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Until now, large-scale genome-wide association studies have identified 94 genes associated with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Expression quantitative trait locus (eQTL) analysis showed that six genetic variants around six of these 94 genes could drive both disease susceptibility and altered expression of six nearby genes including CD33 (rs3865444), PILRB (rs1476679), NUP160 (rs10838725), LRRK2 (rs76904798), RGS1 (rs1323292), and METTL21B (rs701006). However, two of these six genetic variants rs1476679 and rs76904798 variants could regulate the expression of PILRB and LRRK2 only in the human monocyte-derived microglia-like (MDMi) cells, but not in human peripheral blood monocytes. Here, we aim to verify these findings using another two eQTL datasets in human peripheral blood immune cell CD14+ monocytes. The results that showed that rs1476679 and rs76904798 variants or their proxy variants could significantly regulate the expression of PILRB and LRRK2 in immune cell CD14+ monocytes and human peripheral blood. We believe that these findings provide important supplementary information about the regulatory mechanisms by which both variants influence PILRB and LRRK2 gene expression and neurodegenerative disease risk.
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INTRODUCTION

It is known that Alzheimer's disease, Parkinson's disease and multiple sclerosis are three common neurodegenerative diseases (Liu et al., 2012, 2016, 2017b,c,d,e, 2018c; Beecham et al., 2013; Chang et al., 2017; Jun et al., 2017). In recent years, large-scale genome-wide association studies (GWAS) have identified some neurodegenerative disease risk variants (Liu et al., 2012, 2016, 2017b,c,d,e, 2018b; Beecham et al., 2013; Zhang et al., 2015, 2018; Li et al., 2016; Chang et al., 2017; Jiang et al., 2017; Jun et al., 2017). In 2013, the International Genomics of Alzheimer's Project (IGAP) conducted a meta-analysis of Alzheimer's disease GWAS datasets including 17,008 Alzheimer's disease cases and 37,154 controls in stage 1, and 8,572 Alzheimer's disease cases and 11,312 controls in stage 2. The meta-analysis of 74,046 individuals in stage 1 and stage 2 identified 11 new susceptibility loci for Alzheimer's disease (Lambert et al., 2013). In 2014, Nalls et al. conducted a large-scale meta-analysis of Parkinson's disease GWAS data including up to 13,708 PD cases and 95,282 control from 15 independent GWAS datasets of European descent, and identified six new Parkinson's disease risk loci (Nalls et al., 2014). In 2017, Chang et al. conducted a meta-analysis of Parkinson's disease GWAS data including 26,035 cases and 403,190 controls, and identified 17 novel Parkinson's disease risk loci (Chang et al., 2017).

Evidence shows that genetic variants could modify gene expression and cause disease risk (Liu et al., 2017d, 2018a,b,d). In a recent study, Ryan and colleagues developed a human monocyte-derived microglia-like (MDMi) cellular model to assess the effects of neurodegenerative disease variants (Ryan et al., 2017). Using this model system, Ryan and colleagues conducted an expression quantitative trait locus (eQTL) analysis to examine 94 genes associated with Alzheimer's disease, Parkinson's disease, and multiple sclerosis (Ryan et al., 2017). One eQTL analysis was performed using MDMi cells from 95 young, healthy subjects of European ancestry (Ryan et al., 2017). The other eQTL analysis was performed using human peripheral blood monocytes derived from 211 young, healthy subjects of European ancestry (Ryan et al., 2017). They identified that genetic variants could drive both disease susceptibility and altered expression of six nearby genes including CD33 (rs3865444), PILRB (rs1476679), NUP160 (rs10838725), LRRK2 (rs76904798), RGS1 (rs1323292), and METTL21B (rs701006) (Ryan et al., 2017). However, rs1476679 and rs76904798 variants could regulate the expression of PILRB and LRRK2 only in the MDMi cells, but not in human peripheral blood monocytes (Ryan et al., 2017). Here, we aim to further verify their findings using multiple eQTL datasets in human peripheral blood immune cell CD14+ monocytes.

