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Obesity has become a major public health issue which is caused by a combination

of genetic and environmental factors. Genome-wide DNA methylation studies have

identified that DNA methylation at Cytosine-phosphate-Guanine (CpG) sites are

associated with obesity. However, subsequent functional validation of the results from

these studies has been challenging given the high number of reported associations. In

this study, we applied an integrative analysis approach, aiming to prioritize the drug

development candidate genes from many associated CpGs. Association data was

collected from previous genome-wide DNA methylation studies and combined using a

sample-size-weighted strategy. Gene expression data in adipose tissues and enriched

pathways of the affiliated genes were overlapped, to shortlist the associated CpGs. The

CpGs with the most overlapping evidence were indicated as the most appropriate CpGs

for future studies. Our results revealed that 119 CpGs were associated with obesity

(p ≤ 1.03 × 10−7). Of the affiliated genes, SOCS3 was the only gene involved in

all enriched pathways and was differentially expressed in both visceral adipose tissue

(VAT) and subcutaneous adipose tissue (SAT). In conclusion, our integrative analysis

is an effective approach in highlighting the DNA methylation with the highest drug

development relevance. SOCS3 may serve as a target for drug development of obesity

and its complications.
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INTRODUCTION

Since 1980, the incidence of obesity has increased throughout the world (Stevens et al., 2012; Ng
et al., 2014). The onset of obesity involves the interaction between genetic and environmental
factors (Contaldo and Pasanisi, 2004; Ussar et al., 2015). Genome Wide Association Studies
(GWASs) have successfully identified many genetic variations associated with human complex
diseases and provide crucial new insights about underlying molecular mechanisms (De La Vega
et al., 2011; Fall and Ingelsson, 2014; Winham et al., 2014; Evangelou et al., 2018). Until now, the
largest obesity GWAS study has identified 97 body mass index (BMI) associated loci (P ≤ 5 ×

10−8) from up to 339,224 individuals. However, most of the genetic susceptibility remains unclear
(Locke et al., 2015).
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Existing evidence suggests that obesity is a result of
interactions between genetic and environmental factors (Marti
et al., 2008). DNA methylation provides a molecular mechanism
for the interaction between the environment and obesity, in that
it may affect individual susceptibility to obesity by altering the
gene expression. In recent years, the association between DNA
methylation and obesity has intensively been studied (van Dijk
et al., 2015; Dhana et al., 2018; Wang et al., 2018). For example,
a genome-wide DNA methylation association study in obesity
that recruited 5,387 individuals, identified 278 CpGs associated
with BMI (Wahl et al., 2017). The associated CpGs have provided
wider insight in addition to previous genetic studies. On the
other side, the numerous associated CpGs has made it difficult
for functional investigations using cell and animal models.

In this study, we applied an integrative analysis approach,
to prioritize genes with more relevance from several associated
CpGs. Using this approach, we identified SOCS3 as a promising
candidate for mechanism studies and drug development. This
approach can also be adapted to genome-wide DNAmethylation
studies of other diseases.

METHODS

The integrative analysis approach included three components.
The first component was to nominate the candidate CpGs
by combining the association results from previous studies of
peripheral blood samples (Steps 1–4, Figure 1). The second
component was to estimate the functional relevance of the
candidates through pathway enrichment analysis (Step 5). The
third component was to validate that the genes affiliated with
candidate CpGs were differentially expressed in adipose tissues
(Step 6). Finally, the evidence from these components were put
together and the genes with positive support from all components
were considered and prioritized by our approach (Step 7).

Literature Search
The literature search was conducted in the PubMed database
using the keywords “CpG”, “DNA methylation” and “obesity” to
capture all articles published from 2014 to 2018. We applied an
English language restriction to our search results.

Inclusion Criteria and Data Extraction
Both cohort studies and case-control studies reporting the
association between DNA methylation and obesity (as measured
by BMI) were included in this meta-analysis. Studies that used
samples from cancer patients were not included. We further
excluded the studies that used non-human subjects.

The full text of each article was carefully read to determine
whether studies should be included. Once included, data were
extracted from the articles, including the publication year,

Abbreviations:ABCG1, ATP Binding Cassette Subfamily GMember 1; BMI, body

mass index; CpG, Cytosine-phosphate-Guanine; FDR, false discovery rate; GWAS,

Genome Wide Association Study; IRS1, insulin receptor substrate 1; IRS2, insulin

receptor substrate 2; KEGG, Kyoto Encyclopedia of Genes and Genomes; LEPR,

leptin receptor; SAT, subcutaneous adipose tissue; SOCS3, Suppressor Of Cytokine

Signaling 3; T2D, type 2 diabetes; VAT, visceral adipose tissue.

participant characteristics, sample size, association p-value, and
the effect size.

