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Most signals involved in post-transcriptional regulatory networks are located in the

untranslated regions (UTRs) of the mRNAs. Therefore, to deepen our understanding

of gene expression regulation, delimitation of these regions with high accuracy is

needed. The trypanosomatid lineage includes a variety of parasitic protozoans causing a

significant worldwide burden on human health. Given their peculiar mechanisms of gene

expression, these organisms depend on post-transcriptional regulation as the main level

of gene expression control. In this context, the definition of the UTR regions becomes of

key importance. We have developed UTR-mini-exon (UTRme), a graphical user interface

(GUI) stand-alone application to identify and annotate 5′ and 3′ UTR regions in a highly

accurate way. UTRme implements a multiple scoring system tailored to address the issue

of false positive UTR assignment that frequently arise because of the characteristics

of the intergenic regions. Even though it was developed for trypanosomatids, the tool

can be used to predict 3′ sites in any eukaryote and 5′ UTRs in any organism where

trans-splicing occurs (such as the model organism C. elegans). UTRme offers a way for

non-bioinformaticians to precisely determine UTRs from transcriptomic data. The tool is

freely available via the conda and github repositories.

Keywords: post transcriptional regulation, untranslated region, UTR prediction software, prediction score, GUI

INTRODUCTION

Post-transcriptional regulation is a key step to control gene expression levels in eukaryotes
(Franks et al., 2017) that depends on factors recognizing signals mostly present in the
UTRs of the mRNAs. These mechanisms are crucial in trypanosomatids since they lack
transcription initiation control. The trypanosomatid lineage includes a variety of parasitic
protozoans causing significant worldwide burden on human health (Prüss-Ustün et al., 2016).
Trypanosomatids represent early divergent eukaryotes that have evolved distinctive biological
features; one of the most intriguing characteristic is the apparent lack of transcription
initiation control, being initiation sites characterized only by chromatin modifications and
DNA structural signals (Respuela et al., 2008; Siegel et al., 2009; Thomas et al., 2009; Wright
et al., 2010; Ekanayake and Sabatini, 2011; Smircich et al., 2013; Ramos et al., 2015). This
implies that the gene expression patterns result mainly from post-transcriptional control.
Therefore, the regulation of mRNA localization (Pastro et al., 2017), stability (Fadda et al.,
2014), and translatability (Jensen et al., 2014; Vasquez et al., 2014; Smircich et al., 2015)
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are key mechanisms to determine protein concentration. These
processes depend on regulatory proteins which interact with
RNA by recognizing either sequence or structural signals present
mainly on the UTRs of the mRNAs (Clayton, 2013; De Gaudenzi
et al., 2013; Pastro et al., 2013). So, to deepen our understanding
of gene expression regulation and the involved signals we need
to delimit these regions with high accuracy. The annotation
of UTR regions has been a challenging task depending on
specific experiments designed for each particular gene. However,
transcriptomic approaches currently give the opportunity to
annotate these sites on a global scale. Efforts have been carried out
to provide tools that allow the definition of UTR boundaries in
trypanosomatids (Fiebig et al., 2014; Dillon et al., 2015). Although
these tools have proven useful (Dillon et al., 2015; Pastro
et al., 2017), both the repetitive nature of the trypanosomatid
genomes and the high abundance of poly(A) tracts present in
their intergenic regions confound the algorithms. Therefore,
we have developed UTRme (UTR-mini-exon), a stand-alone
application to identify and annotate 5′ and 3′ UTR regions,
implementing a multiple scoring system that addresses both
the aforementioned and several other issues that arise during
the UTR annotation process. The tool provides not only the
annotation but also a score that enables to discriminate the
certainty of that annotation improving the usability of the results.
Additionally, UTRme offers a Graphical User Interface (GUI)
which turns it user friendly to non-bioinformaticians and, as a
stand-alone application, can be scaled to any project depending
only on the user’s hardware. UTRme reports annotation and
sequence files and plots general characteristics of the resulting
data (such as the distribution of UTR lengths, UTRme scores and
number of processing sites per gene). The 5′ UTR prediction can
be easily extended to any organism where trans-splicing occurs,
like the model organism C. elegans, among others (Lei et al.,
2016). Furthermore, UTRme can be used for 3′ UTR prediction
in any eukaryote. The source code is freely available at https://
github.com/sradiouy/UTRme and can be easily installed via the
conda repository on a linux based systems with a single command
“conda install -c sradiouy utrme.”

