiple studies have
suggested it as a candidate gene for holoprosencephaly, the
most common developmental field defect in patterning of the
human prosencephalon and associated craniofacial structures
(Kamnasaran et al., 2005; Segawa et al., 2007). Also of interest is
TCF7L1, which encodes for a transcription factor that mediates
the Wnt signaling pathway and has been found to have high
expression in the developing murine palate (Potter and Potter,
2015).
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TABLE 1 | Top 13 significant SNPs associated with angle of surface orientation

scores.

SNP Chromosome Gene P-values FDR-corrected

rs8088297 18 MAPK4 3.03× 10−15 4.29× 10−10

rs9953590 18 MAPK4 1.15× 10−14 4.29× 10−10

rs165149 18 NFATC1 3.76× 10−13 1.63× 10−9

rs4357783 12 SOX5 1.28× 10−12 5.45× 10−9

exm861196 10 TACC2 2.00× 10−12 8.49× 10−9

exm173678 2 NBAS 2.05× 10−10 8.46× 10−7

rs8006719 14 SNX6 3.24× 10−10 1.33× 10−6

rs7186843 16 TEKT5 3.81× 10−10 1.56× 10−6

rs4296170 14 TSPG3A 7.65× 10−10 3.11× 10−6

rs4597218 13 TGTF2F2 9.67× 10−10 3.91× 10−6

exm1214111 16 ZNF500 1.52× 10−9 6.17× 10−6

rs7563083 2 TCF7L1 1.39× 10−8 5.35× 10−5

rs8007933 14 SYNJ2BP 1.58× 10−8 6.06× 10−5

Genes with known or potential association with craniofacial abnormality and asymmetry

are boldfaced.

The angle of surface orientation phenotype scores were
assessed for heritability using GCTA and were found to have a
proportion of variance consistent with a substantial heritability.
Detailed results are reported in Table S4.

3.2. Angle of Deformation Score
The angle of deformation phenotype scores showed less
significance than the facial asymmetry scores. The top 10 SNPs
associated with the angle of deformation scores are reported in
Table 2, and the Manhattan plot is shown in Figure 8. While
many of the p-values for the SNPs associated with this phenotype
score are not considered significant, it is possible that the
multiple testing correction might have been overly conservative
when significant linkage equilibrium was present. As there are a
number of genes which have known or potential links to facial
development or morphology, we reported the genes associated
with these SNPs of interest, though the associations are weak.

AMBRA1 encodes a protein that regulates different steps of the
autophagic process and is an important regulator of embryonic
development. Its mutation or inactivation in mice was shown
to result in embryonic malformations (Fimia et al., 2007). Rare
deletions in NRXN3 was linked to autism spectrum disorder
(Vaags et al., 2012). While there is as yet no consensus on
facial phenotypes associated with autism spectrum conditions
(ASC), there is evidence to suggest that there are morphologically
distinct subgroups within ASC that correspond with different
cognitive and behavioral symptomatology (Boutrus et al., 2017).
Two SNPs of interest are located on the gene FANCC, which
encodes a DNA repair protein with a role in the maintenance
of normal chromosome stability. FANCC is implicated in Gorlin
syndrome that has a phenotype including broad nasal root, cleft
lip, and cleft palate (Reichert et al., 2015). FANCC is also linked to
Fanconi anemia that has a phenotype including craniosynostosis,
microencephaly and small eyes (de Winter et al., 2000). FTO
is a protein coding gene associated with growth retardation,

developmental delay, and facial dysmorphism (Boissel et al.,
2009; Daoud et al., 2015). The associated phenotype includes
skull asymmetry, coarse facial features, abnormal positioning
of the maxilla or mandible, prominent alveolar ridge, and cleft
palate. The retinoid acid receptor-responsive gene RARRES1
contains two SNPs of interest. This gene is thought likely to play
a role in embryonic morphogenesis (Oldridge et al., 2013).