Meta-Analysis
We employed a sample-size weighted strategy to combine the p
values reported in the included studies, taking into consideration
the direction of the association effect size. This strategy was
implemented using R software (https://www.r-project.org/). In
this meta-analysis the CpG site with p value less than 1.03 ×

10−7 (Bonferroni correction based on 485,577 CpGs designed in
Illumina HM450K array) and with effect sizes consistent with
the direction across all included studies, were considered as
significant.

Pathway Enrichment Analysis
We investigated the enrichment of the affiliated genes in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways,
using the Metascape online software (http://metascape.org;
Tripathi et al., 2015). The genes were annotated using the
default resources provided by Metascape. KEGG pathways were
reduced using the default settings (the number of gene hits ≥3,
enrichment p-value ≤ 0.05 and enrichment statistics ≥1.5). A
FDR p-value≤ 0.05 was taken to declare a significant enrichment.

Differential Expression Analysis in Adipose
Tissues
We aimed to investigate whether the associated genes were
differentially expressed in the SAT and VAT of obesity patients,
by comparing their gene transcription levels with normal
individuals. This analysis was performed using the GEO2R
tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/) on two datasets,
GSE2508 (10 obese vs. 10 lean) and GSE88837 (15 obese vs. 15
lean) for the SAT and VAT, respectively. The gene transcription
levels were assayed using Affymetrix Human Genome U95 V2
and U133 arrays. The differential gene expression in obese
samples was identified using the Bayesian estimation by GEO2R.
Transcription level data of each sample was queried from
the GEO database (Davis and Meltzer, 2007). Empirical Bayes
statistics were calculated using the R package “limma” (Smyth,
2004; Ritchie et al., 2015). The fold change of DNA methylation
was calculated using the group mean. P value ≤0.05 and |log2
(fold change)|≥1 were used as criteria for differentially expressed
genes. CpGs which were differentially expressed in both tissue
types were identified as relevant loci.

The DNA Methylation Associated With
Obesity in Human VAT and Liver Tissue
The DNA methylation of the included studies was all measured
in peripheral blood, but the DNA methylation in peripheral
blood may be different from that in the metabolic tissues. To
test whether the association in peripheral blood samples can be
transferred into obesity related tissue, we tested the association
of the significant CpGs in human VAT and liver tissue, using two
GEO datasets, GSE88940 (10 obese vs. 10 normal VAT samples)
and GSE65057 (8 obese vs. 7 normal liver samples), respectively.
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FIGURE 1 | The flow chart of the intergrative analysis. The circled numbers represent the steps in the pipeline.

RESULTS

Characteristic of Individual Studies
According to the keywords “CpG”, “DNA methylation” and
“obesity”, a total of 350 related articles were retrieved. Two
hundred and seventy studies were excluded based on the title and
abstract, as they were inconsistent with inclusion criteria, leaving
80 articles. Of those, 67 articles were excluded after a full-text
review. As a result, 13 articles were included in the analysis. The
reason for the exclusion of most articles was because they were
functional studies in cells or animals. The basic characteristics of
the included studies are detailed in Table 1.

Meta-Analysis and Pathway Enrichment
Analysis
A total of 13 articles were enrolled in our meta-analysis. The
pooled peripheral blood samples for each CpG ranged from 700
to 18,370. We identified 119 CpGs associated with obesity, that
reached a genome-wide significant level of p ≤ 1.03 × 10−7

(Supplementary Table 1). The top 10 associated CpGs are shown
in Table 2.

Seventy-eight genes were annotated to be affiliated with these
CpGs and used as the input to the pathway enrichment analysis.
These associated genes were enriched in three KEGG pathways
related to insulin resistance, adipocytokine signaling and TNF
signaling. However, none of them were significant after multiple
testing corrections (FDR p > 0.05). According to the KEGG,
there is only one gene (SOCS3) which was involved in all three
pathways (Table 3).