MATERIALS AND METHODS

Functional Analysis

It is described that enhancers are DNA regulatory sequences, and could regulate tissue-specific gene expression (Ong and Corces, 2011; Shlyueva et al., 2014). Hence, we first performed an enhancer analysis using HaploReg (version 4.1) to evaluate the overlap of these six variants with predicted enhancers in each reference epigenome data from Roadmap Epigenomics project (Ward and Kellis, 2016). HaploReg (version 4.1) defined the enhancers using four different methods including the 15-state core model, the 25-state model incorporating imputed epigenomes, the H3K4me1/H3K4me3 peaks and the H3K27ac/H3K9ac peaks (Ward and Kellis, 2016). In brief, both the core 15-state model and the 25-state model are based on the imputed marks, H3K4me1/H3K4me3 is based on peaks from H3K4me1 and H3K4me3, and H3K27ac/H3K9ac is based on peaks from H3K27ac and H3K9ac (Ward and Kellis, 2016). In addition to enhancer analysis, we also conducted a promoter analysis and DNAse analysis. More detailed information has been described in recent study (Liu et al., 2018b).

eQTL Analysis

The first eQTL dataset in monocytes is from the International Human Epigenome Consortium (IHEC) (Chen et al., 2016). The IHEC consortium performed an eQTL analysis in three immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals (Chen et al., 2016). Data from this project was produced in different institutes. Peripheral blood mononuclear cells were isolated from donors at University of Cambridge (Chen et al., 2016). The second eQTL dataset in monocytes (CD14+ monocytes) is from a recent study conducted by Fairfax et al. (2014). In the original study, primary monocytes from 432 healthy Europeans were exposed to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide (LPS) (Fairfax et al., 2014). Then the impact of immune stimulation upon regulatory variant activity was systematically evaluated by an eQTL analysis (Fairfax et al., 2014). In brief, this eQTL analysis tested 609,704 genetic variants and expression data for 15,421 probes for 414 individuals in the naive state, 367 individuals after exposure to IFN-γ, 322 individuals after 24-h LPS, and 261 individuals after 2-h LPS (Fairfax et al., 2014).

In both eQTL datasets, genetic variants mapping to within 1 Mb (on each side) of each tested gene, were tested their association with gene expression using a linear regression analysis (Fairfax et al., 2014; Chen et al., 2016). Here, we utilize the summary results from the corresponding studies to evaluate the potential association of six genetic variants with the expression of their nearby genes. If any variant is not available in above datasets, we used HaploReg (version 4) to identify it proxy variants based on the linkage disequilibrium (LD) information from the 1000 Genomes Project (EUR) (Ward and Kellis, 2012). We defined the genetic variants tagged by any genetic variant with r2> = 0.8 (Ward and Kellis, 2012). In addition to the monocytes, we also evaluated the association of six genetic variants with gene expression using two eQTL datasets in human peripheral blood including 2,116 and 5,257 samples, respectively (Joehanes et al., 2017; Zhernakova et al., 2017).

RESULTS

Enhancer Analysis

The enhancer analysis using the 15-state core model, the 25-state model, the H3K4me1/H3K4me3 model and the H3K27ac/H3K9ac model showed that these 6 genetic variants are predicted to be mainly located in enhancers of blood cell types. These findings indicate that these 6 genetic variants are likely to regulate gene expression in the blood cell types, especially CD14+ monocytes. In brief, rs1476679 variant is predicted to be located in enhancers of monocytes-CD14+ RO01746 Primary Cells using the H3K4me1/H3K4me3 model and the H3K27ac/H3K9ac model (Table 1). The rs76904798 variant is predicted to be located in enhancers of monocytes-CD14+ RO01746 Primary Cells using the 15-state core model, the H3K4me1/H3K4me3 model and the H3K27ac/H3K9ac model. To validate the enhancer analysis, we then performed an eQTLs analysis using multiple datasets in CD14+ monocytes.


Table 1. Enhancer analysis of six neurodegenerative disease variants using HaploReg (version 4.1).
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Promoter Analysis

All these four models including 15-state core model, the 25-state model, the H3K4me1/H3K4me3 model and the H3K27ac/H3K9ac model showed that the rs3865444 variant was predicted to be mainly located in promoter of blood cell types, especially in immune cell types. Three of these four models including the 15-state core model, the H3K4me1/H3K4me3 model and the H3K27ac/H3K9ac model indicated that the rs1323292 variant was predicted to be mainly located in promoter of blood cell types, especially in immune cell types. Table 2 provides the results from promoter analysis of six neurodegenerative disease variants using HaploReg (version 4.1).