The angle of deformation phenotype scores were assessed for
heritiability using GCTA and were found to have a proportion
of variance suggesting minimal heritiability and a p-value
suggesting low significance. This is a possible explanation for the
low levels of significance observed. These results are detailed in
Figure S4.

3.3. Comparison to Asymmetry Scores
Based on the Deformation Vector
Magnitude
Angle-based measurements capture one aspect of asymmetry,
which may be relevant to specific biological processes.
Deformationmagnitude, defined as themagnitude of the distance
between each point on a facial image and its corresponding point
on a mirrored image, is another common choice for mesh-
based shape analysis. For comparison, we implemented our
asymmetry score using the deformation magnitude as the
local asymmetry feature. This local property was then used to
calculate an overall score of asymmetry following the procedure
outlined in the Methods section 2.2. The GWAS results from
our magnitude-based asymmetry score are reported in Figure S3

and Table S5.
Since the average value of the deformation magnitude over

an image surface is a metric frequently used in other studies,
we also implemented an established measure from the literature
to compare to our deformation magnitude asymmetry scores
(Verhoeven et al., 2016). In this work, local asymmetry is defined
as the magnitude of the distance between each point on a
facial image and its corresponding point on a mirrored image.
The measure of total facial asymmetry was calculated using the
average of these distances over the face. This method was selected
because it is similar to those used by several other groups and the
results were validated on a data set with known ground truth. The
GWAS results from this comparable deformable morphology
approach are detailed in Figure S4.

Both magnitude-based methods we tested had lower
significance and did not identify genes known to result in
facial asymmetry. One gene of interest identified by both
methods, MYO10, has been linked to craniofacial development
in zebrafish. The genes identified by these two magnitude-only
methods overlapped, but our magnitude-based asymmetry score
showed higher levels of significance.

3.4. Comparison to Asymmetry Scores
Based on Landmark Measurements
The motivation for developing the mesh-based methods in this
work was to provide more complex phenotypes for genetic
association than standard landmark-based approaches. Subtle
differences in asymmetry that may be scientifically interesting are
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FIGURE 7 | Manhattan plot showing significance of the relationship between each SNP and our angle of surface orientation score. The red line corresponds to a

threshold of genome-wide significance of p = 5× 10−8 and the blue line corresponds to a threshold of suggestive significance p = 1× 10−5.

TABLE 2 | Top ten SNPs associated with angle of deformation scores.

SNP Chromosome Gene P-value FDR-corrected

exm456223 5 GPBP1 8.21× 10−8 2.95× 10−4

exm903362 11 AMBRA1 1.53× 10−7 5.33× 10−4

rs17107396 14 NRXN3 5.11× 10−6 1.35× 10−2

exm1354641 17 TNRC6C 5.15× 10−6 1.35× 10−2

rs995266 14 FANCC 1.48× 10−5 3.48× 10−2

rs12596936 16 FTO 1.72× 10−5 3.93× 10−2

exm763253 9 FANCC 1.96× 10−5 4.44× 10−2

rs11928737 3 RARRES1 2.29× 10−5 4.97× 10−2

rs2276750 3 RARRES1 2.50× 10−5 5.32× 10−2

rs6588634 1 PRKAA2 2.76× 10−5 5.78× 10−2

The genes with known or potential association with facial development or morphology are

boldfaced.

unlikely to be captured by landmark data, which is usually very
sparse.While landmark-basedmethods may identify associations
with genes of interest, they may identify different pathways
than mesh-based analysis as they do not use data between the
landmark points.

