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The chromosomal loci known as centromeres (CEN) mediate the equal distribution of
the duplicated genome between both daughter cells. Specifically, centromeres recruit
a protein complex named the kinetochore, that bi-orients the replicated chromosome
pairs to the mitotic or meiotic spindle structure. The paired chromosomes are then
separated, and the individual chromosomes segregate in opposite direction along
the regressing spindle into each daughter cell. Erroneous kinetochore assembly or
activity produces aneuploid cells that contain an abnormal number of chromosomes.
Aneuploidy may incite cell death, developmental defects (including genetic syndromes),
and cancer (>90% of all cancer cells are aneuploid). While kinetochores and their
activities have been preserved through evolution, the CEN DNA sequences have not.
Hence, to be recognized as sites for kinetochore assembly, CEN display conserved
structural themes. In addition, CEN nucleosomes enclose a CEN-exclusive variant of
histone H3, named CENP-A, and carry distinct epigenetic labels on CENP-A and
the other CEN histone proteins. Through the cell cycle, CEN are transcribed into
non-coding RNAs. After subsequent processing, they become key components of the
CEN chromatin by marking the CEN locus and by stably anchoring the CEN-binding
kinetochore proteins. CEN transcription is tightly regulated, of low intensity, and essential
for differentiation and development. Under- or overexpression of CEN transcripts, as
documented for myriad cancers, provoke chromosome missegregation and aneuploidy.
CEN are genetically stable and fully competent only when they are insulated from the
surrounding, pericentromeric chromatin, which must be silenced. We will review CEN
transcription and its contribution to faithful kinetochore function. We will further discuss
how pericentromeric chromatin is silenced by RNA processing and transcriptionally
repressive chromatin marks. We will report on the transcriptional misregulation of
(peri)centromeres during stress, natural aging, and disease and reflect on whether their
transcripts can serve as future diagnostic tools and anti-cancer targets in the clinic.
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CENTROMERES, KINETOCHORES, AND ANEUPLOIDY

During cell division, the replicated chromatids that are associated by cohesin rings bind to the
microtubules of the metaphase spindle, which extend from two opposite spindle poles (Figure 1).
This binding is mediated by kinetochores, each of which assembles on the centromere (CEN) of
each chromatid. CENP-A/CenH3, a variant of histone protein H3, recruits all kinetochore subunits
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and spindle assembly checkpoint (SAC) proteins to the
centromeric nucleosome(s). To prevent aneuploidy, the
SAC monitors chromosome-spindle attachment at each
kinetochore. The SAC arrests the cell division process at the
metaphase–anaphase transition when a single chromosome pair
is found to be unbound or misbound to the mitotic spindle.
The SAC kinase Aurora B then phosphorylates the outer
kinetochore Ndc80 protein of each misbound sister pair to
detach it from the spindle structure. The delay of mitosis allows
for a correct re-attachment. Only when the SAC is satisfied
will all sister chromosomes separate by enzymatic cleavage of
the cohesin rings. Each kinetochore-bound chromatid then
moves into the daughter cells by depolymerization of the
spindle microtubules and, in some eukaryotes, by additonal
motor protein activity. In the end, each cell receives a full
complement of the maternal genome (Figure 1). Abnormal
CEN or kinetochore activity has been linked with cancer
initiation/progression, developmental defects, and genetic
disease (Holland and Cleveland, 2009; Santaguida and Amon,
2015). For more detailed information about kinetochores
we refer to Fukagawa and Earnshaw (2014); McKinley and
Cheeseman (2016); and Musacchio and Desai (2017). Of note,
during revision of this manuscript, an excellent review was
published (Perea-Resa and Blower, 2018) partially overlaps with
ours in subject matter.

CENTROMERES: EVOLUTIONARY
DIVERGED SEQUENCES

The CEN was first identified as the central constriction of each
chromosome during the light microscopic analysis of mitotic
salamander cells (Flemming, 1880). Today, it is defined as
the chromosomal region that underlies the stable transmission
of the nuclear genomic content from one generation to the
next. In the 1980s; the CEN of budding yeast Saccharomyces
cerevisiae chromosome 3, and all three CEN of the fission
yeast Schizosaccharomyces pombe were the first CEN loci to
be characterized (Clarke and Carbon, 1980; Nakaseko et al.,
1987; Figures 2A,B). The short budding yeast “point” CEN is
∼120 bp long and contains three DNA elements that wrap
around a single CEN nucleosome. Alternate stretches of A and
T residues, which cause DNA bending, comprise CDEII, which
is bordered by palindromic motifs named CDEI and CDEIII
(Figure 2A). In contrast to CDEII and CDEIII, CDEI is not
essential for kinetochore activity but mutations in its sequence
cause chromosome loss (Niedenthal et al., 1991). In S. cerevisiae,
the CEN sequence per se defines CEN identity. In contrast and
because of their 40–110 kb length, the CEN in fission yeast are
designated as “regional.” They comprise a 4–7 kb core sequence
named cnt that encloses multiple CEN nucleosomes. The core is
flanked by inverted, 6 kb-long innermost imr repeats that contain

FIGURE 1 | Chromosome replication and segregation in a cell undergoing the mitotic cell division cycle. Kinetochores bi-orient the replicated chromosomes (forming
sister chromatids) on the metaphase spindle along which they then segregate in opposite directions into the two daughter cells that receive a full complement of the
maternal genome (green arrows). Errors made during the segregation process caused by CEN or kinetochore malfunction lead to aneuploid daughter cells (red
arrows) carrying an abnormal number of chromosomes. Consequences are cell death, genetic disease (developmental defects), and cancer initiation/progression.
The insert shows a more detailed representation of a sister chromosome pair whose chromosomes (original and copy) are linked by cohesion rings. The sister
chromosomes are bound to the spindle microtubules via kinetochores that assemble on the CEN sequence of each chromosome.
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FIGURE 2 | (A) Left: The S. cerevisiae point CEN (the consensus CDEI and CDIII sequences are indicated; W = A or T, N = any base). Right: A single CENP-A
containing nucleosome is bound to a single microtubule by a single kinetochore (based on Bloom and Costanzo, 2017). (B) Left: The S. pombe regional CEN. Black
dots: tRNA clusters. See text for details. Right: A single, looped CEN harboring CENP-A- and histone H3-containing nucleosomes is bound to three microtubules via
a single kinetochore (based on McFarlane et al., 2010). (C) Left: A typical human (Homo sapiens) chromosome. White regions: euchromatin, gray region: centromeric
chromatin, black regions: heterochromatin. The latter represent the pericentromeres, telomeres, LINEs, SINEs, micro- and macrosatellites, β, γ, I, II, III-satellites,
rDNA, and DNA transposons (approximate lengths are indicated in the black box). The gray arrows represent the CEN alpha-satellite monomers, organized in a
head-to-tail fashion. HOR, high-order repeat of alpha-satellite monomers (green arrow). A-boxes (dark green) and B-boxes (purple) are indicated, as well as the
cruciform configuration of a dyad sequence. Right: Human centromeric chromatin with the CENP-A containing nucleosomes clustered and exposed in amphipathic
configuration at its outside is bound by numerous kinetochores to a bundle of microtubule fibers (based on Fukagawa and Earnshaw, 2014). See text for details.

clusters of tRNA genes. Together, these three elements form the
central domain, which is flanked left and right by outer repeats,
otr, named dg and dh (Figure 2B).

The regional CEN of most higher eukaryotes are comprised
of retrotransposon repeats and repeats of a simple 171-bp

CEN sequence, named alpha-satellite DNA, where the
CENP-A nucleosomes reside (Figure 2C). The surrounding
pericentromeric domains contain repeats that are less ordered.
In humans and most primates, the alpha-satellite sequence
is organized in back-to-back fashion, forming a high-order
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repeat (HOR) (Manuelidis and Wu, 1978; Willard, 1985).
Within a HOR, alpha-satellite monomers are 50–70% identical
(Willard, 1985). Each HOR is repeated hundreds-to-thousands
of times, producing 2–5 Mb-long arrays (Aldrup-MacDonald
and Sullivan, 2014; Figure 2C). Different chromosomes are
distinguished by variations within the alpha-satellite sequences,
by the number of alpha-satellite monomers, and the overall
size of the HOR. Not all alpha-satellite monomers contribute
to human kinetochore activity, these are labeled as “inactive.”
Human CEN contain alpha-satellite monomers of the A
and B type, while lower primates only have A-type satellites
(Alexandrov et al., 2001). Both monomers differ in a 17-bp
sequence called A or B box (Figure 2C). The latter, also named
CENP-B box, binds CEN protein CENP-B (Masumoto et al.,
1989). It is unclear if a specific protein binds to the A box.
Human chromosomes, except the Y chromosome, contain
B-type alpha-satellite monomers (Tyler-Smith and Brown, 1987).
A third type of alpha-satellite monomers contains neither an A
nor a B box. The CEN in mice consist of homogeneous arrays
of 120-bp minor satellite (MinSat) repeats, that are flanked by
repeats of less-ordered 234-bp major gamma-satellite (MajSat)
sequences (Joseph et al., 1989). The CEN repeat units in higher
eukaryotes are typically around 150 bp in length [178 bp in plants
(Kumekawa et al., 2001; Nagaki et al., 2003)], each enclosing one
CENP-A nucleosome. However, they can be much shorter as in
Drosophila melanogaster, whose CEN (200–500 kb) are made up
of 10-bp repeats followed by 11/12-bp tandem repeats (Garavís
et al., 2015b).

Most eukaryotes are monocentric since their chromosomes
contain one CEN. In contrast, moths and butterflies, as well
as nematodes such as Caenorhabditis elegans, and arachnids
contain holocentric CEN that cover the entire chromosome,
except for the telomeric regions (Heckmann et al., 2011;
Steiner and Henikoff, 2014). While the C. elegans genome
comprises few tandem repeats (Hillier et al., 2007), ∼50% of
the genome is associated with CENP-A in 20 CEN domains
of variable size (Albertson and Thomson, 1982; Gassmann
et al., 2012). Its kinetochores hence may assemble randomly
or at specific regions. While the evolutionary forces that drove
holocentrism are unknown, one benefit may lie in DNA breaks.
In contrast to broken monocentric chromosomes, fragmented
holocentric chromosomes can still segregate in mitotic anaphase
because of the multiple microtubule attachments they may
contain. Nevertheless, the prevalence of monocentrism suggests
selective advantages, possibly related to difficulties in segregating
recombined holocentric chromosomes during meiosis (Maddox
et al., 2004). For more detailed information about CEN we refer
to Aldrup-MacDonald and Sullivan (2014); Bloom and Costanzo
(2017); and Fukagawa and Earnshaw (2014).

TRANSCRIPTIONALLY ENHANCED
CENTROMERE FEATURES

Centromeres evolved rapidly due to homologous recombinations
between stretches of tandemly repeated sequences. Even within
one organism CEN sequences differ significantly between its

chromosomes. Despite this divergence, most CEN-binding
kinetochore proteins are conserved. This “CEN paradox” is
explained by the maintenance of CEN-specific structural themes
during the co-evolution of CEN DNA and the CEN-binding
kinetochore proteins (Henikoff et al., 2001). The adaptive
evolution of CENP-A and its orthologs involves regions within
this protein that are predicted to contact the centromeric DNA
(Talbert et al., 2004; Schueler et al., 2010). In turn, CEN may
not have been selected based on their DNA sequence but rather
on non-canonical structures that act as beacons for kinetochores
and sustain the pulling forces that CEN nucleosomes undergo
during chromosome segregation. Studies of CEN from numerous
species have indicated a functional significance of non-B-form
DNA structures including single-stranded (ss) DNA, hairpins,
triplexes, i-motifs, and cruciform extrusions as observed in vitro
and/or in vivo (Zhu et al., 1996; Ohno et al., 2002; Jonstrup
et al., 2008; Garavís et al., 2015a,b; Aze et al., 2016; Kabeche
et al., 2018). All CEN, except those of S. cerevisiae, maintain
a high level of inter-repeat sequence property, suggestive of
a recombination-based mechanism that produces covalently
closed stem–loop structures, which may define CEN recognition
and activity. A conserved stem–loop model would demand
repeat DNA sequences, explaining the evolution of the CEN’s
repeat-array configuration (illustrated for the S. pombe CEN in
Figure 2B). Metazoans might require a threshold number of
these loop structures to produce a functional CEN (McFarlane
et al., 2010). Possibly, the single-stranded loops could be formed
temporarily during replication and/or transcription to seed
kinetochores.