Table 2. Promoter analysis of six neurodegenerative disease variants using HaploReg (version 4.1).
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DNAse Analysis

The DNAse analysis showed that rs1323292 variant was predicted to be mainly located in DNAse of blood cell types, especially in primary T cells from cord blood, primary T cells from peripheral blood, primary Natural Killer cells from peripheral blood, fetal Thymus, and small Intestine. The rs701006 variant was predicted to be mainly located in DNAse of Foreskin Melanocyte Primary Cells skin01 and Fetal Brain Female. The rs1476679 variant was predicted to be mainly located in DNAse of iPS DF 19.11 Cells, Breast variant Human Mammary Epithelial Cells (vHMEC), HSMM cell derived Skeletal Muscle Myotubes Cells. However, we did identify any rs10838725, rs76904798, rs3865444.

eQTLs Analysis in CD14+ Monocytes

In the first dataset including up to 197 individuals, the results showed significant association of all these six genetic variants (rs3865444, rs1476679, rs10838725, rs76904798, rs1323292, and rs701006) with the expression of nearby genes including CD33, PILRB, NUP160, LRRK2, RGS1, and METTL21B. In addition, there are also some other genes. Here, we list the significant results with P < 0.01 and the corresponding false discovery rate (FDR) in Table 3.


Table 3. eQTL analysis of six neurodegenerative disease variants in CD14+ monocytes.
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In the second dataset including 414 samples in the naive state, two genetic variants rs3865444 and rs10838725, as well as their proxy variants (r2 ≥ 0.8), are not available. The other four genetic variants or their proxy variants were significantly associated with the expression of nearby genes including PILRB, LRRK2, RGS1, and METTL21B. In brief, rs11175655 is in high LD with rs76904798 (r2 = 0.83, and D′ = 1), and rs1323298 is in high LD with rs1323292 (r2 = 0.92, and D′ = 0.97). Meanwhile, there also some other genes, as provided in Table 2. In addition to the naive state, some findings were also observed in other three states including 367 individuals after exposure to IFN-γ, 322 individuals after 24-h LPS, and 261 individuals after 2-h LPS, as provided in Table 3.

QTLs Analysis in Human Peripheral Blood

In the two eQTL datasets in human peripheral blood, we again found significant association of all these six genetic variants (rs3865444, rs1476679, rs10838725, rs76904798, rs1323292, and rs701006) with the expression of nearby genes including CD33, PILRB, NUP160, LRRK2, RGS1, and METTL21B, as well as other genes (Table 4).


Table 4. eQTL analysis of six neurodegenerative disease variants in whole blood.
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DISCUSSION

In recent years, large-scale GWAS datasets have identified 94 genes associated with Alzheimer's disease, Parkinson's disease, or multiple sclerosis (Ryan et al., 2017). However, it is still unclear how these variants functionally affect the underlying neurodegenerative disease pathogenesis. Growing evidence shows that genetic variants may affect disease risk by regulating gene expression (Bao et al., 2015; Liu et al., 2015, 2016, 2017a; Hu et al., 2017). Ryan and colleagues applied a human MDMi cellular model, and conducted an eQTL analysis to evaluate the effects of these neurodegenerative disease variants (Ryan et al., 2017).

In summary, Ryan et al. identified that six neurodegenerative disease variants were associated with disease susceptibility, and could alter the expression of six nearby genes. Both rs1476679 and rs76904798 variants could only regulate the expression of PILRB and LRRK2 in the MDMi cells, but not in human peripheral blood monocytes (Ryan et al., 2017). Ryan et al. concluded that the differentiation of monocytes into microglia-like cells could cause the acquisition of a cellular state, which could reveal the functional consequences of certain genetic variants (Ryan et al., 2017). Ryan et al. provided an in vitro translational tool to generate microglia-like cells quickly and easily from adult blood, and could be useful for exploring microglia function and dysfunction (Ryan et al., 2017). However, Ryan et al. just selected single eQTL dataset in human peripheral blood monocytes without any replication.

Here, we first performed an enhancer analysis of these six neurodegenerative disease variants. The results showed that these six genetic variants were predicted to be mainly located in enhancers of blood cell types, especially in CD14+ monocytes. The promoter analysis showed that rs3865444 and rs1323292 variants were predicted to be mainly located in promoter of blood cell types, especially in immune cell types. Hence, we further evaluated these six genetic variants using multiple eQTL datasets in human peripheral blood immune cell CD14+ monocytes. The results that showed that rs1476679 and rs76904798 variants or their proxy variants could significantly regulate the expression of PILRB and LRRK2 in immune cell CD14+ monocytes and human peripheral blood.