METHODS

Genome Data
Genomic and coding sequences (cds) annotation files where
downloaded from TritrypDB (http://tritrypdb.org/) release 35.

Transcriptomic Data Simulation
In order to test the software accuracy, a 30x 100 bp pair-end
RNA-seq run was simulated using the Piquant package (https://
github.com/lweasel/piquant). This package simulates sequencing
errors and platform bias. To simulate reads originating from
full transcripts [including UTRs, SL, and poly(A) sequences] a
random length UTR was added to each T. cruzi coding sequence.
For 5′ UTRs a maximum length of 101 bp was allowed while for
3′ UTRS the maximum length was set to 301 pb. The SL sequence
or a 35 pb poly(A) tail was added to each end accordingly.

5′ End Enriched RNA-seq Library
Construction
First strand of cDNA was prepared with 3 µg of purified RNA,
random hexamers and Invitrogen SuperScript R© III First-Strand
Synthesis System (Pub. No. MAN0001346). Second strand of
cDNA was prepared using a specific SL primer (5′tacagtttctgt
actatattg3′) and DNA Polymerase I Large (Klenow) Fragment
(NEBM0210). Library preparation protocol included end-repair,
adapters ligation, size selection (Pipping Prep SAGE System), and
amplification of the library using manufacturer’s recommended
protocol Ion plus fragment library kit (Pub. No. MAN0009847).
Qualitative and quantitative assessment of the libraries was
analyzed by Agilent 2100 Bioanalyzer System, using HS DNA
1000 reagents (Agilent Technologies). Emulsion amplification
of the library was performed using Ion Onetouch 2 System
with the Ion PGM Template OT2 Hi-Q view 400 kit (Pub.
No. MAN0014579). Ion Sphere Particles (ISPs) enrichment step
was performed on the Ion OneTouch ES system (Pub. No.
MAN0014579). The Ion PGM system was used for sequencing
using Ion PGM Hi-Q view Sequencing Solutions and Ion 318
Chip v2, following the manufacturer’s recommended protocol
for 400 bp reads (Pub. No. MAN0014583). (SRA BioProject
PRJNA473354).

RESULTS AND DISCUSSION

Pipeline Description
The software was written in python (version 3) and depends
on cutadapt (Martin, 2011), bedtools (Quinlan and Hall, 2010),
bowtie2 (Langmead and Salzberg, 2012), samtools (Li et al.,
2009), and python and unix modules. All dependencies are
automatically configured during installation. UTRme needs a
reference genome (sequence and cds annotation) and raw
reads from an RNA-seq experiment (single-end or paired-end)
(Figure 1). These required files, and optional arguments are
selected through the GUI. Documentation, including a preview
of the GUI, is available at https://github.com/sradiouy/UTRme.

The pipeline starts with the removal of adapter sequences
and trimming of low-quality ends from reads using cutadapt.
By default, UTRme trims the Illumina TrueSeq adapter, but any
sequence can be specified. Afterwards, the trimming software
is also used to identify and clip the reads containing putative
poly(A) tails or spliced leader (SL) sequences, allowing for
mismatches. By default, an error probability 0.01 for poly(A)
sequences (adjustable by the user) and one mismatch for SL
sequences are defined. To correctly identify the trans-splicing
sites, the organism must be specified. Currently, Leishmania
major, Trypanosoma brucei, and Trypanosoma cruzi are available,
however other species can be included by adding specific SL
sequences. This trimming process allows us to define two regions
on a read (Figure 2). The primary region is the sequence that
was left after read trimming, while the secondary region is the
putative poly(A) tail or SL sequence recognized by cutadapt.