A neocentromere, being a new CEN that originates at a
site that is not centromeric usually due to disruption of the
natural CEN, lack centromeric alpha-satellite DNA, but are fully
competent to generate a primary constriction and assemble
a functional kinetochore (Marshall et al., 2008) indicating
that alpha-satellite DNA per se is not a trigger for attracting
CEN proteins. However, neocentromeres actually form at
chromosomal sites that not only contain pre-existing repeats
but further develop extensive repetitive DNA sequences over
time, indicating the advantage of acquiring an extensive repeat
configuration (Marshall et al., 2008). Epigenetic mechanisms are
additionally required for maintaining neocentromere identity
and activity.

Drosophila melanogaster CEN are made up of short satellite
DNA repeats (AATAACATAG)n followed by doceda tandem
repeats (CCCGTACT[C]GGT) that show an asymmetric
distribution of G and C residues. In vitro, the C-rich dodeca
satellite single strand produces an “i-motif ”; a cubic structure
that is formed by the head-to-tail association of two parallel
strands combined in antiparallel fashion (Garavís et al., 2015b;
Figure 2C). Similar i-motif structures arise in vitro between
human alpha-satellite monomers in which the C-rich strand
of one A-box associates with that of a neighboring A-box.
CEN-B boxes also form i-motifs, while those produced from an
A- and B-box strand are somewhat unstable in vitro (Garavís
et al., 2015b). Murine Y CEN satellite DNA that lacks an
A/B-box has a sequence capable of forming an i-motif in an
equivalent position (Garavís et al., 2015a). As i-motifs can
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form upon transcriptionally induced supercoiling (Sun and
Hurley, 2009) and since the transcription of alpha-satellite
DNA is required for CEN function (Chan et al., 2012), negative
superhelicity may favor i-motif formation under physiological
conditions.

In vivo evidence for the phasing of CENP-A nucleosomes
showed that their positioning is a physical requirement for CEN
function (Hasson et al., 2013; Zhang et al., 2013). In most
higher eukaryotes CEN chromatin contains blocks of CENP-A
that are interspersed with blocks of histone H3-containing
nucleosomes (Bodor et al., 2014; Fukagawa and Earnshaw, 2014;
Figures 2A,C). CENP-A nucleosomes may associate laterally
and exclude the H3-containing nucleosomes. The flexibility
observed in the chromatin that flanks the CENP-A nucleosomes
facilitates these interactions (Panchenko et al., 2011; Hasson
et al., 2013). In humans, the phasing of CENP-A nucleosomes on
alpha-satellite DNA places the A- and B-boxes at the beginning
and at the end of the nucleosome (Hasson et al., 2013). Models
of CEN chromatin folding into an amphipathic helix, loop, or
boustrophedon that expose the CENP-A nucleosomes at the
chromatin surface have been suggested to facilitate kinetochore
formation (Blower et al., 2002; Bloom and Costanzo, 2017).
A hierarchical mechanism of chromatin folding based on A- and
B-box interactions and i-motif formation may determine the
3D organization of the CEN. Although CENP-B null mice
are viable (Kapoor et al., 1998), CENP-B is required for
de novo CEN formation on artificial chromosomes (Ohzeki
et al., 2002) and enhances chromosome segregation fidelity

(Fachinetti et al., 2015). Possibly, B-box i-motifs contribute to
a nucleosome environment that improves kinetochore assembly
and activity.

While examining the CEN from different species, Kasinathan
and Henikoff (2018) identified clade-specific variations in
<10-bp dyad symmetries predicted to adopt stable non-B-form
cruciform extrusions (Figure 2C). Satellites lacking CENP-B
boxes were highly enriched in these palindromes. Non-B-form
DNA regions were abundant in human alpha-satellite and
murine MinSat sequences from activated B cells, while reduced
levels were observed in non-proliferating cells, suggesting that
replication induces cruciform extrusions at CEN in dividing
cells (Kasinathan and Henikoff, 2018). The authors propose
that CEN are either highly enriched with dyad sequences or
less-enriched in dyads that flank a nearby binding site for a
DNA-bending protein whose association may stimulate dyad
cruciform formation. The four-way junctions of the cruciform
could be recognized by the HJURP chaperone (Scm3 in
yeast) that loads CENP-A into the centromeric nucleosome
(Dunleavy et al., 2009; Foltz et al., 2009; Sanchez-Pulido
et al., 2009). Non-B form elements may also facilitate CEN
transcription initiation and elongation by RNA polymerase II
(RNAPII), enabling the loading of CENP-A during nucleosome
remodeling. Also, CENP-B may be dispensable for CEN where
HJURP is recruited by CENP-C and the MIS18 complex
(Nardi et al., 2016) (see below). Hence, A/B boxes and dyad
sequences may organize and activate CENP-A loading into CEN
nucleosomes.

FIGURE 3 | (A) Epigenetic modifications that mark histones and DNA (cytosines) in the pericentric and centromeric domains. The positive or negative signs indicate
whether the modification underlies transcriptional silence or activity, respectively. Modifications of CENP-A required for its deposition or maintenance are also listed.
See text for explanations. (B) Schematic outline of transcription-dependent inclusion of histone H3 variant CENP-A at the CEN chromatin, and recruitment of
downstream kinetochore components as in vertebrates. See text for details.
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POST-TRANSLATIONAL
MODIFICATIONS OF CENTROMERIC
AND PERICENTROMERIC CHROMATIN

Within the CEN domain, CENP-A nucleosomes are interspersed
with canonical nucleosomes whose histone H3 tails are
methylated at Lys4 (H3K4me1, H3K4me2) and Lys36
(H3K36me2, H3K36me3) (Figure 3A). These modifications
underlie open chromatin, promote RNAPII activity, and are
essential for HJURP targeting and CENP-A assembly (Bergmann
et al., 2011; Duda et al., 2017). They also differentiate the CEN
chromatin from the surrounding pericentromere regions, which
are marked differently (see below and Figure 3A) (Sullivan
and Karpen, 2004; Eymery et al., 2009; Gopalakrishnan et al.,
2009; Bergmann et al., 2011, 2012). Intriguingly, H3K9me3,
typically associated with transcriptional repression, also labels
the centromeric nucleosomes (Bergmann et al., 2012) indicating
that CEN chromatin epitomizes both silent heterochromatin and
transcribed euchromatin (Sullivan and Karpen, 2004).

Histone H4 mono-acetylation at Lys5 and Lys12, which
correlates with transcribed chromatin, is enriched at CEN and
is essential for CENP-A deposition in chicken cells (Shang et al.,
2016; Figure 3A). H4 mono-methylation at Lys20, which marks
human and chicken CENP-A nucleosomes, and is associated
with transcriptional activation, is a prerequisite for kinetochore
assembly (Sullivan and Karpen, 2004; Vakoc et al., 2006; Wang
et al., 2008; Bergmann et al., 2011; Hori et al., 2014). Histone H2B
mono-ubiquitination at Lys119, catalyzed by the E3 ubiquitin
ligase RNF20/40 (Brl1 in S. pombe), is required for CEN
transcription (Zhu et al., 2011; Sadeghi et al., 2014). Depleting
RNF20 reduces CEN transcription and nucleosome turnover, and
causes chromosome missegregation in human cells and S. pombe
(Sadeghi et al., 2014; Zhang et al., 2017). The ubiquitin ligase
BRCA1 preserves CEN identity by ubiquitinating histone H2A
at Lys119, producing a repressive mark. BRCA1 depletion, led
to CEN transcript overexpression, impaired CEN cohesion and
SAC activity, and chromosome missegregation (Di Paolo et al.,
2014).

CENTROMERE TRANSCRIPTION,
PROMOTERS, AND TRANSCRIPTION
FACTORS

Although electron microscopy-based studies had localized
RNA at kinetochores in union and salamander cells in
the 1970s (Braselton, 1975; Rieder, 1979), CEN were long
considered transcriptionally silent since they are confined in
transcriptionally inert heterochromatin. Today we know that
CEN are actively transcribed by RNAPII, which has been detected
at CEN in S. pombe, flies, and human cells, at centromeric
chromatin on human artificial chromosomes (HACs), and at
neocentromeres (Wong et al., 2007; Li et al., 2008; Chueh et al.,
2009; Ferri et al., 2009; Bergmann et al., 2011; Choi et al., 2011;
Ohkuni and Kitagawa, 2011; Lyn Chan and Wong, 2012; Quénet
and Dalal, 2014; Rošić et al., 2014; Catania et al., 2015). Despite

the evidence of RNAII polymerase transcribing the CEN, very
little is known about the promoters and transcription factors
involved.

In S. cerevisiae, RNAPII-mediated CEN transcription is
driven by transcription factors Cbf1 and Ste12. Cbf1 promotes
transcription from the sense strand, Ste12 from the antisense
strand. Silencing protein Dig1 inhibits Ste12. Transcriptional
silencers Sir1, Hst1–Sum1, and Cdc14–Net1 associate with
the CEN sequence, possibly to antagonize RNAPII. While
deleting CBF1 or STE12 did not prevent kinetochore assembly,
each mutant experienced chromosome loss. This phenotype
was rescued by driving CEN transcription from an inducible
promoter introduced next to the Cbf1- or Ste12-binding site,
illustrating that CEN transcription is imperative for kinetochore
activity (Ohkuni and Kitagawa, 2011). CEN transcripts in
S. cerevisiae remained unidentified until exosome activity (which
degrades non-coding RNAs) was removed, indicating a fast
turn over of these transcripts. This approach revealed a 1.2-
kb CEN3 RNA species, revealing that RNAPII proceeds into
the pericentromere (Houseley et al., 2007). Low-level CEN
transcription is required for kinetochore activity in budding
yeast. Disproportionate CEN expression driven by the galactose-
inducible PGAL1 promoter placed adjacent to CEN3 on a
plasmid caused plasmid loss (Hill and Bloom, 1987) since
kinetochores were not able to assemble. When PGAL1 was
positioned next to chromosomal CEN3 that was marked with
a GFP-array, growth in galactose prevented spindle binding
of labeled sister chromatids 3. Following glucose addition, the
sisters bi-oriented on the metaphase spindle (Tanaka et al.,
2005).

In S. pombe, the CENP-A binding region contains numerous
transcription start sites and promoters on the forward and reverse
strands. However, very low levels of transcripts are produced,
due to transcript turnover as well as RNAPII stalling (Choi
et al., 2011; Sadeghi et al., 2014), which could result from
collisions with the replisome or transient H2B (de)ubiquitination
activity that negatively affects chromatin accessibility (Chen et al.,
2008; Sadeghi et al., 2014). In fission yeast mutants unable
to restart stalled RNAPII, CENP-A became actively deposited
on the CEN, suggesting that halting RNAPII, which results
in a low-quality transcription environment, allows for CEN
chromatin remodeling and/or CENP-A loading (Shandilya et al.,
2014; Catania et al., 2015).