In summary, we believe that these findings provide important supplementary information about the regulatory mechanisms by which both variants influence PILRB and LRRK2 gene expression and neurodegenerative disease risk.
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rs1323292* 1 ENSG00000090104.7 RGS1 3.07E-34  6.25E-31 CD14+ monocytes Chen etal., 2016

rs701006 12 ENSG00000123427.11 METTL21B 3.67E-26  1.55E-24 CD14+ monocytes Chen et al., 2016

rs1476679 7 ENSG00000121716.12 PILRB 6.74E-20  533E-19 CD14+ monocytes Chen etal.,, 2016

rs10838725 11 ENSG00000030066.9 NUP160 5.73E-18  6.15E-18 CD14+ monocytes Chen et al., 2016

rs76904798 12 ENSG00000188906.9 LRRK2 9.42E-15  3.48E-11 CD14+ monocytes Chen etal., 2016

rs3865444 19 ENSG00000105383.10 CD33 5.26E-14  6.09E-11 CD14+ monocytes Chen et al., 2016

rs76904798 12 ENSG00000260943.1  RP11-476D10.1  3.84E-12  4.71E-11  CD14+ monocytes Chen etal., 2016

rs3865444 19 ENSGO00000268849.1  SIGLEC22P 1.72E-07  5.23E-05 CD14+ monocytes Chen et al., 2016

rs10838725 1" ENSG00000134571.6  MYBPC3 1.79-07  2.18E-07 CD14+ monocytes Chen etal., 2016

510838725 11 ENSG00000110514.14 MADD 240E-06  5.68E-06 CD14+ monocytes Chen etal.,, 2016

rs701006 12 ENSG00000123297.11 TSFM 2.48E-06  8.05E-05 CD14+ monocytes Chen etal., 2016

rs1476679 7 ENSG00000221838.5  AP4M1 9.93E-06  5.90E-05 CD14+ monocytes Chen etal., 2016

76904798 12 ENSGO0000229899.1 AC084290.2 1.04E-05  7.97E-04 CD14+ monocytes Chen etal.,, 2016

rs1476679 7 ENSGO00000078319.7  PMS2P1 5.41E-05  8.76E-04 CD14+ monocytes Chen etal., 2016

rs1476679 7 ENSG00000166997.3 CNPY4 8.00E-05  258E-03 CD14+ monocytes Chen etal., 2016

rs701006 12 ENSGO00000135506.11 OS9 2.50E-04  2.63E-02 CD14+ monocytes Chen et al., 2016

rs1476679 7 ENSG00000087077.7  TRIP6 4.80E-04 7.17E-03  CD14+ monocytes Chen etal., 2016

rs76904798 12 ENSGO00000225342.1  AC079630.4 5.26E-04  249E-02 CD14+ monocytes Chen et al., 2016

rs1476679 T ENSGO00000196411.5  EPHB4 8.54E-04  5.47E-03 CD14+ monocytes Chen etal., 2016

rs701006 12 ENSG00000135439.6  AGAP2 8.61E-04 1.03E-02 CD14+ monocytes Chen et al., 2016

rs3865444 19 ENSG00000142512.10 SIGLEC10 9.02E-04 1.47E-01  CD14+ monocytes Chen etal., 2016

rs1476679 & ENSGO00000066923.12 STAG3 3.09E-08 1.10E-02  CD144 monocytes Chen et al., 2016

1s1476679 7 ENSGO0000085514.10 PILRA 3.10E-08  7.726-02 CD14+ monocytes Chen etal., 2016

rs1476679 i ENSGO00000106290.10 TAF6 6.23E-03  3.42E-02 CD14+ monocytes Chen etal., 2016

rs1476679 & ENSG00000106330.7 MOSPD3 8.13E-03  3.156-02 CD14+ monocytes Chen et al., 2016

rs1476679 7 ENSGO00000146830.8 ~ GIGYF1 9.97E-03  4.92E-02 CD14+ monocytes Chen et al., 2016