The primary regions of the reads are aligned to the genome
using bowtie2 applying the default very-sensitive local end-to-
end alignment mode (Figure 1). The subset of reads aligning to
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intergenic regions is selected using bedtools. The mapping of
the primary regions defines the putative splice acceptor site or
poly(A) addition sites. At this point, UTRme evaluates in detail

FIGURE 1 | Outline of the UTRme pipeline. Required initial files, data

processing steps and software packages used during processing are depicted

in dark gray, white and light gray backgrounds, respectively.

each putative site to assess its reliability by reporting a score that
quantitates the confidence of the UTR site definition. This metric
is calculated by combining an individual score that indicates the
confidence with which each read predicts a given site, and global
score that considers the cumulative evidence of all the reads that
support a single processing site (see Supplementary File 1 for
a detailed description of all the scores and their calculation).
The individual score includes three components: the primary,
secondary and accessory scores. As read mapping is not always
accurate, the primary score aims to assess the likelihood that the
primary region was indeed transcribed in the genomic region
that it was mapped to. This is estimated based on the evaluation
of their similarity using a modified version of the Damerau-
Levenshtein algorithm (Levenshtein, 1966; Majorek et al., 2014)
implemented in the fuzzywuzzy python library (https://github.
com/seatgeek/fuzzywuzzy). This metric evaluates the minimum
number of changes that are required to go from string A to string
B considering mismatches and gaps. Once the primary score
has been measured and the read is not discarded, the secondary
score is calculated. This evaluates the difference between the
secondary region [putative poly (A) tail or SL sequence] and the
genomic region contiguous to the primary region [by calculating
the Hamming distance; (He et al., 2004)]. A true processing event
would result in a sequence that is independent of this genomic
region, so the greater the difference between the secondary region
and the genomic region, the higher the score. In trypansomatids,
where a high number A tracts repeats are present in the intergenic
regions (Duhagon et al., 2011), a poly(A) in a read could be the
result of transcription and not mRNA processing. Another aspect
to consider is the length of the secondary region. The longer this
sequence, more likely it represents a true post transcriptional
event and this is included in the score. Also, the number of
adenines in the secondary genomic region is also considered; a
higher proportion of As result in a smaller the score. Finally,
UTRme also considers aspects that influence the reliability of the
processing site determination (see Supplementary File 1). Most
are used to fine tune the final individual score and depends on
features such as the confidence that the read was not misplaced
during mapping, the presence of specific splicing signals (AG
acceptor and polypyrimidine tract [poly(Y)] and the existence
of unannotated open reading frames (ORFs) or undetermined
nucleotides (Ns) in the defined region. As an example, the
presence and characteristics of a poly(Y) tracts upstream of the
trans-splicing site is verified. We defined poly(Y) tracts as the
longest tract of pyrimidines not interrupted bymore than a single
purine (Dillon et al., 2015). The presence and composition of
the tract is analyzed, and scores are assigned considering their

FIGURE 2 | UTRme classification of read regions. Regions of each read and their counterparts in the genome are defined by UTRme as primary and secondary.
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accordance with poly(Y) tract characteristics defined in (Siegel
et al., 2005).

The global score considers the cumulative evidence of all the
reads that support a single processing site giving a broader view
of the accuracy of the site. For SL sites, it is proportional to
the number of reads that support the site (“occurrences”). For
poly(A) sites, in addition to the previous metric, the sequences of
the putative poly(A) tail of all the reads that support the site is
analyzed (for details see Supplementary File 1).

Finally, the reported score is calculated by adding the global
score to the value of the third quartile of the individual’s scores of
all the reads that support that site. The maximum value for this
score is set to 100. The higher the score the more confident is the
prediction. All sites with positive scores are reported as they are
supported by a reasonable amount of evidence. By default, if a site
has a negative score it is not reported (this can be modified by the
user).

In summary, the reported score recaps many aspects that
influence the certainty that a site can be defined with the provided
RNA-seq data.