The PRAT CEN satellite monomer in the beetle Palorus
ratzeburgii contains a putative RNAPII promoter site that
overlaps with the most conserved part of the PRAT sequence.
This concurrence could be the result of selection pressure to
preserve the transcription activity of this satellite DNA. TATA-
box-like motifs, multiple transcription initiation and termination
sites were also mapped within the monomer. The presence of a
5′-RNA cap and 3′-poly(A) tails in a portion of the beetle CEN
transcripts indicates RNAPII-dependent transcription. Indeed,
treatment of larvae with alpha-amanitin at concentrations that
selectively inhibit RNAPII activity reduced the amount of
PRAT transcripts. These transcripts derived from one, two,
or three monomers, and were produced from both strands
(albeit 10 times less from the antisense strand) (Pezer and
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Ugarković, 2008). Within the human alpha-satellite sequence,
a candidate TATA box has been identified, as well as an
SV40 enhancer-core sequence with spacing and orientation
characteristic of RNAPII-transcribed genes (Vissel et al., 1992).
In human cells, RNAPII has been found especially enriched
at prometaphase, metaphase, and anaphase CEN, as well as
at kinetochore-active neocentromeres. Consistent with active
transcription, FCP1, a phosphatase that is specific for the
carboxy-terminal domain of RNAP II and stimulates transcript
elongation by RNAP II (Mandal et al., 2002), was identified
at mitotic human and murine kinetochores (Chan et al.,
2012).

TRANSCRIPTION AND
POST-TRANSLATIONAL
MODIFICATIONS PROMOTE CENP-A
INCLUSION INTO CENTROMERIC
CHROMATIN

While CENP-A represents the epigenetic mark of CEN identity
in most eukaryotes (Vafa and Sullivan, 1997; Warburton
et al., 1997) its presence per se is not enough for CEN
formation since trypanosomes and insects with holocentric
chromosomes lack a CENP-A ortholog (Akiyoshi and Gull, 2014;
Drinnenberg et al., 2014). CENP-A nucleosomes in humans
are also found at non-CEN sites, including neocentromeres
(Bodor et al., 2014). Both observations underscore the need
for additional CEN-specifying criteria, including structural
themes embedded within the CEN DNA sequence (see above).
Via its N- and C-terminal tails and through its central
histone-fold domain, CENP-A recruits the other kinetochore
proteins, including CENP-C with which it makes direct
physical contact (Chen et al., 2000; van Hooser et al., 2001;
Regnier et al., 2005; Liu et al., 2006; Carroll et al., 2009,
2010; Guse et al., 2011; Fachinetti et al., 2013; Kato et al.,
2013; Folco et al., 2015; Logsdon et al., 2015; Westhorpe
et al., 2015; Figure 3B). In contrast to histone H3, CENP-
A may form a more rigid interface with its partner histone
H4, which is further stabilized by CENP-C. Nucleosomes
containing CENP-A bind less firmly to the DNA, profoundly
affecting CEN transcription and distinghuishing it from the
surrounding closed-state chromatin (Hasson et al., 2013;
Falk et al., 2015). During chromosome replication, CENP-A
becomes diluted 1:2 with histone H3 variant H3.3, which is
deposited as a temporary placeholder allowing kinetochores
to assemble in early metaphase (Figure 3B). In mammals,
CENP-A becomes incorporated in late telophase/early G1,
when its chaperone HJURP localizes to CEN and H3.3 is
removed (Foltz et al., 2009; Dunleavy et al., 2011). CENP-A
deposition also requires the MIS18 complex (MIS18α, MIS18β,
MIS18-binding protein 1/KNL2) (Hayashi et al., 2004). In
D. melanogaster, HJURP and MIS18 activities appear to be
combined in the Cal1 protein (Erhardt et al., 2008; Chen et al.,
2014).

In S. cerevisiae, the CEN nucleosomes are evicted and
kinetochores disassembled at S-phase entry, allowing for the
replication of the CEN sequences, which are the first loci to
be replicated in budding yeast. It is unclear whether CEN
transcription is downregulated during this process. The expelled
CENP-A then becomes degraded. Within 5 min after passage of
the replisome, the CEN nucleosomes reassemble by the inclusion
of new CENP-A by the Scm3 chaperone (ortholog of HJURP).
Kinetochores then reassemble to attach the still-replicating
chromatids to the interphase spindle (Kitamura et al., 2007;
Wisniewski et al., 2014).

During G1 in human cells, the MIS18 complex recruits
the KAT7 histone acetyltransferase complex to maintain an
acetylated CEN chromatin state, which facilitates the assembly
of new CENP-A nucleosomes (Ohzeki et al., 2016). CENP-C
contributes to CENP-A inclusion and stability by interacting
directly with CENP-A, HJURP, and MIS18-binding protein
1 (Moree et al., 2011; Dambacher et al., 2012; McKinley
and Cheeseman, 2014; Tachiwana et al., 2015; Figure 3B).
Furthermore, CENP-C, the remodeling and spacing factor
complex RSF, and the MgcRacGAP Male germ cell Rac
GTPase-activating protein maintain CENP-A once incorporated
(Perpelescu et al., 2009; Lagana et al., 2010; Falk et al.,
2015). In contrast, cyclin-dependent kinase (CDK) activity
negatively regulates CENP-A incorporation. In D. melanogaster,
the turnover of S/G2 phase cyclin A in mitosis is key for the
deposition of CENP-A (Erhardt et al., 2008; Mellone et al.,
2011). In human cells, CDKs phosphorylate the MIS18-binding
protein 1 to reduce its CEN localization (Silva et al., 2012) and
to avert the recruitment of the MIS18α and MIS18β beyond
G1 (McKinley and Cheeseman, 2014). CDK phosphorylation of
HJURP also disrupts its CEN localization (Müller et al., 2014;
Figure 3B). In contrast, the kinase PLK1 targets the MIS18
complex to promote its CEN localization and to license the CEN
for CENP-A delivery. Bypassing both CDK and PLK1 activities
led to CENP-A deposition throughout the cell cycle, causing
severe mitotic defects (McKinley and Cheeseman, 2014). Clearly,
CENP-A must be loaded only in G1 to ensure correct CEN
function.

The de novo loading of CENP-A, as detailed above, requires
CEN transcription as catalyzed by RNAPII (Lyn Chan and
Wong, 2012; Quénet and Dalal, 2014; Rošić et al., 2014; Grenfell
et al., 2016; Figure 3B). In Drosophila, Cal1 recruits RNAPII
and the chromatin-remodeling complex FAcilitates Chromatin
Transcription (FACT) (Foltz et al., 2006; Chen et al., 2015).
Studies suggest that FACT activity weakens the histone core-DNA
contact, facilitating the passage of RNAPII, and protecting
the nucleosome from falling apart before it is remodeled and
the new CENP-A nucleosome assembled. FACT also binds to
the CEN CENP-T/W complex, possibly to promote also its
deposition (Prendergast et al., 2016). Of note, FACT localizes
at CEN at all stages of the cell cycle and is responsible for
CENP-A loading in human cells (Okada et al., 2009). In fungi,
FACT activity prevents the ectopic incorporation of CENP-A
beyond CEN, rather than promoting CENP-A assembly at
CEN nucleosomes (Deyter and Biggins, 2014). In Drosophila,
CEN transcription and chromatin remodeling are required for
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CENP-A to transition from an unstable chromatin-associated
state to a stable nucleosome-incorporated state (Bobkov et al.,
2018).

Alpha-satellite arrays amplified from human CEN and
cloned into a BAC plasmid form a functional HAC that recruits
kinetochores and stably propagates in HT1080 fibrosarcoma
cells (Maloney et al., 2012). In HACs containing engineered
tetO operator sequences within the alpha-satellite DNA,
and cells expressing transcriptional activators or silencers
fused with the tetO-binding TetR protein both destabilized
kinetochore formation (Bergmann et al., 2011). Transcriptional
silencing led to a gradual loss of CENP-A from the centromeric
chromatin, due to reduced recruitment of HJURP. Enhancing
alpha-satellite transcription ∼10-fold by tethering a minimal
NF-κB p65 activation domain did not affect kinetochore
formation or activity. However, tethering TetR with the
activation domain of herpes virus transcription factor
VP16 elevated transcription ∼150-fold, approaching the
expression level of a housekeeping gene. The consequent
increase in RNAPII occupancy provoked a loss of CENP-A,
probably through nucleosome eviction (Bergmann et al.,
2012).

Post-translational modifications of CENP-A are required
for its loading (Figure 3A). Before becoming deposited,
CENP-A is phosphorylated at Ser16 and Ser18 (Bailey et al.,
2013); Ser18 is a substrate for the cyclin E1/CDK2 kinase
(Takada et al., 2017). A loss or hyperphosphorylation of both
sites causes chromosome missegregation (Bailey et al., 2013;
Takada et al., 2017). Drosophila CENP-A is phosphorylated
at Ser75 and Ser77, which could be the analogs of Ser16
and Ser18 in human CENP-A (Boltengagen et al., 2016).
Biochemical evidence suggests that mono-ubiquitination
of CENP-A at Lys124 by the E3 ligase activity of the
CUL4A–RBX1–COPS8 complex promotes HJURP binding
and CENP-A deposition (Niikura et al., 2015, 2017).
However, disputing gene replacement experiments showed
that non-ubiquitinatable mutant CENP-A still can replace
endogenous CENP-A and support cell viability (Fachinetti et al.,
2017). In humans, the starting methionine of pre-inclusion
CENP-A is removed and the exposed Gly1 residue trimethylated
by the enzyme NRMT1 (Bailey et al., 2013; Sathyan et al.,
2017). Both this modification and phosphorylation of Ser16 and
Ser18 persist after CENP-A loading (Bailey et al., 2013).
Subsequent modifications of the incorporated CENP-A
include Ser7 phosphorylation, which is responsible for
the indirect recruitment of CENP-C, and ubiquitination
of Lys124, shown to be involved in CENP-A binding to
HJURP (Srivastava et al., 2018). Mutations in Ser7, Ser16, and
Ser18 sites lead to chromosome missegregation, abnormal
spindles, and errors in cytokinesis (Srivastava et al., 2018).
Nevertheless, chromosomes carrying CENP-A mutants
that cannot be phosphorylated at Ser68 or ubiquitinated
at Lys124 establish functional CEN (Fachinetti et al.,
2017). Since the same amount of CENP-A is renewed at
each G1 stage, errors in CENP-A incorporation caused by
abnormal CEN transcription, assembly factor activity, and/or
post-translational modifications could permanently alter its

levels at centromeric chromatin, contributing to chromosomal
instability.

CENTROMERE TRANSCRIPTION
THROUGH THE CELL CYCLE

Centromere transcription dynamics through the cell cycle have
only been studied recently. The levels of alpha-satellite RNAs
localizing at CEN did not change through the cell cycle,
indicating a complex dynamic between CEN RNA synthesis,
turnover, and stable incorporation in the CEN chromatin
(McNulty et al., 2017). CEN RNA and DNA FISH experiments
using identical HOR probes labeled with different fluorophores
showed a co-localization of the transcripts to their originative
CEN, indicating they are maintained in cis (McNulty et al.,
2017). As discussed earlier, CEN transcription is required for
CENP-A loading in human and Drosophila cells (Quénet and
Dalal, 2014; Bobkov et al., 2018). Human CEN transcription
mediated by RNAPII, in conjunction with the TATA-box binding
protein, occurs through early G1 when mammalian CENP-A is
deposited. When inhibiting transcription in G1, CENP-A levels
dropped with ∼50% (Quénet and Dalal, 2014). Targeting the
transcript with shRNA, while not impeding RNAPII activity,
diminished CENP-A levels and induced mitotic defects (Quénet
and Dalal, 2014). Reversely, depleting CENP-A reduced CENP-C
concentrations at kinetochores, but CEN transcript levels were
not affected, suggesting that CEN transcription occurs before the
recruitment of CENP-A and CENP-C (McNulty et al., 2017).
However, inhibiting active transcription resulted in CENP-C
destabilization, suggesting that CEN transcription may also act
downstream of CENP-A loading to promote CENP-C binding
(Chan et al., 2012).