rs701006 12 870056 METTL21B 4.79E-63  1.95E-59 CD14+ monocytes Fairfax et al., 2014
rs1476679 T 2190541 GATS 1.14E-20  5.73E-18 CD14+ monocytes Fairfax et al., 2014
rs701006 12 5670577 TSPAN31 3.25E-15 1.04E-12  CD14+ monocytes Fairfax et al., 2014
rs11175655 12 3520291 LRRK2 6.66E-12  1.48E-09 CD14+ monocytes Fairfax et al., 2014
rs11175656 12 24903156 HS.306876 3.06E-10  5.51E-08 CD14+ monocytes Fairfax et al., 2014
rs701006 12 5290239 XRCC6BP1 268E-00  4.22E-07 CD14+ monocytes Fairfax et al., 2014
rs701006 12 3130102 TSFM 3.24E-00  5.04E-07 CD14+ monocytes Fairfax et al., 2014
rs1476679 7 2810674 TRIM4 3.59E-09  5.54E-07 CD14+ monocytes Fairfax et al., 2014
rs1323298 1 4490176 RGS1 491E-09  7.45E-07 CD14+ monocytes Fairfax et al., 2014
rs1476679 7 1570039 PILRB 9.85E-08  1.21E-05 CD14+ monocytes Fairfax et al., 2014
rs1476679 7 2030088 PILRA 1.88E-06  1.82E-04 CD14+ monocytes Fairfax et al., 2014
rs11175656 12 1820725 LRRK2 3.26E-05  2.40E-03 CD14+ monocytes Fairfax et al., 2014
1$1476679 7 2750168 APAMT 4.30E-05  B.07E-03 CD14+ monocytes Fairfax et al., 2014
rs1476679 7 5420672 PILRA 6.70E-03 1.83E-01  CD14+ monocytes Fairfax et al., 2014
rs701006 12 870056 METTL21B 6.35E-51  3.02E-47 CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs1476679 7 2190541 GATS 2.22E-26  2.39E-283 CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs11175655 12 3520291 LRRK2 2.70E-24  2.51E-21 CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs701006 12 2900725 CYP2781 1.73E-19 1.12E-16  CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs701006 12 650348 METTL1 2.68E-16 1.26E-13  CD144 monocytes after 24-h LPS Fairfax et al., 2014
rs11175656 12 2490315 HS.306876 7.94E-13  254E-10  CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs1476679 7 2470577 ZewPwi1 231E-10  536E-08 CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs1323298 1 4490176 RGS1 3.98E-08  6.43E-06 CD14+ monocytes after 24-h LPS Fairfax et al., 2014
1s701006 12 5670577 TSPANG1 3.96E-07  530E-05 CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs1476679 7 2810674 TRIM4 8.73E-07 1.09E-04  CD14+ monocvtes after 24-h LPS Fairfax et al.. 2014
rs1476679 7 2030088 PILRA 1.29E-06 1.66E-04 CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs701006 12 5290239 XRCC6BP1 1.756E-06  2.05E-04 CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs701006 12 3130102 TSFM 419E-05  3.48E-03 CD14+ monocytes after 24-h LPS. Fairfax et al., 2014
rs701006 12 110180 ARHGAP9 7.18E-056  5.57E-03 CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs701006 12 7380110 CDK4 B91E-04  2.34E-02 CD14+ monocytes after 24-h LPS Fairfex et al., 2014
rs1476679 4 4850487 UFSP1 6.45E-04  3.52E-02 CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs1476679 7 5420672 PILRA 7.58E-04  4.01E-02 CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs1476679 7 2750168 APAM1 2.72E-03 1.06E-01  CD14+ monocytes after 24-h LPS Fairfax et al., 2014
rs701006 12 870056 METTL21B 111E-39  5.75E-36 CD14+ monocytes after 2-h LPS Fairfax et al., 2014
rs1476679 7 2030088 PILRA 1.41E-10  5.20E-08 CD14+ monocytes after 2-h LPS Fairfax et al., 2014
11476679 7 5420672 PILRA 896E-10  2.90E-07 CD14+ monocytes after 2-h LPS Fairfax et al., 2014