Assessment of UTRme Accuracy
UTRme takes about 1 h to process 90M paired reads in a
middle-sized hardware configuration (40 cores−3 Gb max. RAM
footprint). The results are presented as tab—delimited text or
excel files, report plots, annotation and sequence files.

Tables include a full report that details both the basic
information of the site (such as associated gene, UTR length,
acceptor dinucleotide for the SL, and site score) and also
the different computed scores and other features of the site
(information about the poly(Y) tract for the SL, maximum ORF
sequence in the UTR -if its length is greater than 30 amino acids-
, among others) (Supplementary Table 1). A summary report is
also created where only basic information for the best scoring site
is informed for each gene (Table 1).

UTRme generates both a sequence fasta file containing the
sequences of the UTRs, as well as an annotation gff file that allows
visualization and further analysis (Supplementary Figure 1).

TABLE 1 | Example of UTRme summary report output.

Gene utr_len acceptor score occurrences # sites

TcCLB.397937.5 15 AG 89 418 4

TcCLB.398343.9 80 AG 79 2 2

TcCLB.399033.19 21 AG 90 27 4

TcCLB.400945.10 100 AG 85 39 4

TcCLB.404001.10 14 AG 95 59 3

TcCLB.404001.4 11 AG 91 75 5

TcCLB.404843.20 143 AG 92 65 2

TcCLB.405165.19 41 AG 92 54 4

TcCLB.407477.20 10 AG 91 64 2

TcCLB.407477.30 63 AG 96 51 4

Summary report of best scoring epimastigote’s SL sites using epimastigote RNA-seq data

from Li et al. (2016). The first 10 lines are shown.

This output is provided for all the sites and for the best
scoring sites separately. Finally, the reported plots show
general properties of the predicted UTRs (UTR lengths, scores,
occurrences vs scores, number of sites per gene) (Figure 3).

To test the accuracy of the software, RNA-seq data from T.
cruzi epimastigotes was obtained using an approach aimed to
obtain a 5′ end enriched library. To improve mapping accuracy
the average read size was set to 400 nt (see Methods section).
5′ processing sites were defined using UTRme and the best
scoring ones where checked against previously published UTRs
that were described though specific experimental approaches
(Table 2) (Bontempi et al., 1994; Di Noia et al., 1998, 2000;
Vandersall-Nairn et al., 1998; Teixeira et al., 1999; Búa et al., 2001;
D’Orso and Frasch, 2001; Bartholomeu et al., 2002; Bhatia et al.,
2004; Coelho et al., 2006; García et al., 2010).

Also, the availability of deep sequenced transcriptomes (Li
et al., 2016) for the same T. cruzi stage, allowed us to check
UTRme performance using reads obtained using a standard
protocol RNA-seq experiment and shorter reads. As before,
UTRme predictions were contrasted against the previously
described UTRs. UTRme results for both approaches showed
an excellent agreement with previously reported processing sites
(Table 2). In most cases UTRme predicts the same UTR or a site
that is within a few bases from the experimentally defined site,
highlighting that the algorithm predicts sites with good precision.
For those cases where the experimentally determined site was
not identical to the best score site predicted by UTRme, the
experimental site was usually present in the list of predicted
sites with a lesser score. In the case of the deep sequenced
transcriptome a greater number of processing sites was detected
as reflected in the table.

To further validate our results in a genome wide scale,
RNA-seq reads were simulated using randomly assigned UTRs.
UTRme predicts 3′ UTRs for 7,116 genes, most of which (97.2%)
are correctly assigned (within 5 nt distance of the real site).
Considering multi mapping reads more genes are assigned a
poly(A) site (7,884), but the accuracy diminishes significantly
(91.4%). Taking into consideration the percentage of multi
gene family members in the Tritryps genomes this is expected.
This result prompted us not to consider multi-mapping reds
by default. An analogous result is obtained for the miniexon
addition site, assigning UTRs for 7,640 genes where 98.2%
are correctly predicted, while when multi-mapping reads are
considered the number of genes increases and a decrease in
accuracy is observed (8,530 assigned 5′ UTRs with an accuracy
of 92.5%).