Differential Expression of the Affiliated
Genes
We analyzed 30 VAT samples and 20 SAT samples to assess the
differential expression of the affiliated genes. A p ≤ 0.05 and
|log2 (fold change)| ≥1 were used as criteria for differentially
expressed genes. In the SAT, a total of 392 differentially expressed
genes were obtained, of which 317 were up-regulated and
75 were down-regulated. On the other hand, there were 875
differentially expressed genes in the VAT, of which 406 were
up-regulated and 469 were down-regulated. Among the genes
affiliated with the 119 significant CpGs, SOCS3 and DOK2 were
differentially expressed in the SAT of obesity patients, while seven
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TABLE 1 | Characteristics of the included genome-wide DNA methylation studies.

References Corhort source Ethnicity Subjects Body mass Index(kg/m2)a

Dick et al., 2014 Cardiogenics consortium European 459 25.9(3.6)

MARTHA European 339 24.2(4.4)

KORA European 1,789 28.1(4.8)

Pan et al., 2015 GUSTO cohort Asian 991 1.3(0.1)b

Aslibekyan et al., 2015 GOLDN EA 991 28(6)

ARIC AA 2,105 30(6)

Al Muftah et al., 2016 Qatari cohort Caucasian 123 28.3(6.2)

Twins UK cohort Caucasian 810 27.8(5.2)

Main et al., 2016 EUGENE2 Consortium Caucasian 137 27.9(6.0)

Wahl et al., 2017 LOLIPOP Asian 2,680 27.6(4.4)

EGCUT Asthma European 173 22.8(3.0)

EGCUT CTG European 96 26.7(5.1)

ALSPAC European 701 26.6(5.3)

Twins UK European 338 26.7(5.0)

RS-III European 731 27.6(4.6)

Life Lines Deep European 752 25.4(4.2)

Leiden Longevity European 642 25.5(3.5)

RS-BIOS European 762 27.8(4.2)

LOLIPOP Asian 656 27.0(4.4)

Mendelson et al., 2017 FHS European 2,377 28.3(5.4)

LBC 1936 European 920 27.8(4.4)

LBC 1921 European 446 26.2(4.0)

Koh et al., 2017 KoCAS Asian 692 19.4(1.3)

Wang et al., 2018 EpiGO AA 128 18.8(1.3)

LACHY AA 284 24.1(5.6)

BP stress cohort AA 228 31.4(8.6)

Dhana et al., 2018 RS European 1,450 27.7(4.4)

Xu et al., 2018 Community volunteers Mixed 510 24.5(2.9)

aValues are shown as mean ± SD.
bBMI was derived as weight (g) divided by height2 (cm2 ).

MARTHA, MARseille THrombosis Association; KORA, Cooperative Health Research; ARIC, Atherosclerosis Risk in Communities; GUSTO, Growing Up in Singapore toward Healthy

Outcomes; FHS, Framingham Heart Study; EUGENE2, European Network on Functional Genomics of Type 2 Diabetes; ALSPAC, Avon Longitudinal Study of Parents and Children;

RS-III, Rotterdam Study III; BIOS, Biobank-based Integrative Omics Studies; LOLIPOP, The London Life Sciences Prospective Population; LBC, Lothian Birth Cohort; KoCAS, Korean

Child-Adolescent Cohort Study; EpiGO, Epigenetic Basis of Obesity-Induced Cardiovascular Disease and Type 2 Diabetes; LACHY: Lifestyle, Adiposity and Cardiovascular Health in

Youth; BP, Blood pressure; RS, Rotterdam Study; AA, African American; EA, European American.

genes (SOCS3, PRR5L, ABCG1, BRDT, B3GNT7, ZNF710, and
RARRES1) were differentially expressed in the VAT of obesity
patients. It is worth mentioning that the SOCS3 gene was up-
regulated in both human SAT (log2 fold change = 1.06, p = 9.23
× 10−3) and VAT (log2 fold change = 1.92, p = 8.52 × 10−3).
The results are detailed in Supplementary Tables 2, 3.

The Association With Obesity in Human
VAT and Liver Tissue
Twenty VAT samples and 15 liver tissue samples were analyzed to
test whether the association in the peripheral blood samples can
be transferred into the metabolic tissues. The results revealed that
seven CpGs in 119 associated CpGs were significantly associated
with obesity (p < 0.05) in both the VAT and the liver tissue.
The detailed results are shown in Table 4. Interestingly, most of
them were associated with obesity in the opposite direction in the
VAT and the liver tissue. For example, the CpG site cg07136133

was hyper-methylated in the VAT (log2fold change = 0.135,
p = 0.014), but hypo-methylated (log2 fold change = −0.066,
p= 0.013) in the liver of obesity patients.