rs701006 12 2900725 CYP278B1 5.71E-09 1.61E-06  CD14+ monocytes after 2-h LPS Fairfex et al., 2014
rs1476679 7 650040 PILRA 9.19E-09  2.4QE-06 CD14+ monocytes after 2-h LPS Fairfax et al., 2014
rs1476679 7 2190541 GATS 5.05E-08 1.18E-05 CD14+ monocytes after 2-h LPS Fairfax et al., 2014
rs701006 12 650348 METTL1 1.16E-06  2.04E-04 CD14+ monocytes after 2-h LPS Fairfax et al., 2014
rs11175655 12 3520291 LRRK2 3.67E-06  5.69E-04 CD14+ monocytes after 2-h LPS Fairfax et al., 2014
rs701006 12 5670577 TSPAN31 7.85E-05  8.25E-03 CD144 monocytes after 2-h LPS Fairfax et al., 2014
rs701006 12 5290239 XRCC6BP1 1.69E-04 1.58E-02 CD14+ monocytes after 2-h LPS Fairfax et al., 2014
rs1476679 7 1470195 MCM7 191E-04  1.75E-02 CD14+ monooytes after 2-h LPS Fairfax et al., 2014
rs1476679 £ 2810874 TRIM4. 292E-04  248E-02 CD14+ monocytes after 2-h LPS Fairfax et al., 2014
1701006 12 7380110 CDK4 4.49E-03  1.88E-01 CD14+ monocytes after 2-h LPS Fairfex et al., 2014
rs701006 12 870056 METTL21B 1.30E-49  3.75E-46 CD14+ monocytes after exposure to IFN-y  Fairfax et al., 2014
rs11175655 12 3520291 LRRK2 9.37E-23  5.54E-20 CD14+ monocytes after exposure to IFN-y  Fairfax et al, 2014
rs11176655 12 2490315 HS.308876 4.12E-18 1.69E-15  CD14+ monocytes after exposure to IFN-y. Fairfax et al., 2014
rs701006 12 650348 METTL1 9.74E-13 2.33E-10  CD14+ monocytes after exposure to IFN-y. Fairfax et al., 2014
rs1323298 1 4490176 RGS1 1.72E-11  3.53E-09 CD14+ monocytes after exposure to IFN-y  Fairfax et al., 2014
rs701006 12 5670577 TSPAN31 3.56E-10  6.16E-08 CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014
rs1476679 7 2030088 PILRA 8.04E-08  9.63E-06 CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014
rs11175655 12 1820725 LRRK2 2.34E-07  2.59E-05 CD14+ monocytes after exposure to IFN-y  Fairfax et al., 2014
rs701006 12 3130102 TSFM 8.53E-07  848E-05 CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014
rs1476679 7 2810674 TRIM4 2.07E-06  1.90E-04 CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014
rs1476679 7 2190541 GATS 2.44E-06  220E-04 CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014
701006 12 5290239 XRCC6BP1 1.19E-05  9.19E-04 CD14+ monocytes after exposure to IFN-y Fairfex et al., 2014
1701006 12 4610066 TMEM194A 6.51E-05  4.16E-03  CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014
rs1476679 7 5420672 PILRA 120E-04  7.55E-03 CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014
rs1476679 7 6200743 CNPY4 5.44E-04 2.55E-02  CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014
rs1476679 4 3940750 LOC100134648  6.57E-04  2.98E-02 CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014
rs701006 12 1030593 0s9 7.07E-04  3.17E-02 CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014
rs701006 12 1580431 PIP4K2C 1.09E-03  4.49E-02 CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014
rs1476679 7 2470877 ZCWPW1 123E-03  495E-02 CD14+ monocytes after exposure to IFN-y Fairfex et al., 2014
rs701006 12 2900725 CYP2781 120E-03  5.13E-02 CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014
rs701006 12 110180 ARHGAP9 4.40E-03 1.20E-01  CD14+ monocytes after exposure to IFN-y. Fairfax et al., 2014
rs1476679 7 650040 PILRA 6.69E-03  1.72E-01  CD14+ monocytes after exposure to IFN-y Fairfax et al., 2014