While most regions within condensed chromosomes are
transcriptionally silent during mitosis, CEN are not (Chan et al.,
2012; Lyn Chan and Wong, 2012; Liu et al., 2015), therewith
differentiating them from the rest of the genome. Indeed,
as indicated earlier, RNAPII localized at human and murine
CEN from prometaphase through anaphase (Chan et al., 2012).
Mild CEN transcription through the cell cycle ensures stable
kinetochores and CEN cohesion (Liu et al., 2015).

In human cells, the cohesin-protecting protein Sgo1
(Shugoshin) is recruited to early mitotic kinetochores by the
Bub1-phosphoryated centromeric histone H2A [phosphorylated
at Thr120; (H2A T120P)]. Next, Sgo1 binds to RNAPII and
travels along with it to the inner CEN (region between the two
sister CEN) where it binds to the cohesin rings to protect them
from precocious cleavage by the protease separase (Liu et al.,
2015). Transcription by RNAPII and chromatin remodeling
activities could open the chromatin, allowing Sgo1 access to
cohesin. When transcription elongation was inhibited during
mitosis with alpha-amanitin or when RNAPII subunit Rbp2
was degraded, Sgo1 still localized at kinetochores but did not
relocate to the inner CEN. Besides RNAPII activity, the CEN
RNAs themselves may facilitate Sgo1 relocation to the inner
CEN. Indeed, since nonspecific RNA competed with H2A T120P
for binding to Sgo1, CEN RNA could bind to Sgo1, releasing it
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from H2A T120P and allowing Sgo1 to travel with RNAPol II
toward the inner CEN.

In contrast to human alpha-satellite transcripts, murine
MinSat transcripts are absent in G0/G1. They appear in S-phase,
peak at G2/M, and become undetectable after mitosis, when cells
re-enter the cell cycle (Ferri et al., 2009). This dynamic mirrors
the accumulation of the chromosomal passenger complex (CPC)
at the murine CEN, implicating a role of MinSat RNAs in CPC
localization and activity. Indeed, MinSat RNAs accumulate at
CENP-A chromatin and interact with CPC subunits Aurora B
and Survivin at mitotic onset. We will describe the interactions
between CEN RNA and the CPC components in detail further
below.

Schizosaccharomyces pombe CEN are transcribed during
DNA replication, which may generate transcription–replication
conflicts. Encounters between RNAPII and the replisome may
cause RNAPII to halt and produce immature transcripts (Lu
and Gilbert, 2007; Chen et al., 2008). RNAPII stalling generates
RNA–ssDNA hybrids, known as R-loops (Reddy et al., 2011),
which have also been observed at human CEN chromatin
(Kabeche et al., 2018). R-loops must be resolved; otherwise,
they can provoke chromosome breaks and repeat-sequence
recombinations. R-loops forming in centromeric chromatin
(or at pericentromeres or across the genome) trigger Aurora
B-mediated phosphorylation of local histone H3 at Ser10, as
shown in yeast, C. elegans, and human cells. This mark stimulates
confined chromatin condensation and restricts DNA replication
and transcription (Castellano-Pozo et al., 2013; Oestergaard and
Lisby, 2016). Since the FACT complex resolves R-loops in yeast
and human cells (Herrera-Moyano et al., 2014), it could remove
toxic R-loops prior to mitotic entry. FACT activities including the
stimulation of CEN chromatin remodeling and transcription, the
subsequent promotion of CENP-A assembly, and the resolution
of R-loops may reflect the dynamic state of the CEN environment
during cell cycle progression (Duda et al., 2017).

POST-TRANSCRIPTIONAL PROCESSING
OF CENTROMERE TRANSCRIPTS

In S. pombe, 5′-capped and 3′-polyadenylated non-coding CEN
RNAs that are produced from the central domain are quickly
degraded by the exosome (Choi et al., 2011). No evidence exists
for small CEN RNA processing products as documented for
the transcripts derived from the pericentromeric chromatin (see
below). The RNase activity of exosome subunit Dis3 is required
for correct kinetochore assembly and kinetochore–microtubule
interactions (Bühler and Moazed, 2007; Mukarami et al., 2007)
suggesting that degradation of CEN transcripts independent
of the RNA interference (RNAi) pathway contributes to CEN
activity in fission yeast.

Genome-wide screens with Drosophila and human cells
identified splicing factors that are required for cell division
(Goshima et al., 2007; Kittler et al., 2007; Somma et al., 2008;
Neumann et al., 2010). Also, purifications of the spliceosome
from HeLa cell nuclear extracts revealed the presence of
microtubule- and mitotic chromatin-interacting proteins

(Makarov et al., 2002). The processing of CEN RNAs may
occur in mitosis since splicing factors are co-transcriptionally
recruited to the elongating RNAPII transcripts (Listerman
et al., 2006; David et al., 2011) (and because RNA-splicing
factor Prp4 localizes to mitotic kinetochores in HeLa cells
(Montembault et al., 2007; Figure 3B). Splicing factors also
interact with MinSat transcripts in murine cells (Maison et al.,
2011). The co-transcriptional recruitment of the RNA processing
machinery to nascent mitotic transcripts in Xenopus is an
important step in kinetochore and spindle assembly. Indeed,
long non-coding CEN RNAs localize to mitotic chromosomes,
chromatin, and spindles (Blower, 2016). At spindles, the
transcripts regulate Aurora B and MCAK activities (Grenfell
et al., 2016). Inhibiting the spliceosome, which co-IPs with
CEN transcripts and CENP-C, in metaphase-arrested Xenopus
egg extracts caused an accumulation of long CEN antisense
transcripts representing up to six frc1 monomer repeats, which
are much longer than the standard CEN RNAs containing
one to two frc1 repeats. A globally reduced recruitment of
CENP-A, CENP-C, and Ndc80 was observed (Grenfell et al.,
2016), suggesting that fcr1 antisense RNA is processed and then
freely diffuses between CEN in trans, similar to observations in
Drosophila where CEN RNAs derived from the X chromosome
also move to the CEN of autosomal chromosomes (Rošić
et al., 2014). However, the RNA signals appear not to have
been completely removed from the autosomes after RNase
treatment (Rošić et al., 2014) suggesting that FISH detected
CEN DNA rather than the CEN RNA in trans (Bobkov et al.,
2018).

In maize, CEN RNAs identified in IPs of CENP-A are
produced from both strands and derived from the 156-bp
CentC satellite monomer and transposable elements that are
arranged in nearly continuous, intermingled arrays, and clusters.
The transcripts are heterogeneous in length (40–200 nt) but
predominantly contain 40 and 75-nt species (Du et al., 2010).
Although these transcripts lie outside the range of microRNAs
or siRNAs (20–30 nt) generated by RNAi pathways, their sizes
indicate processing. The CEN RNAs are maintained in a single-
stranded state within the maize kinetochore and are firmly bound
to centromeric histone protein H3 (Topp et al., 2004), which
may protect them from Dicer double-strand cleavage activity.
Importantly, genuine siRNAs present in total RNA extracted
from maize were not associated with CENP-A chromatin (Du
et al., 2010).

Mouse embryonic stem (ES) cells knocked out in dicer-1
(DCR1/1) are defective in global RNAi activity but retained
ES cell characteristics. Although viable, they proliferated more
slowly (Kanellopoulou et al., 2005). No aberrant chromosome
structures or aneuploidy was observed but the cells displayed
differentiation defects. The Dicer-negative cells contained
increased levels of long, polyadenylated CEN MinSat, and
pericentromere MajSat transcripts (>200 nt). Heterozygous
mutant cells (DCR1/+) produced 150-nt MinSat and MajSat
species, as well as 21–30 nt long specimen, suggesting the
contribution of Dicer (Kanellopoulou et al., 2005). Further
supporting the involvement of (peri)CEN RNA processing was
the identification of protein WDHD1, which may stabilize the
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association of Dicer with MinSat and MajSat RNAs (Hsieh et al.,
2011).

In tammar wallaby cells, 34–42 nt double-stranded (ds) RNAs
with homology to the CEN retroelement kLTR (Ferreri et al.,
2011) were identified in small-RNA pools (Carone et al., 2009;
Lindsay et al., 2012). In rice, RNAs of ∼40 nt derive from the
CentO CEN satellites (Lee et al., 2006). These rice and tammar
wallaby CEN RNA species have been termed crasiRNAs (CEN
repeat-associated short interacting RNAs). Targeting the small
RNAs produced from the kLTR disrupted CENP-A localization
in late telophase (Carone et al., 2009; Lindsay et al., 2012). Tight
regulation and processing of these crasiRNAs seem integral to the
epigenetic framework that is required for CEN establishment.

Hammerhead ribozyme structures associated with transcribed
satellite DNA sequences have been identified in salamanders
(Epstein and Gall, 1987), schistostome flatworms (Ferbeyre
et al., 1998), and Dolichopoda cave crickets (Rojas et al.,
2000). All hammerhead ribozymes self-cleave multimeric satellite
transcripts into monomer RNAs.

CENTROMERE PROTEINS THAT BIND
TO CENTROMERE RNA

Centromere transcripts or small CEN RNA derivatives underlie
the formation of ribonucleoprotein complexes that specify
the CEN domains and establish correct kinetochore assembly
and architecture. These complexes comprise CENP-A, HJURP,
CENP-B, CENP-C, the CPC, and Sgo1. While it is not clear
how each protein interacts with the CEN transcripts, CENP-B,
CENP-C, Sgo1, and the CPC have in common that their
RNA-binding capacity serves as a second chromatin-recruitment
mechanism. Indeed, it complements their promiscuous DNA
binding activity (CENP-C), their binding to a specific satellite
monomer box (CENP-B), their recruitment by the CEN
H2A T120P modification (Sgo1), and their recruitment by
Thr3-phosphorylated CEN histone H3 and CEN H2A T120P
(CPC).

CENP-A and HJURP
The interaction between CENP-A and CEN RNA was first
observed at a human neocentromere. LINE-1 elements within
the CENP-A-binding region of a neocentromere on 10q25
were transcribed into non-coding RNAs that integrate into the
CENP-A chromatin (Chueh et al., 2009). Both CENP-A and
HJURP interact with CEN RNA as shown in alpha-satellite
transcript pull-down experiments (Quénet and Dalal, 2014).
In silico predictions of potential RNA-binding sites indicated
that 286 out of the 748 HJURP residues, and 79 out of the 140
CENP-A residues, have RNA-binding capacity. However, the vast
majority of these CENP-A residues may well be buried inside
the nucleosome and/or be bound by CENP-C and CENP-N. The
predicted residues lie in the N-terminal half of CENP-A, the
protein’s most rapidly evolving part (Henikoff et al., 2001; Malik
and Henikoff, 2001), which is required to stabilize CENP-A at
centromeric nucleosomes (Logsdon et al., 2015). Possibly, the
disparities in composition and length of the N-terminal halves

of all CENP-A orthologs could allow for their interaction with
the rapidly evolving CEN DNA and, consequently, CEN RNA
sequences.