To compare our method to GWAS using a traditional,
landmark-based approach of measuring asymmetry, a score of
facial asymmetry was defined using the Procrustes distance
between an image and its mirrored copy (Bookstein, 1997).
Each image was rigidly aligned with its mirrored copy. A subset
of the 12 bilaterally paired landmarks was selected from the
original 18 landmarks shown in Figure S2 and the Euclidean
distance between right/left landmark pairs was measured. The
facial asymmetry score was calculated using the average of
these distances. Using this method, no SNPs were found to
meet the threshold of genome-wide significance of p = 5 ×

10−8, as detailed in Figure S5. These results provide additional
motivation for the use of mesh-based analysis, in addition to the
improvements in precision and reproducibility,

4. DISCUSSION

Asymmetry is the topic of a large number of studies
investigating how genetic and environmental factors influence

normal development. It is likely to be influenced by complex
and interelated factors, which can be difficult to control
for in human studies, presenting significant challenges for
analysis. Asymmetry, especially fluctuating asymmetry, has been
hypothesized to be closely linked to developmental instability and
many studies have interpreted it as a marker of environmental
stress during development (Klingenberg and McIntyre, 1998;
DeLeon, 2007; Ozener, 2010). However, several recent studies
have called these findings into question and have suggested a
stronger role of heredity (Quinto-Sánchez et al., 2015, 2017).
Further studies using genotype and phenotype data are needed
to better understand how the developmental processes leading
to asymmetry are impacted by environmental factors. While
subjects in our study were screened for a number of possible
environmental influences on facial asymmetry, as detailed in
section 2.1, many other potential confounding factors remain,
such as twinning status and smoking behavior that are unknown
or could not feasibly be controlled for in this study. Despite
these limitations, we have applied a data-driven approach to
evaluate methods for quantifying aspects of asymmetry that may
be related to biological processes resulting in facial asymmetry.

Consistent with other recent findings on the genetic basis
of normal facial variation, several of the genes associated with
variation in normal asymmetry are involved in syndromes
with craniofacial phenotypes. This supports the hypothesis that
common variants near the genes related toMendelian syndromes
are implicated in normal phenotypic variation (Shaffer et al.,
2016). While we are cautious about interpreting the results
from a angle of deformation asymmetry score, due to the
weak associations, several of the genes of interest identified are
associated with embryonic morphology and development and
craniofacial abnormality. The genes identified by the angle of
deformation score do not overlap with the genes identified by the
angle of asymmetry score. This indicates the possibility that the
two aspects of asymmetry quantifiedmay be useful for identifying
different biological pathways impacting facial asymmetry.

The heat maps of local asymmetry features provide
information about the regions of the face that contribute
most to the asymmetry scores. Figure 6B shows the average
feature heat map for subjects with the highest asymmetry scores
(top 10 percent of the data set). This heat map shows higher levels
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FIGURE 8 | Manhattan plot showing significance of the relationship between each SNP and our angle of deformation scores. The blue line corresponds to a threshold

of suggested significance p = 1× 10−5.

of asymmetry than the average feature heat map in Figure 4

and also suggests the relative importance of the nasal tip, nasal
bridge, upper lip, and chin regions in subjects with high levels of
normal asymmetry.

Questions still remain about the ability of complex phenotypes
to be accurately associated with genetic data as the genotype-
phenotype map for facial morphology is likely to be incredibly
complex (Hallgrimsson et al., 2014). A single gene can
result in local or global shape differences and be intertwined
with environmental factors. Despite these challenges, we have
demonstrated that our hybrid local-to-global score of abnormal
asymmetry was able to find associations with genes known to
play a role in craniofacial morphology and asymmetry. While
we do not have an assurance that our automated phenotyping
method is the optimal strategy to summarize phenotypes for
genetic association, the significance of the results motivates its
further development. One limitation of this study was our lack
of a comparable dataset with which to replicate our findings.
If one becomes available in the future, applying these methods
to identify an overlapping set of genes would significantly
strengthen the findings in this work.

In future work, new local morphological metrics can be
investigated using this framework. This method can also be
implemented to compare subjects to an average model of a
group of interest, rather than a control population, to assess
similarity to a known phenotype. Taking a data-driven approach
to optimizing phenotypic descriptors, guided by the significance
of the genetic associations uncovered, will contribute to both our
understanding of the genetic basis of human facial variation and
the creation of new metrics for biologically relevant phenotype
data.
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