*The associations identified by Ryan and colleagues are bolded. The rs11175655 variant is in high LD with 1576904798 (© = 0.83, and D' = 1), and 151323298 s in high LD with
151323292 ( = 0.92, and D' = 0.97). Chr, chromosome; [FN-y, interferon-y; LPS, lipopolysaccharide.
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rs1323292 chr1:192541021 RGS1 7.36E-05 2116 Zhernakova et al., 2017
rs701006 chr12:58106836 METTL21B 3.54E-224 2116 Zhernakova et al., 2017
rs701006 chr12:58106836 TSFM;RP11-5671M6.15 1.16E-40 2116 Zhernakova et al., 2017
rs701006 chr12:58106836 AVIL 1.80E-32 2116 Zhernakova et al., 2017
rs701006 chr12:68106836 TSFM 1.38E-25 2116 Zhernakova et al., 2017
rs701006 chr12:58106836 XRCCBBP1 3.26E-21 2116 Zhernakova et al., 2017
rs701006 chr12:568106836 OS9;RP11-571M6.7 4.95E-15 2116 Zhernakova et al., 2017
rs701006 chr12:58106836 MARCH9 2.78E-13 2116 Zhernakova et al., 2017
1701006 chr12:58106836 AVILUS 4.08E-13 2116 Zhernakova et al., 2017
rs701006 chr12:58106836 TSPAN31 4.79E-13 2116 Zhernakova et al., 2017
rs701006 chr12:58106836 089 6.58E-12 2116 Zhernakova et al., 2017
rs701006 chr12:58106836 RP11-571M6.18 1.26E-10 2116 Zhernakova et al., 2017
rs701006 chr12:58106836 METTL1;METTL21B 4.04E-10 2116 Zhernakova et al., 2017
rs701006 chr12:58106836 CDK4;TSPAN31 1.90E-09 2116 Zhernakova et al., 2017
rs701006 chr12:568106836 METTL218;RP11-571M6.15 2.35E-09 2116 Zhernakova et al., 2017
rs701006 chr12:58106836 METTL1;RP11-571M6.13 4.52€-05 2116 Zhernakova et al., 2017
rs701006 chr12:568106836 AGAP2 7.06€E-05 2116 Zhernakova et al., 2017
rs701006 chr12:58106836 METTL1 7.42E-05 2116 Zhernakova et al., 2017
rs1476679 chr7:100004446 PILRB 9.88E-127 2116 Zhernakova et al., 2017
rs1476679 <chr7:100004446 STAG3;PVRIG 3.96E-58 2116 Zhernakova et al., 2017
rs1476679 chr7:100004446 STAG3;GATS 4.26E-52 2116 Zhernakova et al., 2017
rs1476679 <hr7:100004446 PILRAPILRB 3.91E-37 2116 Zhernakova et al., 2017
rs1476679 chr7:100004446 STAG3;GATS;GATS 1.00E-32 2116 Zhernakova et al., 2017
rs1476679 <hr7:100004446 STAGS;PVRIG;AC005071.1 2.05E-24 2116 Zhernakova et al., 2017
rs1476679 ¢hr7:100004446 PILRB;CTB-161A2.4 4.97E-22 2116 Zhernakova et al., 2017
rs1476679 chr7:100004446 GAL3ST4 1.21E-18 2116 Zhernakova et al., 2017
rs1476679 chr7:100004446 ZCWPW1 1.38E-11 2116 Zhernakova et al., 2017
rs1476679 chr7:100004446 MOSPD3 2.82E-09 2116 Zhernakova et al., 2017
rs1476679 chr7:100004446 GPC2 2.92€-08 2116 Zhernakova et al., 2017
rs1476679 chr7:100004446 PILRB;CTB-161A2.3 5.97€-08 2116 Zhernakova et al., 2017
11476679 chr7:100004446 TFR2 1.98E-06 2116 Zhernakova et al., 2017
rs1476679 <chr7:100004446 PILRA 6.63E-08 2116 Zhernakova et al., 2017
rs1476679 chr7:100004446 C7orf61 4.12E-05 2116 Zhernakova et al., 2017
rs1476679 <hr7:100004446 TSC22D4;C7orf61 4.34E-05 2116 Zhernakova et al., 2017
rs1476679 chr7:100004446 PPP1R35;RP11-758P17.2 5.99E-05 2116 Zhernakova et al., 2017
rs10838725 chr11:47557871 MYBPC3 3.05E-47 2116 Zhernakova et al., 2017
1510838725 chr11:47567871 C1QTNF4 6.18E-44 2116 Zhernakova et al., 2017
rs10838725 chr11:47557871 MADD 8.32E-25 2116 Zhernakova et al., 2017
rs10838725 chr11:47657871 FNBP4 2.20E-18 2116 Zhernakova et al., 2017