CENP-C
CENP-C, which acts as a dimer via its C-terminal dimerization
domain (Cohen et al., 2008), binds to CENP-A, CEN DNA, and
RNA (Figure 3B). Single-stranded alpha-satellite RNA localizes
CENP-C to CEN in interphase, which then together with
CENP-A recruits the other kinetochore proteins. Two regions
in human CENP-C (one central and one C-terminal) preferably
bind to CEN RNAs as shown in competition assays with rRNA,
tRNA, and murine MajSat RNA (Wong et al., 2007). However,
both sequences also bind to CEN DNA (Sugimoto et al., 1997;
Yang et al., 1996). Each DNA-binding element contains a 21–22
amino acid motif via which CENP-C also contacts CENP-A (Kato
et al., 2013). Mutating three lysine residues adjacent to CENP-A’s
central DNA-binding motif also abrogated RNA binding in
that region (Wong et al., 2007). Noteworthy, CENP-C’s central
RNA-binding domain shares homology with the RNA-binding
hinge domain region of the pericentromeric heterochromatin
proteins (HP) HP1α, β, and γ (Du et al., 2010; Muchardt et al.,
2002).

In maize, a C-terminal 122-residue CENP-C region encoded
by exons 9–12 binds RNA and DNA, and is required for its
CEN localization in vivo. While maize CENP-C binding to CEN
RNA occurs without any sequence specificity (in contrast to
human CENP-C), CEN DNA binding is stabilized by long ssRNA
in vitro. The RNAs that stabilize this contact correspond to the
ssCEN RNAs present in kinetochores (Du et al., 2010). Possibly,
CEN ssRNA may stabilize CENP-C by enhancing its binding
to CEN DNA, adjacent to where it interacts with the CENP-A
nucleosome. Indeed, disrupting CEN RNA destabilizes CENP-C
at the CEN. Treating mitotic human cells with alpha-amanitin
lowered CENP-C levels at kinetochores and caused an increase
in lagging chromosomes. A relatively greater reduction of
CENP-C occurred on the lagging chromosomes compared to
the chromosomes that segregated (Lyn Chan and Wong, 2012).
Impeding transcription initiation or splicing also led to decreased
CENP-C levels at kinetochores in Xenopus (Grenfell et al., 2016).
In Drosophila, X chromosome-specific SatIII transcripts localize
to CEN and associate with CENP-C (Rošić et al., 2014). Following
CENP-C depletion, the SatIII RNA signals at CEN dropped.
Reversely, when depleting SatIII RNAs, the presence of newly
synthesized CENP-C and CENP-A at CEN was reduced. This
negative effect cascaded up through the kinetochore (Rošić et al.,
2014). Taken together, results with human cells, Drosophila,
maize, and Xenopus suggest that the non-coding CEN RNAs
recruit and stabilize CENP-C, supporting CENP-A deposition
and stability.

CENP-C bound to CEN DNA and RNA also interacts
with chromatin modifying proteins to create the unique
epigenetic environment of the CEN domain. CENP-C recruits
DNA methyltransferase 3A-B (DNMT3A-B) to reduce local
transcription by promoting the methylation of CEN DNA
and histone H3. Consequently, CENP-C depletion caused
increased CEN transcription (Gopalakrishnan et al., 2009).
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CENP-C also binds to MIS18 complex components MIS18α-
and MIS18-binding protein 1 (Moree et al., 2011; Kim et al.,
2012), which control CEN histone acetylation (Fujita et al.,
2007). Mis18α through its interaction with DNMT3A-B can
also control DNA methylation and histone modifications (Kim
et al., 2012), whereas CENP-C through its interaction with
M18BP1 promotes the recruitment of HJURP for CENP-A
loading (Moree et al., 2011). Possibly, CEN RNA stabilizes
CENP-C:DNMT3A-B:MIS18 to target HJURP:CENP-A.

The Chromosomal Passenger Complex
The binding of CENP-A and CENP-C to CEN DNA and
alpha-satellite RNA promotes kinetochore assembly, including
the recruitment of the 4-protein CPC (INCENP, Survivin,
Borealin, and Aurora B), which regulates chromosome-spindle
attachment and activates the SAC upon chromosome
misalignment (Hindriksen et al., 2017). The CPC moves
from the inner CEN to the spindle midzone in late anaphase
to regulate cytokinesis (Warecki and Sullivan, 2018). Aurora
B also phosphorylates CENP-A at Ser7 (Zeitlin et al., 2001).
Both proteins coincide at the CEN in metaphase and move to
the contractile ring in cytokinesis. Possibly, CEN RNA acts as a
scaffold to promote their re-localization.

Knocking down alpha-satellite RNA in human cells (Ideue
et al., 2014) or inhibiting transcription in Xenopus egg extracts
(Blower, 2016) reduced the CEN levels of Aurora B, resulting in
unaligned chromosomes caused by improper spindle attachment.
Overexpressing MinSat RNA equally mislocalized Aurora B
in murine cells, instigating chromosome misalignment and
aneuploidy (Bouzinba-Segard et al., 2006). Moreover, Aurora B
kinase activity was regulated by MinSat RNA levels (Ferri et al.,
2009). Nonetheless, ectopic overexpression of satellite I RNA
did not significantly affect chromosome segregation and CEN
functions in human cells (Ideue et al., 2014).

The RNA-dependent inner kinetochore localization of the
CPC is mediated by at least two RNA-binding domains: one
that is present in Aurora B and one in Survivin or Borealin
(Blower, 2016). Aurora B and recombinant CPC also bind to
RNA in vitro. RNA stimulates Aurora B kinase activity in vitro
and in vivo, and a positive feedback loop exists between its
kinase activity and its metaphase localization (Wang et al.,
2011; Jambhekar et al., 2014). CPC assembly and Aurora B
activity were sensitive to RNase treatment. However, kinase
activity was rescued with RNA, perhaps via allosteric effects
on Aurora B binding (Ferri et al., 2009; Ideue et al., 2014;
Jambhekar et al., 2014). Pull-downs of MinSat RNA from murine
cells recovered CENP-A, Aurora B, Survivin, and INCENP
(Ferri et al., 2009). Reciprocally, CEN RNAs of murine and
human cells co-immunoprecipitated with CENP-A, Aurora
B, Survivin, and INCENP (Ferri et al., 2009; Ideue et al.,
2014).

Besides CEN RNA, Xenopus Aurora B also interacts with other
RNAs (including mRNAs) to form ribonucleoprotein complexes,
as observed in anti-Aurora B immunoprecipitation experiments
with interphase and mitotic cells, followed by RNA-sequencing.
Over 600 RNAs were identified, 465 of which were specific for
mitosis, suggesting a cell cycle-regulated binding of target RNA.

Identified RNAs encode proteins of the cytoskeleton, centrosome,
transcription factors, and RNAs that are enriched on spindle
microtubules (Jambhekar et al., 2014). While the RNA pool
showed an overrepresentation of adenines, Aurora B interacted
rather promiscuously with RNA, and bound in vitro only with
minor preference to the Xenopus fcr1 CEN satellite transcript
(Blower, 2016).

HETEROCHROMATIC
PERICENTROMERES INSULATE THE
CENTROMERE

Centromeric chromatin in fission yeast and metazoans is flanked
by constitutive heterochromatin. The pericentromeric domains
bind specific proteins and carry epigenetic marks that keep them
in a transcriptionally inert state thereby insulating themselves
from the enclosed CEN. Pericentric chromatin stabilizes the
CEN domain by preventing internal recombinations between
intra-CEN repeat sequences (Hetrr and Allis, 2005). It also
actively recruits cohesin (via the SUV4-20H2 methyltransferase
enzymes that trimethylate histone H4 at Lys20) to promote the
bi-orientation of and tension development between the sister
chromatids (Bernard et al., 2001; Sakuno et al., 2009; Yamagishi
et al., 2010; Yi et al., 2018).

Similar to the CEN sequence, pericentromeres comprise
simple repeat sequences such as alpha-satellite DNA, beta-,
gamma-, I, II, and III satellite sequences (5–200 bp). They
further contain DNA transposons (1 kb), long terminal
repeat (LTR)-endogenous retroviral elements (10 kb), non-LTR
autonomous retrotransposons (transposons that are formed after
reverse transcription of an intermediate RNAPIII-generated
transcript) including long interspersed elements (LINEs, 6 kb)
and short interspersed elements SINE (100–300 bp) (Figure 2C).
Pericentromeres harbor promoter elements that recruit various
transcription factors, including Ikaros in human cells (Gurel
et al., 2008), the ubiquitous YY1 at murine gamma-satellites
(Shestakova et al., 2004), Nanog and Sall1 in mouse ES cells
(Lopes Novo and Rugg-Gunn, 2016) to regulate transcription
by RNAPII or RNAPIII (Pezer and Ugarković, 2008). The
repeat sequences are not conserved between or within a species,
suggesting that pericentromere transcription is epigenetically
controlled. Indeed, it contains histone H3 variants H3.3 and
H2A.Z (Drané et al., 2010; Santenard et al., 2010) and binds
the conserved HP1, which propagates the heterochromatic
state and coordinates chromatin silencing, cohesion, and
replication activities (Saksouk et al., 2015). The pericentric
histones are hypoacetylated, resulting in chromatin fiber
compaction. Methylation marks are enriched on histone H3;
H3K9me2, H3K9me3 (recognized by HP1), H3K27me2, and
H3K27me3, but also on histone H4; H4K20me2, H4K20Me3,
and on cytosine and adenine (Gopalakrishnan et al., 2009;
Rose and Klose, 2014; Figure 3A). Notwithstanding this
repressive environment, pericentromeres are transcribed in
many organisms. A delicate balance between pericentromere
and CEN transcription ensures chromosomal stability (see
next).
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PERICENTROMERE TRANSCRIPTION
AND TRANSCRIPT PROCESSING
ENSURE ITS SILENT STATE

In S. pombe, repressive H3K9 methylation occurs at the
outermost dg and dh pericentromere repeats and ends at
the tRNA clusters inside the innermost repeats that surround
the CEN’s central domain. Their presence prevents the
pericentromeric heterochromatin from expanding into the
CENP-A chromatin (Cam et al., 2005; Figure 4). The tRNA
clusters are transcribed by RNAPIII, which further delineates
the CEN core domain from the flanking pericentromeres
(Partridge et al., 2000; Scott et al., 2006). RNAPIII barrier
transcription activity does not depend on the orientation of the
tRNA genes, but on the DNA sequence that is required for
formation of the RNAPIII complex (Scott et al., 2006, 2007).
The retrotransposon SINE, found throughout the mammalian
genome, is also transcribed by RNAPIII at pericentromeres. SINE
expression has been linked to establishing boundary elements
and chromatin insulators across the genome (Lunyak et al., 2007;
Román et al., 2011). Similarly, SINE transcription and/or that of
other pericentric DNA elements could insulate the CEN from the
bulk chromatin.