It is interesting to note that when the dinucleotide of
the 5′ splicing acceptor site is studied for the simulation, an
overrepresentation of the AG dinucleotide is not observed.
This is expected as UTRs lengths where randomly assigned.
However, when this analysis is performed for real RNA-seq
data, the AG dinucleotide is clearly the major acceptor site as
expected (Supplementary Figure 2), reinforcing the accuracy of
the annotations.

A key feature of UTRme is the reporting of a global
score for each site. Positive scoring sites are given as they
are supported by a reasonable amount of evidence. A higher
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FIGURE 3 | Example of UTRme summary plots output. Reported plots for the 5′ and 3′ UTRs predicted using T. cruzi epimastigote Y strain RNA-seq data from Li

et al. (2016). Plots for 5′ and 3′ UTRs are in dark gray and light gray, respectively. (A) Kernel density estimation plot of UTR lengths. (B) Kernel density estimation plot

of both 5′ and 3′ UTR score distribution. (C) Kernel density estimation plot for the number of 5′ and 3′ UTR sites. In all cases the median is indicated as a dotted line.

(D) Central panel: Scatter plot of 5′ UTR scores vs occurrences. A higher point density is indicated by a darker color for each bin. Upper panel: histogram of

occurrences. Right panel: histogram of scores.

TABLE 2 | Comparison of UTRme predictions against experimentally defined processing sites.

Site Gene UTRme

5′ enriched

UTRme

Li

UTRme

Pastro

SlaP

mapper

pastro

Exp. Article

5′ TcCLB.509147.50 48 51 51 54 55 Di Noia et al., 2000

5′ TcCLB.511679.10 51 51 51 54 51 Di Noia et al., 2000

3′ TcCLB.506533.142 786 786 764 – 789 Di Noia et al., 2000

3′ TcCLB.511679.10 – 375 – – ∼353 Di Noia et al., 2000

5′ TcCLB.507485.140 – 140 137 – 137 Teixeira et al., 1999

5′ TcCLB.506407.10 93 102 101 718 103 Vandersall-Nairn et al., 1998

5′ TcCLB.509123.10 – 33 – – 33 García et al., 2010

5′ TcCLB.505931.50 43 76 72 43 76 Bontempi et al., 1994

5′ TcCLB.507093.220 68 66 68 – 68 D’Orso and Frasch, 2001

5′ TcCLB.507639.30 42 42 42 42 42 Coelho et al., 2006

5′ TcCLB.507511.81 – 41 41 – 41 Di Noia et al., 1998

5′ TcCLB.510241.70 – 144 144 144 142 Bhatia et al., 2004

5′ TcCLB.506925.300 60 60 58 63 60 Búa et al., 2001

5′ TcCLB.506563.40 110 110 110 113 110 Bartholomeu et al., 2002

For UTRme predictions the best scoring site using T. cruzi epimastigote data is shown. UTRme 5′ enriched: UTRme predictions using In-house low pass sequencing of 5′ UTR enriched

library. UTRme Li: UTRme predictions using Li et al. (2009) data. UTRme Pastro: UTRme predictions using Pastro et al. (2017) data. SLaP mapper Pastro: SLaP mapper predictions

using Pastro et al. (2017) data. Exp., Experimentally defined sites. Article: Reference where the experimental prediction was described.

score indicates more evidence supporting the site. Using the
simulated dataset, we explored the relationship between the
UTRme score and the software performance. A plot that depicts
the number of correct predictions (true positives) vs. the number
of incorrect assignments (false positives) for various score
cutoffs was constructed (Figure 4A for the 5′ UTRs results, see
Supplementary Figure 3A for the 3′ results).