rs10838725 chr11:47657871 FNBP4;Y_RNA 2.92E-15 2116 Zhernakova et al., 2017
1510838725 chri1:47557871 RP11-750H9.5 5.00E-13 2116 Zhernakova et al., 2017
rs10838725 chr11:47667871 SLC39A13 1.16E-09 2116 Zhernakova et al., 2017
rs10838725 chr11:47557871 RAPSN 1.33€-07 2116 Zhernakova et al., 2017
rs76904798 chr12:40614434 LRRK2 1.47€E-52 2116 Zhernakova et al., 2017
1s76904798 chr12:40614434 RP11-476D10.1 1.93E-45 2116 Zhernakova et al., 2017
rs3865444 chr19:51727962 €D33 1.58E-44 2116 Zhernakova et al., 2017
rs3865444 chr19:61727962 SIGLEC22P 5.66E-24 2116 Zhernakova et al., 2017
rs3865444 chr19:51727962 VSIG10L 5.74E-06 2116 Zhernakova et al., 2017
rs1323292 chr1:192641021 SLC41A1 3.44E-05 5267 Joehanes et al., 2017
rs1323292 chr1:192541021 P4HTM 5.15E-05 5257 Joehanes et al., 2017
rs701006 chr12:58106836 AVIL;PP12719; LOC1006853271 2.45E-38 5267 Joehanes et al., 2017
rs701006 chr12:58106836 METTL21B 9.31E-31 5267 Joehanes et al., 2017
1701006 chr12:58106836 ARHGAPY 2.71E-09 5257 Joehanes et al., 2017
rs701006 chr12:58106836 TSPAN31 7.01E-07 5267 Joehanes et al., 2017
1701006 chr12:58106836 089 7.77€-07 5257 Joehanes et al., 2017
rs701006 chr12:58106836 XRCC6BP1 2.87E-06 5267 Joehanes et al., 2017
rs701006 chr12:58106836 GLI1 3.96E-06 5267 Joehanes et al., 2017
rs701006 chr12:58106836 TSFM 7.43E-05 5267 Joehanes et al., 2017
rs1476679 chr7:100004446 PILRB 6.16E-69 5267 Joehanes et al., 2017
rs1476679 chr7:100004446 PVRIG;STAG3 1.23E-44 5257 Joehanes et al., 2017
rs1476679 chr7:100004446 GATS 1.56E-26 5267 Joehanes et al., 2017
rs1476679 chr7:100004446 EPHB4 4.30E-12 5257 Joehanes et al., 2017
rs1476679 chr7:100004446 TRIM4 1.87E-07 5267 Joehanes et al., 2017
rs1476679 chr7:100004446 PILRA 1.826-06 5257 Joehanes et al., 2017
rs1476679 chr7:100004446 CNPY4 1.00E-05 5267 Joehanes et al., 2017
11476679 chr7:100004446 MAN2B1 1.38E-05 5257 Joehanes et al., 2017
rs1476679 chr7:100004446 ZKSCANT1 1.84E-05 5267 Joehanes et al., 2017
rs1476679 chr7:100004446 OR2AE1 2.45E-05 5267 Joehanes et al., 2017
rs1476679 chr7:100004446 C30orf30;IGSF11 4.87E-05 5257 Joehanes et al., 2017
rs1476679 chr7:100004446 AQP4 5.83E-05 5257 Joehanes et al., 2017
rs10838725 chr11:47667871 MADD 7.68E-32 5267 Joehanes et al., 2017
rs10838725 chr11:47557871 PTPRJ 1.066-22 5257 Joehanes et al., 2017
rs10838725 chr11:47667871 MTCH2 1.64E-12 5267 Joehanes et al., 2017
rs10838725 chr11:47567871 MYBPC3 6.88E-11 5257 Joehanes et al., 2017
rs10838725 chr11:47557871 SLC39A13 5.96E-06 5267 Joehanes et al., 2017
1510838725 chr11:47567871 SBF2 1.90E-05 5257 Joehanes et al., 2017
rs10838725 chr11:47557871 NDUFS3 2.86E-05 5267 Joehanes et al., 2017
rs10838725 chr11:47667871 DKK4 3.64E-05 5267 Joehanes et al., 2017
rs10838725 chr11:47557871 NUP160 6.14E-05 5257 Joehanes et al., 2017
rs10838725 chr11:47667871 FCER2 7.50E-05 5267 Joehanes et al., 2017
rs76904798 chr12:40614434 TANK B3.77E-05 5267 Joehanes et al., 2017
rs3865444 chr19:51727962 ETFB 2.21E-07 5257 Joehanes et al., 2017
rs3865444 chr19:61727962 PITPNM2 6.24€-05 5267 Joehanes et al., 2017

The associations identified by Ryan and colleagues are bolded.
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