Transcription of pericentromeric chromatin occurs in many
species and, except for the tRNA genes in fission yeast, is largely
devoid of protein-encoding sequences (Brown et al., 2012; Hall
et al., 2012; Saksouk et al., 2015). In S. pombe, small-interfering
RNAs (siRNAs) produced after the processing of longer
transcripts are required for the propagation and maintenance
of the heterochromatic identity of pericentromers (Volpe
et al., 2002). The finding that transcription of pericentromeric
chromatin is functionally significant led to a re-assessment of
the definition of “silent” heterochromatin. Specifically, RNAPII
bi-directionally produces pre-RNAs from cryptic and TATA-like
promoter sequences within the dh and dg elements of the otr
regions that border the central CEN (Reinhart and Bartel, 2002;
Djupedal et al., 2005; Kato et al., 2005; Figure 4). Both otr
elements are not required for CEN function during mitosis
but provide a platform for the heterochromatin component
of S. pombe CEN (Kagansky et al., 2009). The produced
single-stranded polyadenylated transcripts are converted into
dsRNA species by the RNA-directed RNA polymerase-containing
RDRC complex, which Dicer (Dcr1) next processes into
short siRNAs that are transferred by ARC (Argonaute siRNA
chaperone complex) to the Argonaute (Ago1)-containing RNA-
induced transcriptional silencing complex RITS (Volpe et al.,

FIGURE 4 | RNA interference-based heterochromatin formation and maintenance at S. pombe CEN. Upper panel: the S. pombe CEN 1, indicating transcription by
RNAPII of an outer repeat otr element that flanks the central core of the CEN. Lowe panel: Regulation of the heterochromatic state of CEN sequences that flank the
central core domain. The RNA-induced transcriptional silencing (RITS) complex binds to ssRNA transcripts generated from the otr sequence repeats, by siRNA–RNA
base pairing interactions and via nucleosomes by localizing to histone H3 methylated at Lys9 (H3K9me). RITS then recruits RDRC/Dicer activity, promotes dsRNA
synthesis, the production of siRNAs, and CLRC H3K9 methyltransferase-mediated H3K9 methylation. The Argonaute siRNA chaperone complex (ARC) catalyzes the
transfer of the siRNAs from RDRC/Dicer to the RITS complex. The transcript ssRNAs present in the siRNAs become degraded by the exosome. Chromodomain
HP1 proteins Swi6 and Chp2 are recruited by the H3K9me mark and silence transcription of the chromatin by localizing the chromatin remodeling Snf2/HDAC
repressive complex (SHREC), which inhibits RNAPII activity. Adapted from Holoch and Moazed (2015).

Frontiers in Genetics | www.frontiersin.org 12 December 2018 | Volume 9 | Article 674

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00674 December 21, 2018 Time: 16:52 # 13

Smurova and De Wulf Regulation of (Peri)centromere Transcription

2002; Martienssen et al., 2005). Through their interaction with
Ago1, the siRNAs load RITS onto the cognate pericentromeric
chromatin via base-pairing with the nascent transcripts. The
RITS complex then recruits the CLRC complex that contains the
histone methyltransferase Clr4 (SUV39H in mammals), which
methylates H3K9. The latter recruits chromodomain proteins
Swi6 (S. pombe HP1 ortholog) and the SHREK-associated
protein Chp2, as well as histone deacetylase Clr3 (HDAC1),
which removes the local permissive H3K14ac marks. The
SHREK complex inhibits RNAPII activity, resulting in silent
heterochromatin (Figure 4).

Deleting RNAi pathway genes (dcr1, ago1 or RdP1) caused
chromosome missegregation due to defective silencing of the
pericentromeric heterochromatin. S. pombe strains mutated in
RNAPII subunits Rpb2 and Rpb7 also suffered from increased
chromosomal instability, impaired transcriptional silencing,
and a reduced association of H3K9me and Swi6 at dg/dh
(Djupedal et al., 2005; Kato et al., 2005). Pericentromere
transcription and siRNA production in S. pombe peak in
S-phase. Hence, pericentromere silencing may be alleviated
in S-phase as heterochromatin markers H3K9me and
Swi6 become distributed on the replicated strands (Chen
et al., 2008; Kloc et al., 2008). Without RNAi, homologous
recombination repairs the stalled forks (Zaratiegui et al., 2011)
suggesting that transcriptional silencing of pericentromeric
heterochromatin prevents replication stress (Castel and
Martienssen, 2013).

The importance of Dicer-dependent processing of
pericentromere RNAs for heterochromatin assembly in
vertebrates was demonstrated with chicken DT40 cells carrying a
human chromosome (Fukagawa et al., 2004). Eliminating Dicer
provoked an accumulation of long pericentric alpha-satellite
and SatIII transcripts, and caused mitotic defects due to
precocious sister chromatid separation; attributed to HP1
loss and a misregulation of cohesin and SAC protein BubR1.
Similarly, conditionally depleting Dicer in mouse ES cells led
to an accumulation of short MajSat transcripts (40 to >200 nt)
and the normally repressed long interspersed repeated DNA
and high-copy-number LTR retrotransposons. These findings
indicated a role for Dicer in repressing pericentromere regions
and other usually silent genetic elements (Kanellopoulou
et al., 2005). Since the binding of HP1 to heterochromatin
requires RNA (Maison et al., 2002; Muchardt et al., 2002),
the Dicer-processed siRNAs were assumed to represent them.
However, other than in chicken cells (Fukagawa et al., 2004),
21–25 nt siRNAs deriving from the pericentromeric domains
have been difficult to identify in vertebrates. Irrespective of
how or if the RNAi pathway contributes, pericentromere
transcripts in mammals seem involved in the formation and
maintenance of heterochromatin. For example in mice, protein
WDHD1, which plays a role in RNAPII transcription and
RNA processing, interacts with MajSat transcripts. Depleting
WDHD1 enhanced MajSat levels and reduced pericentromeric
heterochromatin condensation, resulting in proliferation
defects (Hsieh et al., 2011). Additional work with mouse early
embryos showed that injections of satellite dsRNAs can localize
HP1β to pericentromeres revealing that HP1 is targeted in

an RNA-dependent, sequence-specific manner. However, a
functional association with the RNAi machinery was not assessed
(Santenard et al., 2010).

Long non-coding transcripts corresponding to several MajSat
satellite repeat units specifically associate with SUMOylated
HP1, which is stabilized by H3K9me3, in murine cells.
RNase treatment released HP1 and altered the spacing of
the pericentromeric histones. HP1 preferentially binds to the
forward strand of these RNAs, which remains bound to the site
of transcription. Additional HP1 molecules then accumulate,
connecting pericentromere transcription with heterochromatin
formation (Maison et al., 2011). In primary mouse embryonic
fibroblasts, pericentromeric heterochromatin transcription
is proliferation- and cell cycle-dependent (Lu and Gilbert,
2007). A first pool of long, heterogeneous MajSat transcripts
(1 kb to >8 kb) is produced by RNAPII through G1 and
peaks in G1/S-phase, right before pericentromere replication
(mid-to-late S-phase). Since the transcripts accumulate at
the site of pericentromere replication, local transcription
could promote heterochromatin reassembly at the replication
fork. A pool of shorter transcripts (∼200 nt) is produced
at mitotic onset, coinciding with transcription factors and
other proteins becoming cleared from the heterochromatin.
This transcript population/transcription activity could be
involved in heterochromatin formation, maintenance, and
reinforcement during the later stages of mitosis when cohesin
at pericentromeres has been removed (Wu et al., 2006).
Indeed, while HP1 is dispatched from heterochromatin
during M-phase (Muchardt et al., 2002; Fischle et al., 2005),
H3K9me3 and the short M-phase RNAs could contribute
to the anaphase recruitment of HP1 (Saksouk et al., 2015).
SUV39 (Suv39h) histone lysine methyltransferase promotes
constitutive heterochromatin compaction and transcriptional
repression by catalyzing the H3K9me2/3 modification in
humans and mice. SUV39 is incorporated and stabilized
in constitutive heterochromatin by chromatin-associated
non-coding RNAs (Johnson et al., 2017; Velazquez Camacho
et al., 2017).

Heterochromatin activity in D. melanogaster is also
associated with histone H3K9 methylation by Su(var)3-9
and HP1 recruitment (Ebert et al., 2006). Involvement of
siRNA pathways acting in heterochromatin formation in
Drosophila has been hypothesized since a nuclear pool of
transposable element-derived siRNAs (21 nt) was shown
to promote heterochromatin formation in somatic cells of
Drosophila. Components of the RNAi pathway contributed
to heterochromatin maintenance (Fagegaltier et al., 2009).
As in S. pombe and mammals, these siRNAs might tether
complementary nascent transcripts of satellite DNAs and
transposons, and guide chromatin-modifying enzymes,
including Su(var)3-9. RNAi activity seems to help establish
heterochromatin in the early embryo, which can then be
maintained in the absence of RNAi in somatic tissues (Huisinga
and Elgin, 2009). Contrary to D. melanogaster, plants often
contain a significant portion of methylated repetitive DNA. In
fact, siRNAs guiding the methylation of histones and DNA at the
loci they were derived from (Zakrzewski et al., 2011). Processing
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of satellite-derived transcripts by the RNAi pathway into siRNAs
(21–24 nt) has been reported for Arabidopsis, rice, and sugar
beet (May et al., 2005; Lee et al., 2006; Zakrzewski et al., 2011).
Small RNAs with a predominant size of 24 nt cognate to the
satellite TCAST (Ugarković et al., 1996; Feliciello et al., 2011)
have been detected in the beetle Tribolium castaneum and are
more abundant in embryos than in later developmental stages
(Pezer and Ugarković, 2008; Pezer et al., 2012). The sequences
of components of the RNAi pathway are present in the genome
of T. castaneum, including Argonaute and Dicer, but not the
RNA-dependent RNA polymerase gene (Tomoyasu et al., 2008),
which insects and vertebrates appear to lack.

CENTROMERE AND PERICENTROMERE
TRANSCRIPTION DURING
DEVELOPMENT AND DIFFERENTIATION

Satellite DNA has been associated with differentiation and
development. Repetitive DNA is not transcribed in adult tissues
presumably because it is hypermethylated (Jeanpierre et al.,
1993) while it is hypomethylated in fetal tissues (Miniou et al.,
1997). Antisense MajSat transcripts accumulate in the central
nervous system of mouse embryos 11.5 days post coitum
(dpc), and become replaced by sense MajSat transcripts from
12.5 until 15.5 dpc. In adult mice, MajSat transcripts were
identified only in highly proliferative tissues such as liver
and testis (Rudert et al., 1995). In chicken and zebrafish,
alpha-satellite expression from the sense and antisense strands
occurs in a regulated pattern during embryogenesis, possibly
to control gene expression following transcript processing (Li
and Kirby, 2003). Before headfold formation in the chick
and at 0–2 h post-fertilization (hpf) in zebrafish, blastodiscs
expressed the alpha-repeat sequences. By stage 9 and at 6–8 hpf,
respectively, the expression localized to the head mesoderm,
myocardium, pharyngeal endoderm, and cardiac neural crest.
Because the expression occurred so early in zebrafish, the authors
looked for the alpha-repeat transcripts within the maternal
RNAs in single-cell and four-cell stage embryos. These stages
occur within minutes of fertilization and before the start of
zygotic transcription at 3 hpf. High levels of the transcripts
were found, supporting their maternal origin (Li and Kirby,
2003).

ANOMALOUS CENTROMERE AND
PERICENTROMERE TRANSCRIPTION
DURING STRESS AND DISEASE

Since the centromeric and pericentromeric regions are
epigenetically controlled, any loss/reduction in repressive
marks such as DNA and histone methylation or increased
removal of active acetylation marks can provoke satellite
overexpression from the centromeric and pericentromeric
regions as observed during stress, senescence, aging,
and in cancer cells. Pathological transcription of either
region dramatically affects CEN insulation and activity,

resulting in disturbed kinetochore formation and genetic
instability.