The figure clearly shows that increasing the score decreases
rapidly the number of false positives. High scores (>80) show
virtually no false positives; as the score decreases, both the
number of both true and false positives increase, but true
positives increase at a higher rate. When the score reaches a
value around the average, this trend starts reverting. Even though
further lowering the score accomplishes an increase in true
positives, this is accompanied by an increased rate of incorrect
assignments. It is important to notice that the maximum number

of true positives is around 7000 sites, while the maximum
number of false positives is <120, even for the lowest scores.
All this indicates that, as expected, incorrect assignments tend
to have lower scores. This is more clearly shown in Figure 4B

(and Supplementary Figure 3B for 3′ sites) where the score and
distance to the real site for incorrect assignments are plotted
together with a histogram representing the score for all the sites.
Most false positive annotations present low scores compared to
the general distribution. All this evidence supports that UTRme
is a very accurate tool and that the score reflects the reliability of
the predicted sites.

To test the possibility of annotating UTRs outside
trypanosomes, Echinococcus granulosus RNA-seq data (13
paired end data from SRA Bioproject accession PRJEB5096)
was examined with UTRme. The corresponding miniexon
sequence was obtained from Brehm et al. (Brehm et al., 2000).

Frontiers in Genetics | www.frontiersin.org 5 December 2018 | Volume 9 | Article 671

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Radío et al. UTRme: Annotation of UTR Regions

FIGURE 4 | UTRme accuracy assessment for 5′ UTRs. (A) Dependence of the number of true positives and false positives on the UTRme score (indicated as inserts).

(B) False positive annotations are plotted as dots indicating their score and distance to the real processing site. The histogram shows the distribution of scores for all

predicted sites.

One thousand eight hundred and ten sites in 1,369 genes were
annotated with a 5′ UTR, while a polyadenylation site could
be assigned for 6,841 genes presenting a total of 24,946 sites.
These are expected results as SL addition is not pervasive in
plathelminths as it is in trypanosomatids (Brehm et al., 2000).
Analysis of the sequence of the trans splicing acceptor sites
reveal a high percentage of the AG dinucleotide supporting the
reliability of the annotated sites (Supplementary Figure 4A).
A summary of UTR lengths and UTRme score distribution is
shown in Supplementary Figures 4B,C.

Comparison With Previously Available
Tools
Several groups have reported tools to identify 3′ UTRs in
eukaryotes, however the algorithms consider signals not clearly
present in trypanosomatids and lack the possibility of studying 5′

processing sites (Xia et al., 2014; Kim et al., 2015; Grassi et al.,
2016; Ha et al., 2018). For trypanosomatids, there are reports
of global identification of UTRs, but in most cases the task was
performed using in-house tools (Gopal et al., 2005; Siegel et al.,
2005; Kolev et al., 2010; Kelly et al., 2011; Dillon et al., 2015).

Currently, to our knowledge, the most accessible method to
predict UTRs in trypanosomatid genomes is the SLaP mapper
web service (Fiebig et al., 2014). To contrast UTRme results
with those obtained by SLaP mapper we used 27M paired-end
reads from T. cruzi epimastigotes (Pastro et al., 2017) (number
of reads was reduced to accommodate SLaP mapper upload
size limitation). In this experiment, where standard RNA-seq
protocols were carried-out, UTRme was able to detect 8,448
5′ UTR regions in 5682 genes whereas SLaP mapper detected
5,343 sites in 4,061 genes. Of the genes detected by UTRme,
1878 were exclusive whereas SLaP mapper detected 257 genes
exclusively. Three thousand eight hundred and four genes were
detected by both software packages of which 88% had coincident
predictions (Figure 5A). Of the 8,448 total sites identified by
UTRme, 3,408 did not show matches with SLaP mapper, 71%

were due to sites corresponding to genes detected exclusively
by UTRme. SLaP mapper detected 536 exclusive sites, of which
56% were due to genes only detected by this software. The
number of coincident sites is 5,040 for UTRme and 4805 for
Slap mapper (the difference is due to the fact that a 5 pb window
was implemented to define matching sites) (Figure 5B). The
median length for the 5′ UTR regions was similar in both cases
(59 and 53 bp for UTRme and SLaP mapper, respectively).
While the median length for sites detected exclusively by UTRme
remains around this figure (88.5), in sites detected exclusively
by SLaP mapper this number increases to 786, which may
be indicative of issues in these non-coincident annotations
(Supplementary Figure 5A). For 3′ UTRs a similar situation was
found (see Supplementary Figures 5B, 6).