DISCUSSION

In this study, we identified 119 obesity-associated DNA
methylations in human peripheral blood samples by combining
results from previous studies. We further implemented the
integrative approach highlighting SOCS3 among the numerous
associated genes as a promising drug target.

The role of SOCS3 in obesity was strongly supported by our
pathway enrichment analysis and the differential gene expression
in the metabolic tissues. The pathway enrichment analysis is
an efficient tool for drug target discovery (Aguirre-Plans et al.,
2018). A gene which was involved in each or most of the
enriched pathways may be situated in an essential position in
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the etiology of obesity. In our results, SOCS3 was the only
obesity-associated gene whose protein regulated all three of the
most enriched KEGG pathways. SOCS3 suppresses the target
proteins by promoting their ubiquitination and degradation.
Those included insulin receptor substrates (IRS1 and IRS2) in the
liver cells and the leptin receptor (LEPR) in adipocytes (Bjorbak
et al., 2000; Eyckerman et al., 2000; Rui et al., 2002; Howard et al.,
2004). In our study, SOCS3 gene expression was up-regulated
in both the VAT and SAT of obesity patients. This observation
is in line with the increased insulin resistance found in morbid

TABLE 2 | The top 10 associated CpGs in the meta-analysis.

CpG P N Dir Genea

cg06500161 4.76 × 10−122 16737 +++++++++ ABCG1

cg00574958 1.44 × 10−98 17748 ——————— CPT1A

cg11024682 5.01 × 10−81 17670 +++++++++++ SREBF1

cg07573872 2.22 × 10−56 18370 ———————— SBNO2

cg27243685 3.64 × 10−55 17274 ++++++++++ ABCG1

cg18181703 1.73 × 10−51 13417 ————————+ SOCS3

cg09349128 2.39 × 10−51 13694 ————

cg26403843 6.72 × 10−46 16737 +++++++++ RNF145

cg04927537 2.64 × 10−44 16737 +++++++++ LGALS3BP

cg06192883 2.51 × 10−40 16737 +++++++++ MYO5C

aThe genes were annotated using the default resources provided by Metascape.

CpG, Cytosine-phosphate-Guanine; P, P-value; N, the total sample size of the

corresponding CpG sites; Dir, direction of association with body mass index.

TABLE 3 | Enriched KEGG pathway.

Description P FDR Gene symbols

Insulin resistance 5.23 × 10−4 0.26 CPT1A,RPS6KA2,SREBF1,

SOCS3

Adipocytokine signaling

pathway

1.77 × 10−3 0.44 CPT1A,SOCS3,ACSBG1

TNF signaling pathway 6.27 × 10−3 1.00 BCL3,MAP3K5,SOCS3

KEGG, Kyoto Encyclopedia of Genes and Genomes; P, P-value; FDR, false discovery rate.

obesity patients and it further confirmed SOCS3 as a promising
drug target (Mitrou et al., 2013; Dawson et al., 2014; Pucci et al.,
2014).

Although involved in the insulin signaling pathway, the
association between SOCS3DNAmethylation and type 2 diabetes
(T2D) has been under debate. In studies of a small sample
size (N < 300), the SOCS3 CpG was not associated with T2D
(p> 0.05), with or without the adjustment of the BMI (AlMuftah
et al., 2016; Dayeh et al., 2016). Furthermore, it is even associated
with a BMIwith the adjustment of T2D in one of the studies using
the same cohort (Dayeh et al., 2016). In a study with 1074 incident
T2D samples and 1590 controls, the SOCS3 CpG was associated
with incident T2D (p = 1.2 × 10−7) without the adjustment of
the BMI (Chambers et al., 2015).

On the other hand, it has also been considered controversial
whether the obesity-associated SOCS3 CpG impacts the
transcription level. It was demonstrated that the hypo-
methylation at the associated SOCS3 CpG may induce higher
SOCS3 expression in peripheral blood mononuclear cells (Ali
et al., 2016). One might think that this is probably transferable
to other tissues, however, the hypo-methylation at this CpG
was found to be related to lower gene expression in the human
pancreatic islet but related to higher gene expression in adipose
tissue (Dayeh et al., 2016). This apparently controversial evidence
has indicated that the regulation of SOCS3 expression might
be much more complex than we previously thought. Further
investigation is necessary to uncover the tissue-specific modifier
of expression regulation of this gene and to understand whether
this helps to clarify the association between SOCS3 DNA
methylation and T2D.