(Peri)centromere Transcription During
Stress
In human cells, the transcription of certain pericentromeric
satellite sequences, in particular SatIII, is induced upon heat
shock and exposure to heavy metals, chemicals, UV radiation,
hyperosmotic, or oxidative conditions (Figure 5A). Importantly,
while SatIII transcripts were up-regulated following heat shock,
CEN transcripts were not, indicating that each domain is subject
to different transcriptional control mechanisms (Jolly et al., 2004;
Rizzi et al., 2004; Valgardsdottir et al., 2008; Eymery et al.,
2009). SatIII expression levels also depend on the type of stress
that is experienced: MMS, etoposide, aphidicolin, and oxidative
stress are weak inducers; UV and hyperosmosis have a moderate
effect; and heat shock and cadmium are very strong activators.
In unstressed cells, SatIII sequences exist in a transcriptionally
silent, closed heterochromatin conformation. Following heat
shock or stress, SatIII transcription is induced (Valgardsdottir
et al., 2008). Specifically, monomeric transcription factor Heat
Shock transcription Factor 1 (HSF1) becomes upregulated and
binds as a phosphorylated homotrimer to the SatIII sequences.
HSF1 then recruits the histone acetylase CREB-binding protein
CBP to trigger histone hyperacetylation while the death domain-
associated protein DAXX, which acts as a chaperone for
pericentromeric histone H3.3, promotes SatIII transcription by
RNAPII. Upon DAXX depletion, SatIII expression levels in
heat-shocked cells dropped, while less H3.3 was incorporated
(Morozov et al., 2012). A set of RNA-binding and processing
proteins associate with the SatIII transcripts. RNAi knock-downs
of these transcripts that range between 2 and 5 kb (Jolly
et al., 2004; Rizzi et al., 2004) reduced the recruitment of
RNA processing factors, including the splicing factor SF2/ASF
(Chiodi et al., 2004; Metz et al., 2004). The RNA-binding factors
and SatIII transcripts produce ribonucleoprotein complexes that
combine into many perichromatin granules. Together, they
correspond to mature nuclear stress bodies that accumulate
at the pericentromeres (Denegri et al., 2002; Jolly et al.,
2004; Figure 5A). The number and size of the nuclear stress
bodies correlate directly with SatIII expression (Valgardsdottir
et al., 2008). During recovery from the stress, increased
levels of heat shock protein HSP70 trigger the disassembly
of the HSF1 trimers, which leave the nuclear stress bodies
together with the histone acetyltransferase CBP and RNAPII.
Next, the granule clusters dissociate, the RNA-binding proteins
redistribute through the nucleoplasm but the SatIII transcripts
stay bound to the granules. At the same time, granules that
are H3K9 methylated appear adjacent to the disassembling
nuclear stress bodies. The transcripts are then cleaved, and
a complex similar to the S. pombe RITS complex may then
localize the transcripts to the chromatin to silence the SatIII
DNA arrays (Biamonti, 2004; Biamonti and Vourc’h, 2010;
Figure 5A). Depending on the stress that is experienced,
different transcription factors promote SatIII activation. For
example, the tonicity-responsive enhancer binding protein
TONEBP induces SatIII expression under hyperosmotic stress
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(Valgardsdottir et al., 2008). Satellite transcript accumulation
during heat stress also occurs in insects (Pezer et al., 2012) and
plants (Tittel-Elmer et al., 2010). In the beetle T. castaneum
pericentromere TCAST satellites are transcribed by RNAPII
and processed into 21–30 nt siRNAs. The production of
these siRNAs is developmentally regulated but is strongly
induced upon heat shock. During recovery, siRNA expression
and histone modifications are restored to normal. Transient
heterochromatin remodeling seems part of a stress-activated
gene-expression program in beetles (Pezer et al., 2012), and
possibly other organisms as well. In Arabidopsis, a temperature
upshift alleviated the silent state of CEN satellite sequences,
pericentric 5S rDNA arrays, transposable elements, and 106B
interspersed repeats. Surprisingly, the pattern of repressive
epigenetic marks within the heterochromatin was not affected,
suggesting that the temperature-stimulated transcription activity
bypassed these regulatory modifications (Tittel-Elmer et al.,
2010).

Centromere MinSat transcription increases when murine cells
are exposed to chemical stress (DMSO, 5-aza-2′-deoxycytidine,
apoptosis inducer staurosporine). Comparable ectopic
overexpression of MinSat DNA led to decondensed CEN
and mitotic defects such as multiple spindle attachments,
loss of sister chromatid cohesion, aneuploidy, and cell death
(Bouzinba-Segard et al., 2006).

Extensive evidence points to an interplay between the
DNA damage response and satellite DNA expression. Ectopic
expression of satellite RNA in cultured human mammary
epithelial cells induced numerous foci of γ-H2A.X, the
phosphorylated histone H2A.X variant that marks dsDNA breaks
(Zhu et al., 2011). These cells also exhibited bridged and lagging
chromosomes as well as disorganized metaphase spindles (Zhu
et al., 2018). Similarly, MajSat RNA overexpression compromised
DNA damage repair, resulting in high DNA mutation rates
in cultured murine pancreatic cells (Kishikawa et al., 2016a,
2018). Elevated levels of γ-H2A.X were also observed after
nuclear injection of satellite RNA in human cells, indicating
that high transcription intensity per se does not trigger the
DNA damage response (Zhu et al., 2018). CRISPR-mediated
activation of MinSat and MajSat expression in murine cells
incited chromosomal instability (Zhu et al., 2018). Vice versa,
genotoxic etoposide treatment (causes dsDNA breaks) triggered
MinSat transcription and CENP-A eviction from the mouse CEN,
which relied on the p53-dependent DNA damage pathway and
chromatin chaperone/remodeling factors (Hédouin et al., 2017).
In the absence of functional p53, DNA demethylation as induced
by 5-aza-2′-deoxycytidine resulted in massive transcription of
MajSat RNA in mouse fibroblasts (Leonova et al., 2013).
Moreover, ectopic overexpression of MajSat RNA stimulated by
injection of sh-p53 RNA causing p53 knockdown led to tumor
formation (Zhu et al., 2018).

How do (peri)centromere transcription/transcripts
contribute to a stress response and recovery from it? The
transcripts processed via an RNAi-dependent or -independent
pathway could mediate heterochromatin reformation, as in
S. pombe. Analogous to X-chromosome inactivation by the long
non-coding Xist RNA, the transcripts might recruit chromatin

remodelers and DNA methyltransferases to establish a silent
pericentric state. Also, SatIII transcripts could protect a fragile
region of the genome from stress-induced DNA damage (the
SatIII-enriched 9q12 region is often rearranged in pathologies,
including cancer). Possibly, the transcripts could regulate local
RNA splicing during the stress response by sequestering splicing
factors. Via a position-effect mechanism, they might counteract
the repressive nature of heterochromatin and activate nearby
genes in cis or trans (Eymery et al., 2009; Saksouk et al., 2015).

(Peri)centromere Transcription During
Senescence and Aging
Heterochromatin structure and expression change during aging.
An up-regulation of MajSat expression in senescent cardiac
muscle cells of aging mice but not in their brain or kidneys
may be linked to mitochondria-induced oxidative stress (Gaubatz
and Cutler, 1990). Transcriptional activation of pericentromeres
has been observed in replicative senescence and aging. Upon
extensive passaging of human fibroblasts, the cells entered
replicative senescence, which correlated with an increased
expression of pericentromere transcripts. The pericentromeric
heterochromatin was decondensed and exhibited reduced DNA
methylation. Here, the produced transcripts may not have a
specific biological role but rather be the consequence of a
senescent state of the heterochromatin itself (Enukashvily et al.,
2007). Aberrant overexpression of SatIII from 9q12 was observed
in the Hutchinson–Gilford progeria syndrome (Shumaker et al.,
2006). The latter arises from mutations in the laminA gene,
which encodes a component of the nuclear lamina that maintains
the structural integrity of the nucleus. Lamins are crucial for
pericentromeric heterochromatin organization in interphase cells
(Solovei et al., 2013).

Pericentromeric heterochromatin was show to lose H3K9me3
and HP1 proteins in older flies and human cells, leading to
an anomalous expression of satellite sequences (Scaffidi and
Misteli, 2006; Shumaker et al., 2006; Larson et al., 2012). Loss
of pericentric silencing may drive age-related genome instability
and death since the cells from older individuals or progeria
patients are characterized by a global loss of heterochromatin
marks, and increase in DNA damage (Scaffidi and Misteli,
2006; Shumaker et al., 2006; Leung et al., 2015). Inactivation
of heterochromatin silencing components in flies cuts their
lifespan in half whereas a moderate overexpression of HP1α

extends their lifespan with 15%, suggesting that HP1α loss in
older animals promotes aging (Larson et al., 2012). Finally,
the transcriptional de-repression of satellite sequences has been
linked to tau-induced neurodegeneration, as in Alzheimer’s
disease (Frost et al., 2014).

(Peri)centromere Transcription in Cancer
and Disease
The transcriptional misregulation of the SatII and SatIII
pericentromeric satellite sequences, and altered epigenetic state
of pericentromeric chromatin characterizes many cancers and
genetic disorders (Shumaker et al., 2006; Ehrlich, 2009; Eymery
et al., 2009; Ting et al., 2011; Zhu et al., 2011; Figure 5B).
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FIGURE 5 | (A) Regulation of pericentromere SatIII transcription in human cells following exposure to heat and other stresses. In the absence of stress, SatIII repeat
sequences are epigenetically marked for silence (H3K9me, pink dot) and exist in a closed transcriptionally inert state (blue nucleosomes). Upon exposure to heat or
other stresses, the monomeric HSF1 (shown in green) becomes upregulated, and forms homotrimers that after phosphorylation enter the nucleus. The HSF1 bind to
the SatIII sequences and recruit the histone acetyltransferase (HAT) CREB-binding proteins to trigger histone hyperacetylation (yellow stars), which results in active
SatIII transcription by RNAPII of one strand. A subset of RNA-binding/processing proteins is recruited to the SatIII transcripts, forming ribonucleoprotein complexes
that associate into so-called perichromatin granules, which in turn produce clusters that correspond to a mature nuclear stress body (represented by the red oval
structure). To recover from the inflicted stress, heat shock protein HSP70 induces the disassembly of the HSF1 trimers that leave the nuclear stress bodies, along
with RNAPII and the HAT. The granules disassemble and the RNA-binding proteins redistribute throughout the nucleoplasm. SatIII transcripts may become
processed into smaller fragments possibly by the RNAi machinery to protect and re-establish the heterochromatic state of the pericentromeric region comprising the
SatIII repeats, possibly by recruiting epigenetic writing activity resulting in the establishment of the repressive H3K9me signals. Adapted from Biamonti and Vourc’h
(2010) and Biamonti (2004). (B) Transcriptional regulation of (peri)centric repeat sequences as identified in various tumors. The epigenetic marks and the enzymes
responsible for introducing or removing them at histones or cytosine are indicated. Blue nucleosomes: silent, purple nucleosomes: transcribed. The overproduction
of (peri)centric transcripts can induce DNA damage, mitotic defects, genomic instability, and aneuploidy. See text for details.
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In mouse models of pancreatic, colon, and lung cancers, satellite
transcripts represent up to 50% of the total RNA, which
was linked to deregulated DNA methylation. Specifically, in
pancreatic ductal adenocarcinoma (PDAC) samples, 47% of all
transcripts were produced from MajSat sequences. In contrast,
in healthy reference tissues, only 0.02–0.4% of all transcripts
originated from those repeats (Ting et al., 2011; Kishikawa et al.,
2016a). The transcripts were highly heterogeneous (200–8,000 nt)
and transcribed only from the forward strand. While PDAC
murine cells expressed MajSats only minimally when cultured
ex vivo, high expression levels similar to those observed in
tumors in vivo were measured in immortalized PDAC tumor cells
treated with 5-aza-2′-deoxycytidine, suggesting that transcription
is regulated by DNA methylation, which might be re-established
together with other epigenetic silencing mechanisms ex vivo.
Furthermore, SatII expression showed a median 21-fold increase
in human PDAC samples in comparison with “healthy” tissue
samples (Ting et al., 2011). To determine what could be
promoting SatII hyperexpression, linear regression analysis
was performed to identify transcripts that were co-regulated
with the mouse MajSat or human alpha-satellite sequences.
Several genes involved in neuronal cell fate and stem cell
pathways, that contained LINE1 transposable elements were
highly expressed (Ting et al., 2011). A LINE1 insertion upstream
of their transcription start sites can underlie their misregulation,
contributing to cellular transformation. SatII RNA transcripts in
colorectal cancer cells were reverse transcribed into DNA:RNA
hybrids, and then generated dsDNAs, which were incorporated
into the pericentromeric domains. Whole-genome sequencing
showed that SatII copy number gain commonly characterizes
human colon tumors, and is linked with low survival (Bersani
et al., 2015). Healthy human testis tissue showed a high
expression of pericentromeres, while in cancers their expression
was silent (Eymery et al., 2009).