Considering the genes where both tools predicted splicing
sites, a density plot shows a very good correlation (Figures 6A,C).
Interestingly, this correlation is better for sites with high
UTRme score. This is shown in Figures 6B,D. Here, sites
were classified as coincident if their length difference was
5nt or less or non-coincident otherwise. The percentage of
coincident and non-coincident sites that are above a certain
score threshold is calculated and plotted. The figure shows that
this percentage decreases more rapidly for non-coincident sites
than for coincident sites when the UTRme score increases. This
observation supports that in cases where a high score is assigned
by UTRme (which suggests that the sites can be readily identified
by the reads), SLaPmappermostly reports the same site, verifying
that the score is a key factor in capturing the certainty of site
definition. Nonetheless, a low score in UTRme indicates that
there was less evidence to support it, which in turn likely explains
the decrease in correlation with SLaP mapper predictions.

We also compared the results obtained using UTRme to
analyze the RNA-seq T. brucei data generated by Kolev, et al. in
(Kolev et al., 2010) with the ones reported by the authors. These
authors constructed a SL-primed library and a 3′ end-enriched
library to detect 5′ and 3′ boundaries, respectively, predicting
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FIGURE 5 | Venn diagrams comparing the results of UTRme and SLaP mapper 5′ processing sites annotations. (A) The intersection of the genes predicted by each

tool is shown. (B) For genes were annotations are available for both tools, the intersection of the sites predicted by each tool is shown.

FIGURE 6 | Comparison of UTRme best scoring sites with the ones predicted by Slap mapper using Pastro et al. (2017) data. (A) Scatter plot of 5′ UTR lengths.

Darker regions indicate higher density of points. (B) The percentage of points that have scores above a threshold is plotted for coincident and non-coincident sites.

Dark gray: non-coincident sites. Light gray: coincident sites. The percentage was calculated until the number of sites remaining is above 10 (C,D). Same as (A,B) for

3′ UTRs.

processing sites by using an in-house pipeline. The results
obtained for the comparison where similar to the ones observed
for SLaP mapper (Supplementary Figures 7, 8).

Interestingly, for both comparisons UTRme was able to
predict a higher number of sites. This is possibly due to the
inclusion by UTRme of predictions that are discarded by other
tools but that UTRme does include by penalizing them with a
low score. The good correlation between the results obtained
through the two tools and the influence of the UTRme score on
the percentage of agreement is clearly shown in both cases.

Globally, the comparison of UTRme with available data and
applications supports the software accuracy and highlights the
importance and usefulness of the UTRme scores.

FINAL REMARKS

Post-transcriptional mechanisms are recognized as important
regulatory steps in eukaryotes. Post-transcriptional mRNA
regulators most commonly bind to sequences present in UTR
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regions, so their definition is critical to better understand
regulatory networks. For trypansomatids, UTR delimiting
algorithms are confounded by the presence of the A tracts in
intergenic regions (Duhagon et al., 2011) and by the repetitive
nature of the sequences that cause issues in the genomic
assembly, among other reasons. This lead us to develop UTRme,
a tool that allows not only the identification of processing sites
from RNA-seq data but also reports their associated confidence.
UTRme is easy to install in linux based systems, is provided with
a GUI making it user friendly and it does not require previous
expertise on RNA-seq data analysis, something we expect that will
make the tool more readily available for wet lab biologists.

As shown by the excellent correlation with sites
experimentally determined and considering the results obtained
for the simulated RNA-seq data, we can conclude that UTRme
predicts sites with excellent precision and that the scoring system
is capable of reflecting the certainty of the annotations. The
comparison with other tools allowed us to further support the
advantage and usefulness of the UTRme scoring system which
discriminates between sites that are clearly predicted, from those
where evidence is less clear.

Finally, UTRme can be applied to predict 3′ processing sites
not only in trypanosomatids but any eukaryotes and can be used
for 5′ end determination in other organisms where trans splicing
occurs.
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