DNA methylations in peripheral blood samples could be
different from those in metabolic tissues, like adipose tissue and
liver cells (De Bustos et al., 2009; Lovinsky-Desir et al., 2014).
The conclusion derived from non-metabolic tissues should be
validated in multiple metabolic tissues, before being used as
evidence to support drug development or clinical trials. However,
the GEO DNA methylation datasets in metabolic tissues had a
small sample size. A statistical power analysis showed that we
only had 9.5% power to detect a weak effect of DNA methylation
on obesity using 20 samples. We hope that a better powered

TABLE 4 | The association with obesity in human VAT and liver tissue.

CpG peripheral blood VAT Liver tissue

P Dir Genea Logfc P Logfc P

cg07136133 1.67 × 10−35 —————— PRR5L 0.135 0.014 −0.066 0.013

cg07037944 1.43 × 10−19 —————— DAPK2 0.059 0.026 −0.046 0.024

cg22891070 4.93 × 10−18 ++++++ HIF3A −0.140 0.008 −0.094 0.027

cg09554443 2.58 × 10−17 ——– CD247 0.078 0.016 −0.038 0.035

cg00741986 1.38 × 10−8 —— TNIP2 0.076 0.012 −0.065 0.016

cg15011409 2.23 × 10−8 +++ ICAM5 −0.073 0.009 0.067 0.013

cg03257930 6.24 × 10−8 —— 0.109 0.040 −0.056 0.010

aThe genes were annotated using the default resources provided by Metascape.

CpG, Cytosine-phosphate-Guanine; VAT, visceral adipose tissue; P, P-value; Dir, direction of association with body mass index; Logfc, log fold change.
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DNA methylation analysis in metabolic tissues could be taken
into consideration in future integrative studies.

As compared to SOCS3, other genes showed a relatively weak
relevance in our integrative analysis. The DNA methylation of
the ABCG1 gene was the top signal in peripheral blood samples.
Unfortunately, the ABCG1 gene was only differentially expressed
in the VAT of obesity patients. The CPT1A gene was involved
in two enriched pathways, but not differentially expressed in
adipose tissues. Except for SOCS3, CPT1A, and ABCG1, other
top 10 associated genes, shown in Table 2, lacked evidence
of differential expression in adipose tissues and involvement
in the enriched pathways. When taking a closer look at the
119 associated genes, we did have five additional differentially
expressed genes in the VAT and one in the SAT. However, their
priority was not supported by the enriched pathways.

The strength of this study lies in overlapping multiple lines
of evidence to prioritize the candidate genes for drug target
development, from the many associated DNA methylations. The
integrated approach included genome-wide screening results in
peripheral blood samples, pathway enrichment analysis, and
differential gene expression inmultiple adipose tissues. Screening
obesity-associated CpGs in peripheral blood is remains the most
practical way currently, as peripheral blood samples are abundant
in many research groups. However, it should be noted that
genomic DNAmethylation can vary among different tissue types.
For example, from our DNA methylation analyses in metabolic
tissues, we observed the opposite direction of association at most
of the associated CpGs (Table 4).

It should be noted that our study had limitations. Firstly,
the association results from the included studies, came with
various types of data transformation and statistical models, the
effect sizes showed strong heterogeneity. We combined the p-
values using a sample-size-weighted strategy, which is a flexible
approach, but can also be inaccurate. The genome-wide screening

of our pipeline could be improved when the individual DNA
methylation data is available. Secondly, we analyzed the GEO
datasets using the GEO2R tool. This tool was not able to adjust
for the covariates, e.g., age and sex, which may be helpful
in minimizing the effects from confounding factors. Finally,
the included GEO datasets have much smaller sample sizes
as compared to the genome-wide screening, which may have
increased the false negative rate of our approach.

CONCLUSION

In summary, we integrated multiple lines of evidence to
reveal candidate genes for the treatment of obesity and
its complications. Our study provided new insights on the
interaction between obesity and the epigenome. Future studies
are warranted to discover more potential drug targets using
larger sample sizes from metabolic tissues, and to elucidate
the mechanism of SOCS3 DNA methylation interacting with
obesity.
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