Methyltransferase DNMT3B, which methylates
(peri)centromeric DNA at cytosines in CpG dinucleotides,
is recruited by CENP-C. Impairment of this interaction causes
an overproduction of CEN and pericentromere transcripts
(Gopalakrishnan et al., 2009). Besides cancer, mutations in
DNMT3B lead to the ICF syndrome (immunodeficiency,
CEN instability, and facial anomalies) whose patients suffer
from hypomethylated SatII and SatIII repeats (euchromatic
gene methylation was at normal levels, Brun et al., 2011).
The tumor-suppressing, heterochromatin-associating lysine
demethylase 2A (KDM2A) is downregulated in prostate cancer
(Frescas et al., 2008). Via its Jumonji domain, the enzyme
demethylates the pericentromeric H3K36me2 modification to
silence the heterochromatin. KDM2A depletion resulted in a
loss of HP1 and elevated alpha-satellite and MajSat transcription
in human and mouse cells, respectively. Phenotypes included
genomic instability, sister chromatid misalignment, chromosome
breaks, and anaphase bridges. The lower the level of KDM2A
expression, the more severe the tumor grade in prostate cancer,
linking hypermethylation and increased (peri)centromere
transcription with cancer growth (Frescas et al., 2008; Figure 5B).

The histone demethylase JMJD2B acts as an oncogene in
certain breast cancers (Slee et al., 2012). When overexpressed,

its activity reduces H3K9me3 marks at CEN and causes
chromosomal instability. While the levels of CEN and
pericentromere transcripts in these tumors were not
quantitated, their production was likely derepressed. A loss
of SUV39H histone methyltransferase activity (mediates H3K9
methylation) facilitated the expression and/or stabilization of
MinSat transcripts in mice, which accumulated as dsRNAs
(Lehnertz et al., 2003; Martens et al., 2005). A forced
accumulation of MinSat transcripts, in sense orientation,
provoked a mislocalization of kinetochore proteins, affected
chromosome segregation, sister chromatid cohesion, and
induced modifications of CEN epigenetic hallmarks. Possibly,
anomalous levels of CEN transcripts interfere with kinetochore
and cohesin recruitment (Bouzinba-Segard et al., 2006). Of
note, ectopic overexpression of alpha-satellite DNA in human
cells led to chromosome loss but not to reduced methylation of
the DNA. In contrast, DNA demethylation caused pathological
alpha-satellite transcription and chromosome loss in human cells
(Ichida et al., 2018).

SatII and SatIII transcripts were markedly overexpressed
in human osteosarcoma cells depleted in tumor suppressor
SIRT6, which deacetylates histone H3K16ac in pericentric
heterochromatin. Its inactivation led to H3K18 hyperacetylation
likely by the histone acetyltransferase GCN5, reversal of
heterochromatin silencing, mitotic defects, genomic instability,
and senescence. Importantly, depletion of the transcripts through
RNAi rescued the phenotypes (Tasselli et al., 2016).

Mutations in the hereditary ovarian and breast cancer
susceptibility gene BRCA1, which acts as a tumor suppressor, led
to genomic instability. While BRCA1 acts in DNA replication
and damage repair, control of the cell cycle, and many other
regulatory functions, the protein was recently shown to also
determine the epigenetic states of centromeric and pericentric
chromatin (Zhu et al., 2011). Through its ubiquitin ligase
activity, BRCA1 mono-ubiquitinates histone H2A at Lys119
(Chen et al., 2002; Figure 5B) to produce a repressive mark
that prevents genomic instability and tumorigenesis (Zhu
et al., 2011). When BRCA1 was knocked out in murine and
human cells, a derepressed transcription of MinSat, MajSat,
and alpha-satellite DNA was observed, respectively, concurrent
with a loss of H2AK119 ubiquitination. While the latter may
have produced defective heterochromatin (as indicated by
reduced HP1 levels), it is unclear which factors promoted
alpha-satellite transcription in the BRCA1-deficient cells.
Ectopically expressing H2A fused to ubiquitin reversed the
above BRCA1-loss phenotypes, whereas the ectopic expression
of satellite DNA phenocopied it, resulting in DNA damage
and genomic instability, cell cycle checkpoint defects, and
centrosome amplification, indicating that overexpressed
(peri)centromere transcripts could contribute to malignancy
(Zhu et al., 2011).

The tumor-suppressing transcription factor Prep1 is
associated with DNA damage control and the management
of histone methylation levels (Iotti et al., 2011). Indeed,
upon downregulating Prep1 in mouse or human cells, DNA
damage increased. This phenotype, which is generated through
an unknown mechanism, caused a widespread increase in
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the repressive histone mark H3K9me3. Consequently, the
transcription of MajSat in mouse, and alpha-satellite DNA in
humans dropped with 62% and 45%, respectively, compared to
wild-type control cells. Intriguingly, the decrease in CEN and
pericentromere transcript production led to the same phenotypes
as in cells overexpressing them, including aneuploidy,
miniature chromosomes, Robertsonian translocations, and
CEN duplications (Iotti et al., 2011).

Tumor-suppressing transcription factor p53 cooperates
with DNA methylation activity to silence a large part
of the mouse genome. A massive transcription of major
classes of retroelements, near-CEN tandem repeat satellite
DNAs, and numerous species of non-coding RNAs was
observed in p53-deficient mouse fibroblasts treated with
5-aza-2′-deoxycytidine (not observed in treated p53 wild-
type cells). The levels of these transcripts exceeded those
of β-actin mRNA by more than 150-fold. Accumulation of
these transcripts, which are capable of forming dsRNAs,
was complemented by a potent apoptosis-inducing type
I interferon response. The authors suggested a model in
which the downregulation of these repeat sequences is
controlled by p53-driven transcriptional silencing, DNA
methylation-based suppression of transcription, and the
suicidal type I interferon response, which eliminates the cells
that escaped the first two lines of control (Leonova et al.,
2013).

(Peri)centromere silencing is also regulated by the Polycomb
repressive complexes PRC1 and PRC2, which are commonly
misregulated in cancer (Blackledge et al., 2015). PRC2 lysine
methyltransferase subunit EZH2 catalyzes the addition of one to
three methyl groups to histone H3 at Lys27 (Figure 5B). In Rb1
mutant mice, which are defective in recruiting EZH2 to repetitive
sequences, a transcriptional derepression of satellite DNA was
observed, which induced susceptibility to lymphoma (Ishak et al.,
2016).

(PERI)CENTROMERE TRANSCRIPTS AS
CANCER BIOMARKERS AND TARGETS
IN THE CLINIC

SatII overexpression characterizes myriad cancerous and
precancerous lesions, suggesting that SatII RNA levels might
be a good predictor or indicator of cancer (Ting et al., 2011;
Bersani et al., 2015; Tasselli et al., 2016; Hall et al., 2017). Indeed,
RNA in situ hybridization analysis of SatII expression in biopsies
proved a better diagnostic for pancreatic cancer than standard
histopathological analysis (Ting et al., 2011). A convenient
and highly sensitive method for quantitating circulating
satellite repeat RNAs in blood serum (Kishikawa et al., 2016b)
combines Tandem Repeat Amplification by nuclease Protector
(TRAP) with droplet digital PCR. Patients with pancreatic
ductal carcinoma (PDAC) were efficiently discriminated from
healthy individuals, while patients with intraductal papillary
mucinous neoplasm, a precancerous lesion of PDAC, could also
be accurately identified. This simple and cheap test allows for
early prognosis, quick screens, and regular follow-ups of PDAC

progression. This method may well be adapted to quantitate
additional (peri)centromere transcripts in other cancers as
well.

Kinetochore subunit overexpression (Thiru et al., 2014;
Zhang et al., 2016; Sun et al., 2016), CENP-A overproduction
and mislocalization (Athwal et al., 2015), and de-silenced
(peri)centromeric chromatin may all contribute to aneuploidy
and promote cancer initiation/progression. The degree of
overexpression of kinetochore protein-encoding genes, which
associate with patient survival and response to therapy,
could classify tumors, and serve as future prognostic cancer
biomarkers (O’Brien et al., 2007; Sun et al., 2016; Zhang
et al., 2016). Similarly, CEN and pericentromere transcript
levels in conjunction with the (peri)centromeric methylation,
acetylation, or ubiquitination state may serve as valuable readouts
of cancer grade and survival. They may also represent novel
therapeutic targets. In fact, various drugs inhibiting numerous
epigenetic enzymes/regulators are in advanced developmental
stages (Pfister and Ashworth, 2017). Nucleic acid therapeutics
aimed at (peri)centromere repeats may provide alternative
objectives for the future. They are transcribed in a cell- or
tissue-specific manner, making them exceptional objectives.
Powerful RNA structure determination assays can also map
the secondary and tertiary structure of these RNAs (Wilkinson
et al., 2006; Novikova et al., 2013; Lu et al., 2016). Clinical
trials are already underway to similarly target highly structured
bacterial or viral riboswitches using small-molecule inhibitors
to treat bacterial and viral infections, respectively (Howe et al.,
2015). Small-molecule ligands targeting structural elements in
these CEN or pericentromere RNAs could potentially destabilize
the transcript or interfere allosterically with CEN-protein
binding to confer a therapeutic effect, although this remains
purely hypothetical. With recent advances in genome editing
methods, it is possible to achieve transcriptional silencing of
(peri)centromere repeats via CRISPR interference (Gilbert et al.,
2014; Koch, 2017). In a genome-wide CRISPR interference
study, guide RNAs were developed to selectively and successfully
inactivate >16,000 long non-coding RNA genes within the
human genome (Liu et al., 2017). These experiments suggest
that downregulating pathologically expressed (peri)centromeric
elements could well be feasible (Zhang et al., 2016; Koch, 2017).
The recently developed CRISPR/Cas13 system (Abudayyeh
et al., 2017) represents another promising approach to knock
down non-coding RNAs. However, only the future will tell
to which extent these approaches will translate into clinical
scenarios.

PERSPECTIVES

The continuous identification and functional characterization
of new epigenetic activities (enzymes, histone modifications)
that impinge on centromeric and pericentromere domains via
ever more sensitive mass spectrometry approaches will take
our understanding of CEN, kinetochore, and pericentromere
biology to the next level. In addition, transcription factors that
drive (peri)centromere transcription in healthy and diseased
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cells must be identified as their biology and influences on the
spatiotemporal regulation of the CEN and pericentric regions
remains largely unknown. The same is true for regulators
that act upon the RNAPII complex to orchestrate its activity
(recruitment, elongation, termination) at (peri)centromeres.
Kinases and phosphatase may be prime candidates. A better
understanding of RNAi pathway involvement in mammalian
biology would be welcomed as well. For sure, exciting
(peri)centromere biology will continue to be “written” in
laboratories worldwide, and hopefully at some point in cancer
clinics as well.
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